
POST GRADUATE DEGREE PROGRAMME (CBCS) IN

MATHEMATICS

SEMESTER III

SELF LEARNING MATERIAL

PAPER : MATC 3.1
(Pure & Applied Streams)

Block - I : Linear Algebra
Block - II : Special Functions

Block - III : Integral Equations & Integral Transforms

Directorate of Open and Distance Learning
University of Kalyani

Kalyani, Nadia
West Bengal, India

Course Preparation Team

1. Mr. Biswajit Mallick 2. Ms. Audrija Choudhury
Assistant Professor (Cont.) Assistant Professor (Cont.)
DODL, University of Kalyani DODL, University of Kalyani

November, 2019

Directorate of Open and Distance Learning, University of Kalyani

Published by the Directorate of Open and Distance Learning

University of Kalyani, 741235, West Bengal

All rights reserved. No part of this work should be reproduced in any form without the permission in writing
form the Directorate of Open and Distance Learning, University of Kalynai.

Director’s Massage
Satisfying the varied needs of distance learners, overcoming the obstacle of distance and reaching the un-
reached students are the threefold functions catered by Open and Distance Learning (ODL) systems. The
onus lies on writers, editors, production professionals and other personnel involved in the process to overcome
the challenges inherent to curriculum design and production of relevant Self Learning Materials (SLMs). At
the University of Kalyani a dedicated team under the able guidance of the Hon’ble Vice-Chancellor has in-
vested its best efforts, professionally and in keeping with the demands of Post Graduate CBCS Programmes
in Distance Mode to devise a self-sufficient curriculum for each course offered by the Directorate of Open and
Distance Learning (DODL), University of Kalyani.

Development of printed SLMs for students admitted to the DODL within a limited time to cater to the
academic requirements of the Course as per standards set by Distance Education Bureau of the University
Grants Commission, New Delhi, India under Open and Distance Mode UGC Regulations, 2017 had been our
endeavour. We are happy to have achieved our goal.

Utmost care and precision have been ensured in the development of the SLMs, making them useful to the
learners, besides avoiding errors as far as practicable. Further suggestions from the stakeholders in this would
be welcome.

During the production-process of the SLMs, the team continuously received positive stimulations and feed-
back from Professor (Dr.) Sankar Kumar Ghosh, Hon’ble Vice-Chancellor, University of Kalyani, who kindly
accorded directions, encouragements and suggestions, offered constructive criticism to develop it within
proper requirements. We gracefully, acknowledge his inspiration and guidance.

Sincere gratitude is due to the respective chairpersons as weel as each and every member of PGBOS
(DODL), University of Kalyani, Heartfelt thanks is also due to the Course Writers-faculty members at the
DODL, subject-experts serving at University Post Graduate departments and also to the authors and aca-
demicians whose academic contributions have enriched the SLMs. We humbly acknowledge their valuable
academic contributions. I would especially like to convey gratitude to all other University dignitaries and
personnel involved either at the conceptual or operational level of the DODL of University of Kalyani.

Their persistent and co-ordinated efforts have resulted in the compilation of comprehensive, learner-friendly,
flexible texts that meet the curriculum requirements of the Post Graduate Programme through Distance Mode.

Self Learning Materials (SLMs) have been published by the Directorate of Open and Distance Learning,
University of Kalyani, Kalyani-741235, West Bengal and all the copyright reserved for University of Kalyani.
No part of this work should be reproduced in any from without permission in writing from the appropriate
authority of the University of Kalyani.

All the Self Learning Materials are self writing and collected from e-book, journals and websites.

Director

Directorate of Open and Distance Learning

University of Kalyani

CONTENTS

Serial Number Block Unit Page Number

1 2− 6
2 7− 19

1 Linear Algebra 3 20− 30
4 31− 42
5 43− 47
6 48− 56

7 59− 68
2 Special Functions 8 69− 80

9 81− 84
10 85− 97

11 100− 112
12 113− 124

3 Integral Equations 13 125− 135
& Integral Transforms 14 136− 145

15 146− 155
16 156− 163

Core Paper

MATC 3.1
Block - I

Marks : 40 (SSE : 30; IA : 10)

Linear Algebra

Syllabus
• Unit 1 •

Matrices over a field: Matric polynomial, characteristic polynomial, eigen values and eigen vectors, mini-
mal polynomial.

• Unit 2 •

Linear Transformation (L.T.): Definition and the algebra of L.T., Rank and Nullity of L.T., Dual space,
dual basis, Representation of L.T. by matrices, Change of basis.

• Unit 3 •

Normal forms of matrices: Diagonalization of matrices, Smith’s normal form.

• Unit 4 •

Invariant factors and elementary divisors, Jordan canonical form.

• Unit 5 •

Rational (or Natural Normal) form, triangular forms.

• Unit 6 •

Bilinear and Quadratic forms: Bilinear forms, quadratic forms, reduction and classification of quadratic
forms.

1

Unit 1

Course Structure

• Matrix polynomial, characteristic polynomial

• Eigen values and eigen vectors

• Minimal polynomial.

1 Introduction

You are already aware of matrices and its various properties such as determinants, characteristic polynomials,
eigen values and eigen vectors. We will revisit them in this unit and learn about the minimal polynomial of
matrices and read about the characteristic polynomial, the eigen values and eigen vectors using the information
of the minimal polynomial.

Objectives

After reading this unit, you will be able to

• find the characteristic polynomial of a matrix

• find the eigen values and eigen vectors of a matrix

• learn the various properties of a matrix associated with its eigen vectors and eigen values and also its
characteristic polynomial

• find the minimal polynomial of a matrix

• learn the relationship between minimal and characteristic polynomials of a matrix.

1.1 Matrix Polynomials

Let F be a field and A be a matrix with entries from the field F . In this chapter, we are concerned mainly
with the matrix polynomials, viz., the characteristic and minimal polynomials. Here, we will consider the
underlying field to be either R or C. Let A be an n×n matrix over the field R. Then, a matrix polynomial for
the matrix A is a polynomial with real coefficients and the variables as the matrix A, that is, if

p(x) = a0 + a1x+ · · ·+ anx
n

is a real polynomial, then the matrix polynomial evaluated at A is given as

p(A) = a0I + a1A+ · · ·+ anA
n

where, I is the n-th order identity matrix. Next we will move on to the definition of the characteristic polyno-
mials.

2

1.1.1 Characteristic Polynomials

Before stating the definition of characteristic polynomials, we will first define the eigen values and eigen
vectors of a matrix.

Definition 1.1. Let A be an n× n matrix over the field R. Then, a real number λ is said to be an eigen value
of the matrix if there exists a non-zero vector v ∈ Rn such that

Av = λv (1.1.1)

holds. Then the non-zero vector v is said to be the eigen vector corresponding to the eigen value λ.

The equation (1.1.1) reduces to
(A− λI)v = 0

which is an n-th order linear equation in n variables. This equation has non-trivial solution if

det(A− λI) = 0

The above equation is called the characteristic equation (polynomial) for the matrix A. The roots of the
characteristic polynomials give us the eigen values of the matrix. It should be noted that the characteristic
polynomial is a monic polynomial which has exactly degree n.

Consider the matrix

A =

[
0 1
−1 0

]
For any real number λ, the equation det(A− λI) = 0 gives[

−λ 1
−1 −λ

]
= 0,

or, λ2 + 1 = 0,

or, λ = ±i.

So, the characteristic equation is λ2 + 1 = 0 which has no roots in the real field, but has roots ±i in the
complex field. So, A has eigen values in the complex field but no eigen value in the real field.

Eigen values can also be defined as

Definition 1.2. If A is an n × n matrix over a field F , then c ∈ F is called an eigen value of A in F if the
matrix (A− cI) is singular.

Eigen values are often called characteristic roots, latent roots, eigenvalues, proper values, or spectral values
in several roots. We shall call them eigen values throughout. We will now discuss certain properties of
characteristic polynomials.

Definition 1.3. Let A and B be two n × n matrices. Then A and B are said to be similar if there exists an
invertible matrix P of order n such that

A = P−1BP.

Theorem 1.4. Similar matrices have the same characteristic polynomial.

3

Proof. Let A and B be two n× n similar matrices. Then there exists an invertible matrix P such that

A = P−1BP.

Then,

det(A− λI) = det(P−1BP − λI)

= det(P−1BP − λP−1IP)

= det(P−1(B − λI)P)

= detP−1.det(B − λI).detP

= det(B − λI).

We will now move on to define the minimal polynomial of a matrix. Let us start with the following example.

Consider the following matrix

A =

3 1 −1
2 2 −1
2 2 0


Then the characteristic polynomial for A is∣∣∣∣∣∣

3− λ 1 −1
2 2− λ −1
2 2 −λ

∣∣∣∣∣∣ = 0

which gives λ3 − 5λ2 + 8λ − 4 = (λ − 1)(λ − 2)2 = 0. Thus, 1 and 2 are the eigen values of A. Find the
corresponding eigen vectors!

So the characteristic polynomial for A is f(λ) = λ3 − 5λ2 + 8λ− 4 = (λ− 1)(λ− 2)2 = 0. It is obvious
that for any other polynomial g(x) in R[x] (since in this case the underlying field is R. Otherwise we would
have taken F [x].), we would have

h(x) = g(x)f(x) = 0,

or, writing it as
h(A) = g(A)f(A) = 0,

we can say that the polynomial h(x) annihilates A. All such polynomials h(x) ∈ R[x] for which h(A) = 0
are called the annihilating polynomial of A. We formally define annihilating polynomial as follows.

Definition 1.5. Let A be an n × n matrix over a field F . Then a polynomial f(x) ∈ F [x] is called an
Annihilating Polynomial of A if f(A) = 0. By the definition, we can at once say that the characteristic
polynomial of A is an annihilating polynomial of A.

We can check a simple fact that the set of all annihilating polynomials of a matrix A forms an ideal I of the
polynomial ring F [x] (verify). Now, since F is a field, so the ideal I is necessarily a principal ideal of F [x].
It means that there exists a polynomial m(x) ∈ I such that I = 〈m(x)〉, that is I is generated by m(x), that
is, each element f(x) of I can be written in the form f(x) = p(x)m(x), where, p(x) ∈ F [x]. This m(x) is
called the minimal polynomial of the matrix A. We formally define the minimal polynomial of a matrix as
follows.

4

Definition 1.6. Let A be an n × n matrix over a field F . Then the minimal polynomial m(x) of A is the
unique monic generator of the ideal of all polynomials over F which annihilate A.

Thus, we arrive at the following theorem.

Theorem 1.7. Let A be an n × n matrix over a field F and m(x) be the minimal polynomial of A. Then,
m(x) divides each of the annihilating polynomial of A.

Theorem 1.8. Let A be an n× n matrix over a field F . Then the characteristic and minimal polynomials for
A have the same roots, except for multiplicities.

Proof. Let m be the minimal polynomial for A. Let c be a scalar. We want to show that m(c) = 0 if and only
if c is an eigen value. First suppose that m(c) = 0. Then

p(x) = (x− c)q(x),

where, q is a polynomial in F such that deg q < deg p. By the definition of minimal polynomial, we can say
that q(A) 6= 0. Now, choose a vector β such that q(A)β 6= 0. Let α = q(A)β. Then,

0 = m(A)β

= (A− cI)q(A)β

= (A− cI)α

and thus, α is an eigen value of A.

Now, suppose that c is an eigen value ofA, sayAα = cα for some α 6= 0. So, by the properties of matrices,
we can say that

m(A)α = m(c)α.

Since m(A) = 0 and α 6= 0, we have, m(c) = 0. Hence c is a root of the minimal polynomial of A. Thus the
theorem.

Example 1.9. Consider the matrix of the previous example.

A =

3 1 −1
2 2 −1
2 2 0


We have seen that the characteristic polynomial of the matrix is

f(x) = (x− 1)(x− 2)2

Now, since minimal polynomial divides characteristic polynomial and both have same roots (excepting multi-
plicities), so the most probable candidates for the minimal polynomial are

1. m(x) = (x− 1)(x− 2)2, or,

2. m(x) = (x− 1)(x− 2).

One may check whether (A − I)(A − 2I) = 0. If yes, then the second option is our required minimal
polynomial. If not, then the characteristic polynomial and minimal polynomials coincide in this case.

There are various ways to find the minimal polynomial of a matrix (by finding the eigen vectors, rank, etc.
of the matrix). We will deal with it in details in the upcoming units.

5

Exercise 1.10. 1. Find a 3× 3 matrix whose minimal polynomial is x2.

2. Find the minimal polynomial and eigen values of the following matrix.

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .
3. Let a, b, c be elements of a filed F , and let A be the following 3× 3 matrix over F :

A =

0 0 c
1 0 b
0 1 a

 .
Prove that the characteristic polynomial for A is x3 − ax2 − bx − c and that this is also the minimal
polynomial for A.

6

Unit 2

Course Structure

• Linear Transformation (L.T.): Definition and the algebra of L.T.

• Rank and Nullity of L.T., Dual space, dual basis,

• Representation of L.T. by matrices, Change of basis.

2 Introduction

We are already familiar with the idea of linear transformations from our undergraduate times. This unit helps to
recapitulate those earlier notions and introduces certain new ideas on the algebra of linear transformations and
the ideas of dual spaces of a vector space. We will learn of these things in detail. We will start with formally
defining linear transformations, giving a few examples and stating the old theorems with their applications
and then start on to develop the new ideas about dual and double dual spaces thereon.

Objectives

After reading this unit, you will be able to

• recapitulate the basic notions of a linear transformation on a vector space

• solve the basic problems related to the representation of a linear transformation (LT) by matrices and
change them with basis changes

• solve sums based on the Rank-Nullity theorem

• form an idea about the linear functionals on a vector space V

• define the dual basis on a vector space V

• find the dual basis for the corresponding dual space

• define double dual for a vector space and form the corresponding basis

2.1 Transformations

Definition 2.1. Let V and W be two vector spaces over the same field F . A linear transformation from V to
W is a function that satisfies the following condition

T (ca+ db) = cT (a) + dT (b)

for all c and d ∈ F and a, b in V .

7

A simple calculation yields that T (0) = 0 always (can you show it?). Thus, for a simple intuitive example,
if we consider the vector space R2 over the field R, then we can say that any function T from R to itself is a
LT if it takes a line passing through the origin to a line passing through the origin. Let us see the following
examples.

Example 2.2. 1. Let T : R2 → R2 be a function defined as T (v) = v2. Then clearly, T takes the line
y = x onto the curve y = x2. Hence, T is not a linear transformation on R2.

2. Consider another example of T on the same vector space R2 where T is defined as

T (v) = v + α

where α is a non-zero element of R2. Thus, we can see that T takes straight lines onto straight lines but
does not take origin to itself. Hence, T is not a LT in this case too.

The above example illustrates a few examples of functions which are not LT. Below given are certain
standard examples of a LT which are frequently used.

Example 2.3. 1. If V is any vector space, the identity transformation I , defined as I(v) = v, is a linear
transformation from V into V .

2. The zero transformation 0 on a vector space V , defined as 0(v) = 0 is also a linear transformation.

Certain other examples include

Example 2.4. 1. Let V be the vector space consisting of all continuous functions on the set of real num-
bers, over the field of reals. Then the integral operator defined as

(T (f))(x) =

∫ x

0
f(t)dt, f ∈ V,

is a LT on V .

8

2. Let V be the vector space consisting of all polynomials on the set of real numbers, over the field of
reals. Then the differential operator defined as

(Df)(x) = c1 + 2c2x+ · · ·+ kckx
k−1

where, f(x) = c0 + c1x+ · · ·+ ckx
k ∈ V

is a LT on V .

3. Let V be the vector space consisting of all convergent real sequences over the field of reals. Then the
limit operator defined as

L(x) = lim
n→∞

xn, x = {xn} ∈ V,

is a LT on V .

Theorem 2.5. Let V be a finite dimensional vector space and {a1, a2, . . . an} be a basis of V and {b1, b2, . . . bn}
be any set of vectors (not necessarily distinct) in another vector space W under the same field F . Then, there
exists a unique LT T from V into W such that

T (ai) = bi, i = 1(1)n.

Proof. Since {a1, a2, . . . an} is a basis of V , so for any v ∈ V , there exists unique scalars c1, c2, . . . cn of F
such that

v = c1a1 + · · ·+ cnan.

Then we define T as
T (v) = c1b1 + · · ·+ cnbn.

Then T is a well-defined rule for associating with each vector v of V to a vector T (v) in W . From the
definition, we easily get

T (ai) = bi, i = 1(1)n.

To see that T is linear, let us consider another vector w of V as

w = d1a1 + · · ·+ dnan

and two other scalars x and y in F . Now,

xv + yw = xc1a1 + · · ·+ xcnan + yd1a1 + · · ·+ ydnan

= (xc1 + yd1)a1 + · · · (xcn + ydn)an.

Then,

T (xv + yw) = (xc1 + yd1)b1 + · · · (xcn + ydn)bn

= xc1b1 + · · ·+ xcnbn + yd1b1 + · · ·+ ydnbn

= x(c1b1 + · · ·+ cnbn) + y(d1b1 + · · ·+ dnbn)

= xT (v) + yT (w).

Hence, T is linear. Now, let U be another LT from V into W such that U(ai) = bi, i = 1(1)n, then for any
vector v =

∑n
i=1 xiai, we have

U(v) = U

(
n∑
i=1

xiai

)

=
n∑
i=1

xiU(ai)

=
n∑
i=1

xibi.

9

so that U is exactly the same as the rule as T is defined. Hence, T is unique.

Example 2.6. The vectors u = (1, 2), v = (3, 4) are linearly independent and therefore form a basis for
R2. Then, by the previous theorem, there exists a LT T from R2 to R2 such that T (u) = (3, 2, 1) and
T (v) = (6, 5, 4). Then, we must be able to find T (1, 0) such that

(1, 0) = cu+ dv = c(1, 2) + d(3, 4)

which gives c = −2 and d = 1. Thus,

T (1, 0) = −2(3, 2, 1) + (6, 5, 4)

= (0, 1, 2).

There are other interesting subspaces associated with a LT as we will define now.

Definition 2.7. Let V and W be vector spaces over the field and let T be a LT from V into W . Then the Null
Space of T is the set of all vectors v in V such that T (v) = 0. This is clearly a subset of V because

1. T (0) = 0, so that N is non-empty;

2. if T (v) = T (w) = 0, then

T (cv + dw) = cT (v) + dT (w) = c0 + 0 = 0

so that cv+dw also belongs to the null space. The dimension of the null space of T is called the Nullity
of T .

Definition 2.8. The range of T is a subspace of the space W because if a, b in the range of T , then there
exists vectors u and v in V such that T (u) = a and T (v) = b. Then for the scalars x and y, T (xu + yv) =
xT (u) + yT (v) = xa+ yb. Hence, xa+ yb is also in the range T . The dimension of the range of T is called
the Rank of T .

Theorem 2.9. A LT T is injective if and only if N = {0}.

Proof. The proof is trivial and has been left as an exercise.

We have the celebrated Rank-Nullity Theorem for Linear Transformations as follows:

Theorem 2.10. Let V and W be vector spaces over the field F and let T be a LT from V into W . Suppose
that V is finite-dimensional. Then

Rank(T) + Nullity(T) = DimV.

Proof. Let {v1, v2, . . . , vk} be a basis of N , the null space of T . Then, the above basis can be extended to a
basis {v1, v2, . . . , vn} of V . We shall now prove that {T (vk+1), . . . , T (vn)} is a basis for the range of T . The
vectors T (v1), T (v2), . . . , T (vn) certainly span the range of T , and since T (vj) = 0 for j ≤ k, we see that
T (vk+1), . . . , T (vn) span the range of T . To check their independence, suppose that there are scalars ci such
that

n∑
i=k+1

ciT (vi) = 0,

which gives

T

(
n∑

i=k+1

civi

)
= 0

10

and hence, the vector v =
∑n

i=k+1 civi is in the null space of T . Since {v1, v2, . . . , vk} is a basis of N , so v
can be represented as a finite linear combination of them, that is,

n∑
i=k+1

civi =

k∑
i=1

bivi

and hence
k∑
i=1

bivi −
n∑

i=k+1

civi = 0.

Since {v1, v2, . . . , vn} is linearly independent, so we have, b1 = b2 = · · · = bk = ck+1 = · · · = cn = 0.
Thus, we have proved the linear independence of T (vk+1), . . . , T (vn) and hence it is a basis of the range of
T . Thus, when nullity is k, the rank of T is n− k, thus giving us the required result.

Note 2.11. We know that any set of vectors with the zero element is always linearly dependent. So, the basis
of the null space of T never contains the zero element. Thus, if N does not contain any element other than the
zero element, then the nullity of T is zero.

The above theorem has huge applications.

Corollary 2.12. A LT T is surjective if and only if RankT = dimV .

Proof. Left as exercise.

Exercise 2.13. 1. Find the rank and nullity of the following linear transformations:

a. T (x, y, z) = (x− y, y − z, z − x).

b. T (x, y, z) = (2x, y, 0).

c. T (x, y, z) = (2x+ 3z, 4z, 5y − z).

2. Let T be a vector space and T a linear transformation from V to V . Prove that the following two
statements are equivalent.

a. The intersection of the range of T and the null space of T is the zero subspace of V .

b. If T (T (v)) = 0, then T (v) = 0.

3. Describe explicitly a LT from R3 to R2 for which the range space is spanned by the vectors (1, 0,−1)
and (1, 2, 2).

2.1.1 Matrix Representation of Linear Transformations

We have seen that a LT can be represented by matrices earlier depending upon the bases of the vector spaces.
Same linear transformation can give rise to different matrices and they are in fact similar. To each matrix, there
is a linear transformation, but there may be many matrices corresponding to a single linear transformation,
varying with the change in basis. Let us have an illustration.

11

Illustration 2.14. Let T be a linear transformation from R2 to R2 defined as

T (x, y) = (x− y, y).

Consider the standard ordered basis B = {(1, 0), (0, 1)} of R2. Suppose we are to represent T with respect
to the basis B on both sides. Then the resulting matrix is represented as [T]B. We find it as follows:

T (1, 0) = (1, 0) = 1(1, 0) + 0(0, 1)

T (0, 1) = (−1, 1) = −1(1, 0) + 1(0, 1)

and the resulting matrix becomes

[T]B =

[
1 −1
0 1

]
.

Again, if we consider another ordered basis C = {(1, 1), (1, 0)} of R2 as the domain set and the basis B of
the range set. Then we have

T (1, 1) = (0, 1) = 0(1, 0) + 1(0, 1)

T (1, 0) = (1, 0) = 1(1, 0) + 0(0, 1)

and the resulting matrix [T]BC is given by

[T]BC =

[
0 1
1 0

]
We have certain theorems in connection to these.

Theorem 2.15. Let V and W be finite-dimensional vector spaces with ordered bases B and C respectively,
and let T : V →W a be linear transformation. Then for each v ∈ V , we have

[T (v)]C = [T]CB[v]B.

Theorem 2.16. Let V and W be finite-dimensional vector spaces with ordered bases B and C respectively,
and let T,U : V →W be linear transformations. Then

1. [T + U]CB = [T]CB + [U]CB.

2. [aT]CB = a[T]CB for all scalars a.

Theorem 2.17. Let U , V , W be finite-dimensional vector spaces with ordered basesA, B, C respectively. Let
T : U → V and S : V →W be linear transformations. Then

[ST]CA = [S]CB[T]BA.

The purpose of matrix representation for a linear transformation T is to enable us to analyse T by working
with the matrix, sayM . IfM is easy to work with, we have gained an advantage; if not, we have no advantage.
Since different bases lead to different matrices, the ”right” choice of basis to obtain a simple matrix M , such
as a diagonal matrix, is important. Diagonal matrices are the easiest to work with. For now, we will restrict
our attention to the cases when v = W . But, before going into details, let us check the following.

12

Let B = {v1, v2, . . . , vn} and C = {w1, w2, . . . , wn} be two bases of a vector space V . Then, for each i,
we have certain scalars pij such that

v1 = p11w1 + p12w2 + · · ·+ p1nwn

v2 = p21w1 + p22w2 + · · ·+ p2nwn
...

vn = pn1w1 + pn2w2 + · · ·+ pnnwn

which gives 
v1
v2
...
vn

 =


p11 p12 . . . p1n
p21 p22 . . . p2n

...
...

. . .
...

pn1 pn2 . . . pnn



w1

w2
...
wn


Let

P =


p11 p12 . . . p1n
p21 p22 . . . p2n

...
...

. . .
...

pn1 pn2 . . . pnn


Then P is called the Transition matrix from the basis B to C. This transition matrix is invertible. In fact, if Q
is the transition matrix from the basis C to B, then

Q = P−1.

Now, let us come back to our discussion. We have seen that a linear transformation can have various matrix
representations depending upon the choice of basis. Now, what strikes us is that whether there is certain
relationship between these matrices. We have the following theorem in this direction.

Theorem 2.18. Let T : V → V be a linear transformation. Then, any two matrices representing T are similar.

Exercise 2.19. 1. Find the matrix representation of the following linear transformation T : R2 → R2

defined as T (x, y) = (x + 6y, 3x + 4y). Also find the matrix representation of T with respect to the
basis {(2,−1), (1, 1)}.

2. Find the matrix representation of the rotation transformation by an angle π/4 radians counter-clockwise
with respect to the standard basis and the basis {(1, 1), (1, 2)}.

3. Find the matrix representation of T (x, y, z) = (x+ 2y, x+ y + z, z) with respect to the standard basis
and the basis {(1, 1, 0), (0, 1, 1), (1, 0, 1)}.

2.2 Algebra Of Linear Transformations

In the study of linear transformations from V to W , it is of fundamental importance that the set of these
transformations inherits a natural vector space structure. The set of linear transformations from a space V into
itself has even more algebraic structure, because ordinary composition of functions provide a ”multiplication”
of such transformations. Let us see.

13

Theorem 2.20. Let V and W be vector spaces over the field F . Let T and U be linear transformations from
V into W . The function T + U defined by

(T + U)(v) = T (v) + U(v)

is a linear transformation from V into W . If c is any scalar, then the function cT defined by

(cT)(v) = cT (v)

is a linear transformation from V into W . The set of all linear transformations from V into W , together with
the addition and scalar multiplication defined above, is a vector space over the field F .

Proof. Suppose T and U are linear transformations from V into W and T + U is defined as given. Then we
first show that T + U is linear. Let c, d ∈ F . Then

(T + U)(cu+ dv) = T (cu+ dv) + U(cu+ dv)

= cT (u) + dT (v) + cU(u) + dU(v)

= c(T (u) + U(u)) + d(T (v) + U(v))

= c(T + U)(u) + d(T + U)(v).

Similarly, we can show that for scalar c ∈ F and some additional scalars x, y, we have

(cT)(xu+ yv) = c(T (xu+ yv))

= c(xT (u) + yT (v))

= cxT (u) + cyT (v)

= x(cT (u)) + y(cT (v))

= x((cT)(u)) + y((cT)(v))

This shows that cT is linear. The zero transformation from V into W is also linear. It is a routine exercise to
check that the other properties of vector space are satisfied similarly. Hence the result.

The vector space thus formed, is denoted by the symbol L(V,W). We note that L(V,W) is defined only
when V and W are defined over the same field.

Theorem 2.21. Let V be an n-dimensional vector space over the field F , and let W be an m-dimensional
vector space over the field F . Then the space L(V,W) is finite-dimensional and has dimension mn.

Proof. Let
B = {v1, v2, . . . , vn} C = {w1, w2, . . . , wm}

be ordered bases for V and W , respectively. For each integers (p, q) with 1 ≤ p ≤ m and 1 ≤ q ≤ n, we
define a linear transformation Ep,q from V into W by

Ep,q(vi) = 0, when i 6= q

= wp, when i = q

or,
Ep,q(vi) = δiqwp.

According to our first theorem, there exists a unique linear transformation from V into W satisfying these
conditions. The claim is that, these mn transformations Ep,q form a basis for L(V,W). Let T be a linear

14

transformation from V into W . For each j, 1 ≤ j ≤ n, let Aij , . . . , Amj be the coordinates of the vector
T (vj) in the ordered basis C, that is,

T (vj) =
m∑
p=1

Apjwp.

We wish to show that

T =

m∑
p=1

n∑
q=1

ApqE
p,q. (2.2.1)

Let U be the linear transformation in the right hand member of the above equation. Then for each j,

U(vj) =
∑
p

∑
q

ApqE
p,q(vj)

=
∑
p

∑
q

Apqδjpwp

=

m∑
p=1

Apjwp

= T (vj).

and consequently U = T . Now, (2.2.1) shows that Ep,q spans L(V,W). We must prove that they are
independent. But this is clear from what we did above; for, if the transformation

U =
∑
p

∑
q

ApqE
p,q

is the zero transformation, then U(vj) = 0 for each j, so

m∑
p=1

Apjwp = 0

and the independence if wp implies that Apj = 0 for every p and j. Hence the proof.

Theorem 2.22. Let V ,W and Z be vector spaces over the field F . Let T : V →W and U : W → Z be linear
transformations. Then the composition function UT defined by UT (v) = U(T (v)) is a linear transformation
from V into Z.

Proof. Left as exercise.

Definition 2.23. If V is a vector space over a field F , then a linear operator on V is a linear transformation
from V into V .

In the previous theorem, when V = W = Z, and U and T are linear operators on the space V , we see that
the composition UT is again a linear operator on V . The space L(V, V) ”has a multiplication” defined on it
by composition. In this case the operator TU is also defined, and one should note that in general UT 6= TU ,
that is, UT − TU 6= 0. We should take special note of the fact that if T is a linear operator on V then we
can compose T with T . We shall use the notation T 2 = TT , and in general, Tn = TT · · ·T (n factors) for
n = 1, 2, We define T 0 = I if T 6= 0.

Theorem 2.24. Let V be a vector space over the field F ; let U and T1 and T2 be linear operators on V and let
c ∈ F . Then

15

1. IU = UI = U ;

2. U(T1 + T2) = UT1 + UT2; (T1 + T2)U = T1U + T2U ;

3. c(UT1) = (cU)T1 = U(cT1).

In everything we have so far discussed, we have left out the invertibility of linear operators. Under what
conditions, does a linear operator admit of an inverse, that is, there exists a linear operator T−1 for which
TT−1 = T−1T = I?

Definition 2.25. A LT T from a space V to another space W is said to be invertible if there exists a LT U
such that TU = UT = I . Such function U , if it exists, is unique.

We note that the by the theory of functions, we know that a function is invertible if it is bijective. Thus, by
the rank-nullity theorem, we can say that the dimensions of both the spaces V and W must be the same. Let
us see the following theorem.

Theorem 2.26. Let V and W be vector spaces over the field F and let T be a LT from V into W . If T is
invertible, then the function T−1 is also a LT from W onto V .

Proof. When T is bijective, there exists a uniquely determined function T−1 which maps W onto V . To
prove the linearity of T−1, let us take two vectors b1 and b2 in W and two scalars x and y. Let ai = T−1(bi),
i = 1, 2. Then, we have T (ai) = bi for all i. Now, since T is linear,

T (xa1 + ya2) = xT (a1) + yT (a2)

= xb1 + yb2

Thus, xa1 + ya2 is the unique vector in V such that T (xa1 + ya2) = xb1 + yb2 which means that

T−1(xb1 + yb2) = xa1 + ya2 = xT−1(b1) + yT−1(b2)

which shows that T−1 is linear.

Definition 2.27. A linear transformation T is said to be non-singular if T (v) = 0 implies that v = 0, that is,
if the null space comprises of only the singleton set {0}. Otherwise, T is said to be singular.

Theorem 2.28. Let T be a LT from V into W . Then T is non-singular if and only if T carries each linearly
independent subset of V into a linearly independent subset of W .

Proof. First suppose that T is non-singular. Let S be a linearly independent subset of V . If S = {v1, v2, . . . , vk},
then T (v1), T (v2), . . . , T (vk) are linearly independent, for if

c1T (v1) + c2T (v2) + · · ·+ ckT (vk) = 0

and then
T (c1v1 + c2v2 + · · ·+ ckvk) = 0

and since T is non-singular,
c1v1 + c2v2 + · · ·+ ckvk = 0

from which it follows that each ci = 0 because S is linearly independent set. This shows that the image of S
under T is independent.

Suppose that T carries linearly independent set into linearly independent set. Let a be a non-zero vector in
V . Then the set S consisting of the one vector a is independent. The image of S is the set consisting of the
one vector T (a), and this set is independent. Thus, T (a) 6= 0, because the set consisting of the zero vector
alone is independent. This shows that the null space of T is the zero subspace, that is, T is non-singular.

16

Theorem 2.29. Let V and W be finite-dimensional vector spaces over the field F such that dimV = dimW .
If T is a LT from V into W , the following are equivalent:

1. T is invertible.

2. T is non-singular.

3. T is onto.

4. If {v1, v2, . . . , vn} is a basis for V , then {T (v1), T (v2), . . . , T (vn)} is a basis for W .

5. There is some basis {v1, v2, . . . , vn} for V such that {T (v1), T (v2), . . . , T (vn)} is a basis for W .

2.3 Dual Spaces

Definition 2.30. If V is a vector space over the field F , a linear transformation f from V into the scalar field
F is called a linear functional on V .

The concept of linear functional is important in the study of finite-dimensional spaces because it helps to
organize and clarify the discussion of subspaces, linear equations, and coordinates.

Example 2.31. Let n be a positive integer and F a field. If A is an n × n matrix with entries in F , then the
trace of A is a scalar

trA = A11 +A22 + · · ·+Ann.

Then it is a linear functional on the matrix space Fn×n (verify!)

Example 2.32. Let [a, b] be a closed interval on the real line and let C([a, b]) be the space of continuous
real-valued functions on [a, b]. Then

L(g) =

∫ b

a
g(t)dt

defines a linear functional on C([a, b]).

Definition 2.33. If V is a vector space, then the collection of all linear functionals on V forms a vector space
L(V, F) and it is called the Dual Space of V . It is also denoted by V ∗.

From the knowledge of the dimension of the space L(V,W), we can say that

dimV = dimV ∗.

Let B = {v1, v2, . . . , vn} be a basis for V . Then, by the first theorem of this unit, there exists a unique linear
functional fi on V such that

fi(vj) = δij .

In this way, we can obtain from B, a set of n distinct linear functionals f1, f2, . . . , fn on V . These functionals
are also linearly independent. For, suppose

f =
n∑
i=1

cifi.

Then,

f(vj) =

n∑
i=1

cifi(vj)

=

n∑
i=1

ciδij

= cj .

17

In particular, if f is the zero functional, f(vj) = 0 for each j and hence the scalars cj are all 0. Now,
f1, f2, . . . , fn are n linearly independent functionals, and since we know that V ∗ has dimension n, it must be
that B∗ = {f1, f2, . . . , fn} is a basis for V ∗. This is called the dual basis of B.

Theorem 2.34. Let V be a finite-dimensional vector space over the field F , and let B = {v1, v2, . . . , vn} be a
basis for V . Then there is a unique dual basis B∗ = {f1, f2, . . . , fn} for V ∗ such that fi(vj) = δij . For each
linear functional f on V we have

f =
n∑
i=1

f(vi)fi

and for each vector v in V we have

v =

n∑
i=1

fi(v)vi.

Proof. The above discussion shows that there i s a unique basis which is dual to the basis B. If f is a linear
functional on V , then f is some linear combination of fi as

f =

n∑
i=1

cifi.

Also we have observed that the scalars cj must be given by cj = f(vj). Similarly, if

v =

n∑
i=1

xivi

is a vector in V , then

fj(v) =

n∑
i=1

xifj(vi)

=

n∑
i=1

xiδij

= xj .

So that the unique expression for v as a linear combination of the vi is

v =

n∑
i=1

fi(v)vi.

2.4 Few Probable Questions

1. Show that there exists a unique linear transformation from a finite-dimensional vector space V into
another vector space W over the same field sending the basis elements {v1, v2, . . . , vn} to another set
of arbitrary vectors {w1, w2, . . . , wn}, not necessarily distinct.

2. State and prove the Rank-Nullity Theorem.

18

3. Show that the space of linear transformations L(V,W) from an n-dimensional space V into an m-
dimensional space W is of dimension mn.

4. Define non-singular linear transformations. Show that the inverse of a non-singular linear transforma-
tion is also so.

5. Find a basis for the dual space of an n-dimensional space V .

6. Show that a non-singular linear transformation takes a basis to a basis.

19

Unit 3

Course Structure

• Normal forms of matrices: Diagonalization of matrices,

• Smith’s normal form.

3 Introduction

As we have already mentioned in the previous unit, diagonal matrices are the easiest to deal with. And we
have also seen that different bases give rise to different matrices for a linear transformation, so our main aim
is to find a particular basis B for a vector space V , for which a particular linear transformation (or rather, a
linear operator) T , defined on V can be represented as a diagonal matrix. It is not always the case that there
always exists such a basis for which T can be represented as a diagonal matrix. We will study mainly the cases
and circumstances, under which this is possible. And if such basis does not exist, then what are the simplest
possible type of matrix by which we can represent T . These are the various issues that will be addressed in
this unit.

Objectives

After reading this unit, you will be able to:

• define the characteristic values and vectors of a linear transformation

• recapitulate the basic notions about minimal and characteristic polynomials of a transformation

• define algebraic and geometric multiplicities of a particular eigen value

• define the eigen spaces of a transformation

• determine the cases when a transformation is diagonalizable

• determine the cases when a transformation is not diagonalizable

• find the necessary and sufficient condition for diagonalizability of a transformation

• learn about the Smith’s Normal form

3.1 Diagonalizability

As we have already mentioned before, diagonalizability is something related to the matrix of a LT being di-
agonal. But, before going into the definition of diagonalizability, let us recollect the general notions of eigen
values and eigen vectors of a matrix.

20

Figure 1: Eigen Values and Eigen Vectors Geometrically

When we operate the matrix over a vector (v1, v2) of R2, and equate it to a constant multiple of (v1, v2),
we get the system

v1 + 2v2 = cv1

3v2 = cv2

Geometrically speaking, when we take a particular vector (v1, v2) of the xy-plane and operate the matrix on
it, we the resulting vector is a scalar multiple of the original one. That is, the resulting vector is either a
contracted or expanded form of the original vector depending on the value of c. For example, if we take the
vector (1, 1), then the resulting vector will be (3, 3) = 3(1, 1). That is, the particular vector is expanding to
thrice its original value.

On the other hand, if we operate the matrix over the vector (0, 1), then the resulting vector (2, 3) is not on
the line joining (0, 1) and (2, 3). The vector (1, 1) is called an eigen vector and 3 is the corresponding eigen
value. (0, 1) is not an eigen vector.

To summerize, we say that any matrix corresponds to a particular LT and those vectors which do not change
their direction on the application of the LT are called its eigen vectors and the factor by which it contracts or
expands, is called the corresponding eigen value. We are now in a position to formally define eigen values and
eigen vectors of a matrix.

Definition 3.1. Let T : V → V be a LT over vector spaces on the field F . Then a non-zero vector v ∈ V is
said to be an eigen value of T if T (v) = cv for some c ∈ F . This c is called the corresponding eigen value of
T .

To find eigen value and eigen vectors of a LT, we generally find so for the corresponding matrix represen-
tations of T . It is independent of the bases since similar matrices have same eigen values.

It is important to note that T may not have any eigen value in the first place. And if V is finite-dimensional,
say having dimension n, then T can have atmost n eigen values. And the eigen vectors can also be seen as the

21

null space of the transformation T − cI (of course ignoring the zero vector).

Now, our main concern is to check whether a given LT can be represented as a diagonal matrix or not. So,
we are in search of that particular basis of V for which it can be done. If there exists certain basis for which T
can be represented as a diagonal matrix, then T is said to be diagonalizable, otherwise T is non-diagonalizable.

Definition 3.2. A linear transformation T : V → V , where V is a finite-dimensional vector space, is said to
be diagonalizable if there exists a basis B = {v1, v2, . . . , vn} for which the corresponding matrix is a diagonal
matrix.

A diagonal matrix is of the form 
c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 · · · cn

 .
An identity matrix is the most common example of a diagonal matrix. So, if we consider the eigen values
and vectors of a LT T , that is the vectors vi satisfying Tvi = ciIvi, or the non-zero vectors of the null space
T − ciI . The intuitive idea is to break the matrix into diagonal blocks of the form

c1 0 · · · 0
0 c1 · · · 0
...

...
. . .

...
0 0 · · · c1

 ,
the above block being the diagonal block corresponding to the eigen value c1. Thus, if the sum of the size of
the blocks equals the dimension of V , then T stands diagonalized and the corresponding diagonal matrix is

c1 0 0 · · · 0
0 c1 0 · · · 0
0 0 c2 · · · 0
...

...
...

. . .
...

0 0 0 · · · cn

 .

The size of each block is determined by the ”size” of the null spaces, that is, dimension of the null spaces, that
is the number of linearly independent eigen vectors spanning each null space. In this way, we come to another
equivalent definition of diagonalizability.

Definition 3.3. A linear transformation T : V → V , where V is a finite-dimensional vector space, is said to
be diagonalizable if there exists a basis B = {v1, v2, . . . , vn} comprising of the eigen vectors of T .

Let us illustrate the process.

Illustration 3.4. Let A be an n×nmatrix over a filed F . We first find the eigen values using the ”traditional”
ways by finding the characteristic polynomial. Let c1, c2, . . . , ck ∈ F be the eigen values of A. We find
the rank of each of the matrices A − ciI and then find out the nullity, that is, dimension of the null space of
A− ciI using the Rank-Nullity theorem, for each i, 1 ≤ i ≤ k. If

∑k
i=1 dim(A− ciI) = n, then the matrix

A is diagonalizable otherwise, if
∑k

i=1 dim(A − ciI) < n, A is non-diagonalizable. For A, there exists a
corresponding linear operator from the vector space Fn to Fn.

22

Example 3.5. Let A be a real 3× 3 matrix

A =

3 1 −1
2 2 −1
2 2 0

 .
Then the characteristic polynomial of A is∣∣∣∣∣∣

x− 3 −1 1
−2 x− 2 1
−2 −2 x

∣∣∣∣∣∣ = (x− 1)(x− 2)2.

Then the eigen values of A are 1 and 2. Suppose that T is the linear operator on R3 which is represented by
A in the standard basis. We will find the rank of the matrices A− I and A− 2I . Now,

A− I =

2 1 −1
2 1 −1
2 2 −1


has clearly rank equals to 2 and hence nullity equals to 3− 2 = 1. Also, the matrix

A− 2I =

1 1 −1
2 0 −1
2 2 −2


has rank 2 and hence nullity 3 − 2 = 1. When we sum up the nullities of these two matrices, we get
1 + 1 = 2 6= 3. Thus, A is not diagonalizable. The nullities of the matrices A− I and A− 2I together tell us
that the null space of the above matrices are spanned by one vector space each, that is, there are a maximum of
two distinct linearly independent eigen vectors of A and hence we are unable to find a basis of A containing
the eigen vectors.

Definition 3.6. Let T be a linear operator over a finite dimensional vector space V and let c ∈ F be an eigen
value of T . Then the null space of the linear operator T − cI is called the eigen space of the corresponding
eigen value c and the dimension of the eigen space, that is, the nullity of the operator T − cI is called the
geometric multiplicity of c.

It is a routine exercise to check that the eigen spaces form vector subspaces of V and has been left as an
exercise.

Definition 3.7. For an eigen value c of a particular operator T , the power to which the factor (x − c) is
raised in the corresponding characteristic polynomial of the matrix representation of T is called the algebraic
multiplicity of c.

Thus, in the previous example, the algebraic multiplicity of 1 and 2 are 1 and 2 respectively and their
corresponding geometric multiplicities are equal to 1 each. We can say that the algebraic multiplicity of an
eigen value if always greater than or equals to its geometric multiplicity. Also, the algebraic multiplicities
of all the eigen values add up to the dimension of the parent vector space and is less than or equal to the
dimension if we consider the geometric multiplicities. When the sum of the geometric multiplicities add up
to the dimension of the vector space, we call the operator to be diagonalizable.

Example 3.8. Let T be a linear operator on R3 which is represented in the standard ordered basis by the
matrix

A =

 5 −6 −6
−1 4 2
3 −6 −4

 .
23

Let us find the characteristic polynomial of A as∣∣∣∣∣∣
x− 5 6 6

1 x− 4 −2
−3 6 x+ 4

∣∣∣∣∣∣ = (x− 2)2(x− 1).

So, 2 and 1 are the eigen values of A with algebraic multiplicities 2 and 1 respectively. We will now find the
algebraic and geometric multiplicities of the eigen values. The two matrices

A− I =

 4 −6 −6
−1 3 2
3 −6 −5


and

A− 2I =

 3 −6 −6
−1 2 2
3 −6 −6

 .
We know that A − I is singular and obviously rank(A − I) ≥ 2 (by Rank-Nullity theorem). Therefore,
rank(A− I) = 2. It is evident that rank(A− 2I) = 1. So, the nullity of the matrices are 1 and 2 respectively
which sum up to 3. Hence, A is diagonalizable and the corresponding diagonal matrix is1 0 0

0 2 0
0 0 2

 .
Lemma 3.9. Suppose that T (v) = cv. If f is any polynomial, then f(T)(v) = f(c)v.

Proof. The proof of the lemma is based on the fact that

T 2(v) = T (T (v)) = T (cv) = cT (v) = c2T (v).

We can prove by the principle of mathematical induction that

Tn(v) = cnv.

Hence f(T)(v) = f(c)v, for any polynomial in T .

Lemma 3.10. Let T be a linear operator on the finite-dimensional space V . Let c1, c2, . . . , ck be the distinct
characteristic values of T and let Wi be the corresponding eigen spaces. If W = W1 +W2 + · · ·+Wk, then

dimW = dimW1 + dimW2 + · · ·+ dimWk.

In fact, if Bi is an ordered basis of Wi, then B = {B1,B2, . . . ,Bk} is an ordered basis for W .

Proof. The spaceW = W1+W2+ · · ·+Wk is the subspace spanned by all of the eigen vectors of T . Usually
when one forms the sum W of subspaces Wi, one expects that dimW < dimW1 + dimW2 + · · ·+ dimWk

because of linear relations which may exist between vectors in the various spaces. This lemma states that the
characteristic spaces associated with different characteristic values are independent of one another.

Suppose that (for each i) we have a vector bi in Wi, and assume that

b1 + b2 + · · ·+ bk = 0.

24

We shall show that bi = 0 for each i. Let f be any polynomial. Since T (bi) = cibi, the preceding lemma tells
us that

0 = f(T)(0)

= f(T)(b1) + f(T)b2 + · · ·+ f(T)bk

= f(c1)b1 + f(c2)b2 + · · ·+ f(ck)bk.

Choose the polynomials f1, f2, . . . , fk such that

fi(cj) = δij = 1, i = j

= 0, i 6= j.

Then
0 = fi(T)(0) =

∑
j

δijbj = bi.

Now, let Bi be an ordered basis for Wi, and let B be the sequence B = {B1,B2, . . . ,Bk}. Then B spans the
subspace W = W1 +W2 + · · ·+Wk. Also, B is a linearly independent sequence of vectors, for the following
reason. Any linear relation between the vectors in B will have the form b1 + b2 + · · · + bk = 0, where bi is
some linear combination of the vectors in Bi. From what we just did, we know that bi = 0 for each i. Since
each Bi is linearly independent, we see that we have only the trivial linear relation between the vectors in
B.

In the course of proving the above lemma, we have proved the following theorem.

Theorem 3.11. Eigen vectors corresponding to distinct eigen values are linearly independent.

Can you prove the theorem independently?

Thus, we arrive at the following theorem.

Theorem 3.12. Let T be a linear operator on a finite-dimensional space V . Let c1, c2, . . . , ck be distinct eigen
values of T and let Wi be the eigen space of ci. Then the following are equivalent:

1. T is diagonalizable.

2. The characteristic polynomial for T is

f(x) = (x− c1)d1 . . . (x− ck)dk ,

where dimWi = di, i = 1(1)k.

3. dimW1 + dimW2 + · · ·+ dimWk = dimV .

Proof. We have observed that 1 implies 2. If the characteristic polynomial f is the product of linear factors, as
in 2, then d1 + d2 + · · ·+ dk = dimV . For, the sum of the d′is is the degree of the characteristic polynomial,
and that degree is dimV . Thus, 2 implies 3. Now suppose that 3 holds. Then by the previous lemma, we must
have V = W1 +W2 + · · ·+Wk, that is, the eien vectors of T span V .

Let us summerize whatever we have learnt so far.

Let T be a linear operator on an n-dimensional vector space V . If T has n distinct eigen values then it has
n linearly independent eigen vectors which form a basis of V and in that case, T is diagonalizable. If it has

25

less number of eigen values, then we have to check that whether they fulfil the deficiency by having multiple
eigen vector for a single eigen value so that the number of linearly independent eigen vectors are still n. In
either case, we need to check whether the given operator has n linearly independent eigen vectors or not. We
can also say that T is diagonalizable if and only if the geometric multiplicity and algebraic multiplicity for a
given eigen value coincides.

Exercise 3.13. 1. Check whether the following matrices are diagonalizable. If yes, then find its diagonal
form.

i.  −9 4 4
−8 3 4
−16 8 7


ii.  6 −3 −2

4 −1 −2
10 −5 −3


2. Let T be a linear operator on the n-dimensional vector space V , and suppose that T has n distinct eigen

values. Prove that T is diagonalizable.

3. Let V be the vector space of all continuous functions from R to R and let T be the linear operator on V
defined as

T (f(x)) =

∫ x

0
f(t)dt.

Prove that T has no eigen values.

4. Let P2 denote the vector space of all polynomials of degree 2 or less, and let T : P2 → P2 be a linear
operator defined by

T (ax2 + bx+ c) = 2ax+ b.

Check whether T is diagonalizable. If so, find the diagonal matrix.

5. Consider the matrix

A =

[
a −b
b a

]
,

where a and b are real numbers and b 6= 0. Fince all eigen values of A and determine the corresponding
eigen spaces. Hence check whether A is diagonalizable.

6. Check whether the given matrix is diagonalizable. If yes, find the diagonalized matrix.

A =

[
2 −1
−1 2

]
.

26

3.1.1 Minimal Polynomials and Diagonalizability

We have seen in the previous units that minimal polynomials and characteristic polynomials of a matrix (or,
linear operator) has same roots.

So, if T is a diagonalizable linear operator and c1, c2, . . . ck are the distinct eigen values of T . Then it is
easy to see that the minimal polynomial for T is the polynomial

m(x) = (x− c1)(x− c2) . . . (x− ck).

If v is an eigen vector, then one of the operators T − c1I, . . . , T − ckI sends v into 0. Hence

(T − c1I) . . . (T − ckI)(v) = 0,

for every eigen vector v. There is a basis for the underlying space which consists of eigen vectors of T ; hence

m(T) = (T − c1I) . . . (T − ckI) = 0.

What we have concluded is this. If T is a diagonalizable linear operator, then the minimal polynomial for T is
a product of distinct linear factors. As we shall soon see, that property characterizes diagonalizable operators.

Theorem 3.14. Let V be a finite dimensional vector space over the field F and let T be a linear operator
on V . Then T is diagonalizable if and only if the minimal polynomial of T is the product of distinct linear
factors, that is, of the form

m(x) = (x− c1)(x− c2) . . . (x− ck),

where, c1, c2, . . . , ck ∈ F are distinct.

Proof. We have noted earlier that, if T is diagonalizable, its minimal polynomial is a product of distinct linear
factors. To prove the converse, let W be the subspace spanned by all of the eigen vectors of T , and suppose
that W 6= V . By a previous lemma, there is a vector v not in W and an eigen value cj of T such that the
vector

b = (T − cjI)(v)

lies in W . Since b ∈W ,
b = b1 + b2 + · · ·+ bk

where T (bi) = cibi, 1 ≤ i ≤ k, and therefore the vector

h(T)(b) = h(c1)(b1) + · · ·+ h(ck)(bk)

is in W , for every polynomial h. Now,

m(x) = (x− cj)q(x),

for some polynomial q. Also,
q − q(cj) = (x− cj)h.

But we have
q(T)(v)− q(cj)(v) = h(T)(T − cjI)(v) = h(T)(b).

But, h(T)(b) ∈W and since
0 = m(T)(v) = (T − cjI)q(T)(v)

the vector q(T)(v) is in W . Hence q(cj)(v) is in W . Since v is not in W , we have q(cj) = 0. This contradicts
the fact that m has distinct roots. Hence the theorem.

27

Example 3.15. Let A be a 4× 4 matrix

A =


0 1 0 1
1 0 1 1
0 1 0 1
0 1 0 1

 .
The powers of A are easy to compute

A2 =


2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2



A3 =


0 4 0 4
4 0 4 0
0 4 0 4
4 0 4 0


Thus, A3 = 4A, that is, f(x) = x3 − 4x = x(x+ 2)(x− 2), then m(A) = 0. The minimal polynomial of A
must divide f . Minimal polynomial is not of degree 1 since in that case, A would have been a scalar multiple
of I , which is not true. Hence the candidates of minimal polynomial polynomial are f , x(x + 2), x(x − 2),
x2 − 4. The three quadratic polynomials can be eliminated since at a glance, we can see that A2 6= 2A,
A2 6= −2A, and A2 6= 4I . Hence f is the minimal polynomial for A and since f is the product of distinct
linear factors, so A is diagonalizable. Now, we can clearly see that the rank of A is 2 and hence its nullity is
also 4−2 = 2, which means that the eigen space ofA−0I has dimension 2 and thus its algebraic multiplicity
will be 2. Thus, the characteristic polynomial is x2(x2 − 4). And the matrix A is similar to the diagonal form

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 −2

 .

Exercise 3.16. 1. Every matrix A such that A2 = A is similar to a diagonal matrix.

2. Using diagonalizability, compute An, n ∈ N for

A =

[
1 2
2 1

]
.

3. Is every diagonalizable matrix invertible? Justify.

4. Let A be an n× n diagonalizable matrix whose characteristic polynomial is given by

f(x) = x3(x− 1)2(x− 2)5(x+ 2)4.

i. Find the size of the matrix A.

ii. Find the minimal polynomial of A.

iii. Find the dimension of the eigen space for the eigen value 2.

iv. Find the rank of the matrix.

28

3.2 Smith’s Normal Form

The Smith normal form is a normal form that can be defined for any matrix (not necessarily square) with
entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained
from the original matrix by multiplying on the left and right by invertible square matrices. In particular, the
integers are a PID, so one can always calculate the Smith normal form of an integer matrix. We will talk
particularly about the PID Z .

Definition 3.17. Let A be an m × n matrix over Z. We say that A is in Smith Normal form if there are
non-zero a1, a2, . . . , ak ∈ Z such that ai divides ai+1 for i < k such that

A =



a1 0 0 · · · · · · 0
0 a2 0 · · · · · · 0
...

...
. . .

...
0 0 · · · ak · · · 0
...

...
. . .

...
0 0 0 0 · · · 0


Theorem 3.18. If A is a matrix with entries in Z, then there are invertible matrices P and Q such that PAQ
is in Smith normal form.

Theorem 3.19. Every matrix over Z has Smith Normal form.

In order to find the Smith Normal form of a matrix, we are allowed to use the following operations

1. interchange two rows and columns,

2. multiply a row or column by ±1(which are the invertible elements in Z)

3. add an integer multiple of a row (or column) to another row (or column)

Exercise 3.20. Obtain the Smith normal form and rank for

A =

 0 2 −1
−3 8 3
2 −4 −1


over Z.

3.3 Few Probable Questions

1. Show that the eigen vectors corresponding to distinct eigen values are linearly independent.

2. State a necessary and sufficient condition for diagonalizability. Check the diagonalizability of the fol-
lowing matrix

A =

1 1 1
1 1 1
1 1 1

 .
29

3. Let f be the characteristic polynomial of a matrix A over the field R as

f(x) = x2(x− 3)(x+ 4)5.

Also, let A be diagonalizable. Then

(a) Find the minimal polynomial of A.

(b) Find the eigen values along with their algebraic and geometric multiplicities.

(c) Find the diagonalized form of A.

4. Let A be a matrix over the field R whose minimal polynomial is of the form

f(x) = (x2 − 1)(x2 + 1).

(a) Is A diagonalizable over R? Justify.

(b) Is A diagonalizable over the field C? Justify.

Find the eigen values in each case.

5. Let P be a linear operator over R2 defined as

P ((x, y)) = (x, 0).

Show that P is linear. Find the matrix representation of P with respect to the standard basis of R2.
What is the minimal polynomial of P ? Is P diagonalizable?

30

Unit 4

Course Structure

• Primary Decomposition theorem

• Jordan Canonical forms

4 Introduction

There are certain subspaces which remain invariant under a linear operator, that is, the linear operator sends
each element of the subspace to itself. Such subspaces are of primary importance as we shall see that we can
analyse many properties of the linear operator by finding out the various invariant subspaces of the operator.
Also, we have seen in the preceding unit that we want to write the matrix of a linear operator in its simplest
possible form, which is possible since the matrix representation of a single linear operator under various bases
are similar. And we have also seen that the diagonal matrix is the simplest possible matrix to work with. We
are always in search of a basis of the underlying vector space for which the corresponding matrix of the linear
operator is diagonal. If such a basis exists, then we are happy and the operator is said to be diagonalizable.
We have seen various circumstances under which an operator is diagonalizable. We are okay with them. But,
what happens if a given operator is not diagonalizable. Can’t we express the operator in a simpler form then?
That is where the other canonical forms come into play. We can certainly express the operators in a simpler
form, which is ”almost” a diagonal matrix. One of them is the Jordan Canonical forms, which we shall come
through in this unit.

Objectives

After reading this unit, you will be able to

• define the invariant subspaces and see certain examples

• learn about the independent subspaces of a vector space

• learn about the direct-sum decomposition of a vector space into independent subspaces of it

• learn about the invariant direct sum decomposition of a vector space

• define the cyclic vectors of a vector space

• define the smallest invariant subspace containing a vector

• learn about the Jordan forms and find those for any given matrix or linear operator

31

4.1 Invariant Subspaces

Definition 4.1. Let V be a vector space and T , a linear operator on V . If W is a subspace of V , we say that
W is invariant under T if for each w ∈W , the vector T (w) is also in W .

Example 4.2. If T is any linear operator on V , then V is invariant under T as is the zero subspace. The range
of T and the null space of T are also invariant under T .

Example 4.3. Let F be a field and D be the differentiation operator on the space F [x] of polynomials over
F . Let n be a positive integer and W be a subspace of polynomials of degree not greater than n. Then W is
invariant under T .

Example 4.4. Let T be the linear operator on R2 which is represented in the standard basis by the matrix

A =

[
0 −1
1 0

]
Then the only subspaces of R2 which are invariant under T are R2 and the zero subspace. Any other invariant
subspace would necessarily have dimension 1. But, if W is the subspace spanned by some non-zero vector v,
the fact that W is invariant under T means that v is an eigen vector, but A has no eigen value.

When the subspace W is invariant under the operator T , then T induces a linear operator TW on the space
W . The linear operator TW is defined by TW (v) = T (v), for v ∈ W . Now we turn to an investigation of the
simplest possible nontrivial invariant subspaces : invariant subspaces with dimension 1. How does an operator
behave on an invariant subspace of dimension 1? Subspaces of a vector space V of dimension 1 are easy to
describe. Take any non-zero vector u ∈ V and let U equals the set of all scalar multiples of u, that is

U = {au : a ∈ F}.

where, F is the underlying field. The U is a one-dimensional subspace of V , and every one-dimensional
subspace of V is of this form. If u ∈ V and the subspace defined as above is invariant under T , then T (u)
must be in U , which means that there must exist a scalar c ∈ F such that T (u) = cu ∈ U . Conversely, if
u is a non-zero vector in V such that T (u) = cu for some scalar c, then the subspace U defined above is a
one-dimensional subspace of V invariant under T . The equation T (u) = cu is same as (T − cI)u = 0, so
that c is an eigen value and u is an eigen vector of T . Thus, we can see that the one dimensional invariant
subspace of an operator T is precisely the eigen space of the operator. But the converse is not true always, that
is, any eigen space of T need not be one-dimensional though it is invariant under T (can you think of such an
example?).

When V is finite-dimensional, the invariance of a subspace W under the linear operator T has a simple
matrix interpretation. Suppose we choose an ordered basis B = {v1, . . . , vn} be an ordered basis of V and
B′ = {v1, . . . , vr} of W (r = dimW). Let A = [T]B so that

T (vj) =

n∑
i=1

Aijvi.

Since W is invariant under T , the vector T (vj) belongs to W for j ≤ r. This means that

T (vj) =

r∑
i=1

Aijvi, j ≤ r.

In other words, Aij = 0 if j ≤ r and i > r. Schematically A has the block form

A =

[
B C
0 D

]
where B is an r × r matrix, C is an r × (n− r) matrix, and D is an (n− r)× (n− r) matrix.

32

4.1.1 Direct-Sum Decompositions

Definition 4.5. The subspaces W1,W2, . . . ,Wk of a vector space V are said to be independent if

w1 + w2 + · · ·+ wk = 0, wi ∈Wi

implies that each wi is zero.

For k = 2, we can say that independence means that W1 ∩W2 = {0}. If k > 2, it says that each Wj

intersects the sum of the other subspaces only at the zero vector.

The independence can be understood as this: If W = W1 + W2 + · · · + Wk be the subspace spanned by
W1,W2, . . . ,Wk, then each vector w ∈W can be uniquely expressed as the sum of the vectors in Wj , that is,

w = w1 + w2 + · · ·+ wk, wi ∈Wi

If w has another representation as

w = u1 + u2 + · · ·+ uk, ui ∈Wi

then subtracting, we get

0 = (w1 − u1) + · · ·+ (wk − uk), wk − uk = 0

and the definition of independence implies that wj − uj = 0 for 1 ≤ j ≤ k. Thus, when W1,W2, . . . ,Wk are
independent, we can operate with the vectors in W as k-tuples.

Lemma 4.6. Let V be a finite-dimensional vector space and let W1,W2, . . . ,Wk be subspaces of V and let
W = W1 +W2 + · · ·+Wk. Then the following are equivalent

1. W1,W2, . . . ,Wk are independent.

2. For each j, 2 ≤ j ≤ k, we have

Wj ∩ (W1 + · · ·+Wj−1) = {0}.

3. If Bi is an ordered basis for Wi, for each i, then the sequence B = {B1,B2, . . . ,Bk} is an ordered basis
for W .

If the above conditions hold, we say that the sum W = W1 + W2 + · · · + Wk is direct or that W is the
direct sum of W1,W2, . . . ,Wk and we write it as

W = W1 ⊕W2 ⊕ · · · ⊕Wk.

Example 4.7. Let V be a finite-dimensional vector space over the field F and let {v1, v2, . . . , ln} be a basis
for V . If Wi be the one-dimensional subspace spanned by vi, then

V = W1 ⊕W2 ⊕ · · · ⊕Wn.

Example 4.8. Let T be any linear operator on a finite-dimensional space V . Let c1, c2, . . . , ck be the dis-
tinct eigen values of T , and let Wi be the space of eigen vectors associated with the eigen value ci. Then
W1,W2, . . . ,Wk. And if T is diagonalizable, then V = W1 ⊕W2 ⊕ · · · ⊕Wn.

Definition 4.9. If V is a vector space, a projection of V is a linear operator E on V such that E2 = E.

33

Suppose E is a projection. Let R be the range of E and let N be the null space of E. We establish that
V = R ⊕ N . Because w ∈ R if and only if w = E(w), since w = E(v) implies E(w) = E(E(v)) =
E2(v) = E(v) = w. Conversely, if w = E(w), the obviously w ∈ R. The unique representation of v as the
sum of vectors in R and N is v = E(v) + (v − E(v)).

If R and N are subspaces of V such that V = R ⊕ N , there is a unique projection operator E which has
range R and null space N . The operator is called the projection on R along N .

Projections are clearly diagonalizable since for any projection E, we always have E2 = E and since the
minimal polynomial divides any annihilating polynomial of an operator, so the minimal polynomial can be
either x = 0, or x− 1 = 0 or x(x− 1) = 0 which is the product of distinct linear factors in all the cases.

Projections can be used to describe direct-sum decompositions of the space V .

Theorem 4.10. Let V = W1⊕W2⊕ · · · ⊕Wk, then there exist k linear operators E1, E2, . . . , Ek on V such
that

1. each Ei is a projection,

2. EiEj = 0, if i 6= j,

3. I = E1 + E2 + · · ·+ Ek,

4. the range of Ei is Wi

Conversely, if E1, E2, . . . , Ek are k linear operators on V satisfying conditions 1-3, and if Wi is the range of
Ei, then V = W1 ⊕W2 ⊕ · · · ⊕Wk

Proof. Suppose V = W1 ⊕W2 ⊕ · · · ⊕Wk. Then for each j, we define an operator Ej on V . Let v ∈ V and
let v = v1 + v2 + · · · + ck with vi ∈ Wi. Then we define Ej as Ej(v) = vj . Then Ej is well-defined and it
is easy to check that it is linear and that, the range of Ej is Wj and that E2

j = Ej . The null space of Ej is the
subspace

W1 +W2 + · · ·+Wj−1 +Wj+1 + · · ·+Wk

for, the statement that Ej(v) = 0 simply means vj = 0, that is, v is actually a sum of vectors from the spaces
Wi, with i 6= j. In terms of the projections Ej , we have

v = E1(v) + · · ·+ Ek(v)

for each v ∈ V . So, the identity operator on V can be written as

I = E1 + E2 + · · ·+ Ek.

Also, if i 6= j, then we see that EiEj = 0 since the range of Ej is the subspace Wj which lies in the null
space of Ej .

Conversely, suppose E1, E2, . . . , Ek are k linear operators on V satisfying conditions 1-4. Then certainly
we must have

V = W1 +W2 + · · ·+Wk.

since by condition 3, we have
v = E1(v) + · · ·+ Ek(v)

34

for every v ∈ V , and Ei(v) ∈Wi. This expression for v is unique, because if

v = v1 + · · · vk, vi ∈Wi,

say vi = Ei(wi), then using 1 and 2, we have

Ej(v) =
k∑
i=1

Ejvi =
k∑
i=1

EjEiwi = E2
j (wj) = Ej(wj) = vj .

This shows that V is the direct sum of the Wi.

4.1.2 Invariant Direct Sums

We are primarily interested in direct-sum decompositions of V where each subspace if invariant under some
linear operator T . Given such a decomposition of V , T induces a linear operator Ti on each Wi by restriction.
Thus, if v ∈ V , then we have the unique representation

v = v1 + · · ·+ vk, vi ∈Wi

where, each Wi is an invariant subspace of V into which V decomposes. Then

T (v) = T1(v1) + · · ·+ Tk(vk)

We can say that T is the direct-sum of the operators T1, · · · , Tk. The fact that V = W1⊕· · ·⊕Wk, enables us
to associate a unique k-tuple for each v ∈ V (which is (v1, . . . , vk)), in such a way that we can carry out the
linear operations in V by working in the individual subspaces Wi. The fact, that each Wi is invariant under T
enables us to view T as independent action of Ti on the subspaces Wi.

The above situation can be interpreted in terms of matrices. Suppose we select an ordered basis Bi of Wi

and let B be the ordered basis for V consisting of the union of the Bi, arranged in the order B1,B2, . . . ,Bk.
Let A = [T]B and let Ai = [T]B〉 , then A has the block form

A =


A1 0 · · · 0
0 A2 · · · 0
...

... · · ·
...

0 0 · · · Ak


Each Ai is a di × di matrix, where di = dimWi, and 0’s are symbols for rectangular blocks of scalars 0’s of
various sizes.

Theorem 4.11. Let T be a linear operator on the space V , and let W1, . . . ,Wk and E1, . . . , Ek be the projec-
tions as in the previous theorem. Then a necessary and sufficient condition that each subspace Wi be invariant
under T is that T commute with each of the projections Ei, that is

TEi = EiT, i = 1(1)k.

We shall now describe a diagonalizable operator T in the language of invariant direct sum decomposi-
tions (projections which commute with T). This will be a great help to us in understanding some deeper
decomposition theorems later.

Theorem 4.12. Let T be a linear operator on a finite-dimensional space V . If T is diagonalizable and
c1, . . . , ck are the distinct eigen values of T , then there exist linear operators E1, . . . , Ek on V such that

35

1. T = c1E1 + · · ·+ ckEk;

2. I = E1 + · · ·+ Ek;

3. EiEj = 0, i 6= j;

4. E2
i = Ei;

5. the range of Ei is the eigen space for T associated with ci.

Conversely, if there exist k distinct scalars c1, . . . , ck and k non-zero linear operators E1, . . . , Ek satisfying
conditions 1-3, then T is diagonalizable and conditions 4 and 5 are also satisfied.

Proof. Suppose that T is diagonalizable, with distinct eigen values c1, . . . , ck. Let Wi be the eigen spaces of
V . We know that,

V = W1 ⊕ · · · ⊕Wk

Let E1, . . . , Ek be the projections associated with this decomposition, as we have done before. Then 2-5 are
satisfied. To verify 1, let v ∈ V and we have

v = E1(v) + · · ·+ Ek(v)

So,
T (v) = TE1(v) + · · ·+ TEk(v) = c1E1(v) + · · ·+ ckEk(v).

Thus,
T = c1E1 + · · ·+ ckEk.

Now suppose that we are given a linear operator T along with distinct scalars ci and non-zero operators Ei
which satisfy 1-3. Since EiEj = 0, for i 6= j, we multiply both sides of I = E1 + · · ·+Ek by Ei, and obtain
immediately E2

i = Ei. Multiplying T = c1E1 + · · · + ckEk by Ei, we get TEi = ciEi, which shows that
any vector in the range of Ei, is in the null space of T − ciI . Since we have assumed that Ei 6= 0, this proves
that there is a non-zero vector in the null space of T − ciI , that is, ci is an eigen value of T . Furthermore, ci
are all of the eigen values of T ; for if c is any scalar, then

T − cI = (c1 − c)Ei + · · ·+ (ck − c)Ek

so that, if (T − cI)(v) = 0, we must have (ci − c)Ei(v) = 0. If v is not the zero vector, then Ei(v) 6= 0 for
some i, so that for this i, we have ci − c = 0.

Certainly T is diagonalizable, since we have shown that every non-zero vector in the range of Ei is an eigen
vector of T , and the fact that I = E1 + · · · + Ek shows that these characteristic vectors span V . All that
remains to be demonstrated is that the null space of T − ciI is exactly the range of Ei. But this is clear since
if T (v) = civ, then

k∑
j=1

(cj − ci)Ej(v) = 0, for each j

and then
Ej(v) = 0, i 6= i.

Since v = E1(v) + · · ·+ Ek(v), and Ej(v) = 0 for j 6= i, we have v = Ej(v), which proves that v is in the
range of Ei.

36

4.1.3 Primary Decomposition Theorem

We studying a linear operator T on the finite-dimensional space V , by decomposing it into a direct sum of
operators which are in some sense elementary. We can do this through the eigen values and vectors of T in
certain special cases, i.e.,when T is diagonalizable, or, when the minimal polynomial for T factors over the
scalar field F into a product of distinct monic polynomials of degree 1 . What can we do with the general T ?
While studying T using eigen values, we are confronted with two problems. First, T may not have a single
eigen value ; this is really a deficiency in the scalar field, namely, that it is not algebraically closed, and we
have nothing to do in that case. Second, even if the characteristic polynomial factors completely over F into
a product of polynomials of degree 1, there may not be enough eigen vectors for T to span the space V ; this
is clearly a deficiency in T . The second situation is illustrated by the operator T on F 3, where F is any field
represented in the standard basis by

A =

2 0 0
1 2 0
0 0 1

 .
The characteristic polynomial for A is (x − 2)2(x + 1) and this is also the minimal polynomial for A, and
thus, for T . Hence, T is not diagonalizable and this happens since the nullity of T − 2I is 1. On the other
hand, the null space of T + I and (T − 2I)2 span V . From here, we get the motivation for our further work.
Suppose we are given that

m = (x− c1)r1 . . . (x− ck)rk

where c1, . . . , ck ∈ F , then we will show that V is the direct sum of the null spaces of (T − ciI)ri , i = 1(1)k.

Theorem 4.13. Let T be a linear operator on the finite-dimensional vector space V over the field F . Let m
be the minimal polynomial for T as

m = mr1
1 . . .mrk

k

where the mi are distinct irreducible monic polynomials over F and ri are positive integers. Let Wi be the
null space of mi(T)ri , i = 1(1)k. Then

1. V = W1 ⊕ · · · ⊕Wk;

2. each Wi in invariant under T ;

3. if Ti is the operator induced on Wi by T , then the minimal polynomial for Ti is mri
i .

Proof. Let
fi =

m

mri
i

= Πj 6=im
rj
j .

Since mi are distinct polynomials, the polynomials fi are relatively prime which implies that there are poly-
nomials g1, . . . , gk such that

n∑
i=1

figi = 1.

Also, if i 6= j, then fifj is divisible by the polynomial m, since fifj contains each mrl
l as factor. We shall

show that the polynomials hi = figi such that hi(T) is the identity on Wi and is zero on the other Wj such
that h1(T) + · · ·+ hk(T) = I .

Let Ei = hi(T) = fi(T)gi(T). Since h1 + · · ·+ hk = 1 and p divides fifj for i 6= j, we have

E1 + · · ·+ Ek = I, EiEj = 0, if i 6= j.

37

Thus, Ei are the projections which correspond to some direct-sum decomposition V . We will show that the
range of Ei is exactly Wi. It is clear that each vector in the range of Ei is in Wi, since if v ∈ Ei, then
v = Ei(v), and so

mi(T)(v) = mi(T)riEi(v) = mi(T)rifi(T)gi(T)(v) = 0

since m divides mri
i figi. Conversely, suppose that v is in the null space of mi(T)ri . If j 6= i, then fjgj is di-

visible by mri
i and so fj(T)gj(T)(v) = 0, that us Ej(v) = 0 for j 6= i. But this is immediate that Ei(v) = v,

that is v is in the range of Ei. This completes the proof of 1.

Also, it is evident that Wi are invariant under T . If Ti is the operator induced on Wi by T , then obviously
mi(T)ri = 0, because by definition, mi(T)ri is zero on Wi. This shows that the minimal polynomial for Ti
divides mri

i . Conversely, let g be any polynomial such that g(Ti) = 0. Then g(T)fi(T) = 0. Thus gfi is
divisible by the minimal polynomial of T , that is, mri

i divides gfi. It is easily seen that mri
i divides g. Hence

the minimal polynomial for Ti is mri
i .

Exercise 4.14. 1. Let T be a linear operator on a finite-dimensional vector space V . Let R be the range
of T and let N be the null space of T . Prove that R and N are independent if and only if V = R⊕N .

2. Let T be a linear operator on V . Suppose V = W1⊕· · ·⊕Wk, where eachWi is invariant under T . Let
Ti be the induced operator on Wi. Then show that the characteristic polynomial f of T is the product
of those of Ti.

3. Let T be a linear operator on V which commutes with every projection operator on V . What can you
say about T ?

4. Let T be a linear operator on the finite-dimensional space V with characteristic polynomial

f = (x− c1)d1 . . . (x− ck)dk

and minimal polynomial
m = (x− c1)r1 . . . (x− ck)rk .

Let Wi be the null space of (T − ciI)ri . Then show that Wi is the set of all vectors v ∈ V such that
(T − ciI)m(v) = 0 for some positive integer m (which may depend on v).

4.1.4 Cyclic Subspaces and Annihilators

If V is a finite-dimensional vector space over a field F and T is a fixed linear operator on V . If v is any
vector in V , there is a smallest subspace of V which is invariant under T and contains v. This subspace can be
defined as the intersection of all T -invariant subspaces which contain v. If W is any subspace of V which is
invariant under T and contains v, then W must also contain T (v) and hence must contain T 2(v), T 3(v), and
so on. In other words, W must contain g(T)(v) for every polynomial g over F . This is clearly the smallest
subspace which contains the vector v and invariant under T .

Definition 4.15. If v is any vector in V , the T -cyclic subspace generated by v is the subspace Z(v;T) of all
vectors of the form g(T)(v), g in F [x]. If Z(v;T) = V , then v is called a cyclic vector for T .

In other words, Z(v;T) is the subspace {v, T (v), T 2(v), . . .} and v is a cyclic vector if and only if these
vectors span V . Every arbitrary operator need not have cyclic vectors.

38

Example 4.16. For any operator T , the T -cyclic subspace generated by the zero vector is the zero subspace.
The space Z(v;T) is one-dimensional if and only if v is an eigen vector for T . For the identity operator, every
non-zero vector generates a one-dimensional cyclic subspace; thus, if dimV > 1, the identity operator has no
cyclic vector.

For any operator T and vector v, we are interested in the linear relations

c0 + c1T (v) + · · ·+ ckT
k(v) = 0

between the vectors T i(v), or, we shall be interested in the polynomials g = c0 + c1x+ · · ·+ ckx
k such that

g(T)(v) = 0. The set of all g satisfying the property in F [x] is clearly a non-zero ideal since it contains the
minimal polynomial m of the operator T .

Definition 4.17. If v is any vector in V , the T -annihilator of v is the ideal M(v;T) in F [x] consisting of all
polynomials g over F such that g(T)(v) = 0. Then the unique monic polynomial mv which generates this
ideal will also be called the T -annihilator of v.

We note that the degree of mv should be greater than zero unless v is the zero vector.

Theorem 4.18. Let v be any non-zero vector in V and mv be the T -annihilator of v. Then

1. the degree of mv is equal to the dimension of the cyclic subspace Z(v;T);

2. if the degree of mv is k, then the vectors v, T (v), T 2(v), . . . , T k−1(v) form a basis for Z(v;T)

3. if U is the linear operator on Z(v;T) induced by T , then the minimal polynomial for U is mv.

If v is a cyclic vector for T , then the minimal polynomial for T must have degree equal to the dimension
of the space V ; hence, the Cayley-Hamilton theorem tells us that the minimal polynomial for T is the char-
acteristic polynomial for T .

Our plan is to study the general T by using operators which have a cyclic vector. So, let us take a look at a
linear operator U on a spaceW of dimension k which has a cyclic vector v. By the above theorem, the vectors
v, . . . , Uk−1(v) forms a basis for the space W , and the annihilator mv of v is the minimal polynomial for U
(and hence also the characteristic polynomial for U). If we let vi = U i−1(v), i = 1(1)k, then the action of U
on the ordered basis B = {v1, . . . , vk} is

U(vi) = vi+1, i = 1(1)k − 1

U(vk) = −c0v1 − c1v2 − · · · − ck−1vk

where, mv = c0 + c1x+ · · ·+xk. The expression for U(vk) follows from the fact that mv(U)(v) = 0, that is

Uk(v) + ck+1U
k−1(v) + · · ·+ c1U(v) + c0v = 0.

This says that the matrix of U in the ordered basis B is
0 0 0 · · · 0 −c0
1 0 0 · · · 0 −c1
0 1 0 · · · 0 −c2
...

...
...

. . .
...

...
0 0 0 · · · 1 −ck−1

 .

The matrix is called the companion matrix of the monic polynomial mv.

39

Theorem 4.19. If U is a linear operator on the finite-dimensional space W , then U has a cyclic vector if and
only if there is some ordered basis for W in which U is represented by the companion matrix of the minimal
polynomial for U .

Proof. If U has a cyclic vector, then there is such an ordered basis for W . Conversely, if we have some
ordered basis {v1, . . . , vk} for W in which U is represented by the companion matrix of its polynomial, it is
obvious that v1 is a cyclic vector for U .

Corollary 4.20. If A is the companion matrix of a monic polynomial m, then m is both the minimal and the
characteristic polynomial of A.

If T is any linear operator on the space V and v is any vector in V , then the operator U which T induces
on the cyclic subspace Z(v;T) has a cyclic vector, namely v. Thus, Z(v;T) has an ordered basis in which U
is represented by the companion matrix of mv, the T -annihilator of v.

Exercise 4.21. 1. Show that Z(v;T) is one dimensional if and only if v is an eigen vector of T .

2. Let T be the linear operator on R3 which is represented in the standard ordered basis by the matrix2 0 0
0 2 0
0 0 −1

 .
Prove that T has no cyclic vector. What is the T -cyclic subspace generated by the vector (1,−1, 3)?

3. Let V be an n-dimensional vector space, and let T be a linear operator on V . Suppose that T is
diagonalizable. If T has a cyclic vector, show that T has n distinct eigen values.

4.2 Jordan Canonical Forms

We have seen that the diagonal matrices are ”easiest” matrix to handle. So we are always in search of a basis
for which a particular linear operator is diagonalizable. But this is not always possible. So we are in search
of the next simplest matrix in which the operator can be represented. And the next ”easiest” matrix to deal
with are the triangular matrices. So we come to the Jordan canonical forms, or simply the Jordan forms. The
Jordan Canonical Form is an upper triangular matrix of a particular form called a Jordan matrix representing
a linear operator on a finite-dimensional vector space with respect to some basis. Such a matrix has each
non-zero off-diagonal entry equal to 1, immediately above the main diagonal (on the superdiagonal), and with
identical diagonal entries to the left and below them. Let us check for ourselves. Let A be a matrix as given

A =


5 4 2 1
0 1 −1 −1
−1 −1 3 0
1 1 −1 2

 .
The eigen values of A are 1, 2, 4, 4 and the dimensions of the eigen space corresponding to each eigen values
are 1, 1, 1 which does not sum up to 4, so A is not-diagonalizable. But A is similar to the matrix below

J =


1 0 0 0
0 2 0 0
0 0 4 1
0 0 0 4

 .
The matrix J is ”almost” diagonal and is called the Jordan form of A.

40

Definition 4.22. Let A be an n× n matrix and c be an eigen value of A of algebraic multiplicity, say k. Then
the elementary Jordan block of A corresponding to c, of size k is given by

c 1 0 · · · 0
0 c 1 · · · 0
0 0 c · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · c


.

Then the parent matrix is composed of the elementary Jordan blocks

A =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk

 .
The Jordan form of a matrix has the following properties:

1. Given an eigen value cj , the number of elementary Jordan blocks corresponding to cj is equal to the
geometric multiplicity of cj .

2. The sum of the sizes of the Jordan blocks corresponding to an eigen value cj is equal to its algebraic
multiplicity.

3. The maximum size of a Jordan block corresponding to an eigen value cj is equal to its multiplicity in
the minimal polynomial of the parent matrix and there has to be a Jordan block with the maximum size
for cj .

Illustration 4.23. 1. Let us be given a matrix

A =

4 0 1
2 3 2
1 0 4

 .
First of all, we calculate the eigen values of A which are 5 and 3. Then find the rank of the matrices
A− 5I and A− 3I which happen to be 2 and 1 respectively and hence the nullity of the corresponding
matrices are 1 and 2 respectively summing up to 3, the dimension of R3. Hence the minimal polynomial
of A is (x− 3)(x− 5) and the Jordan form for A is

J =

5 0 0
0 3 0
0 0 3

 .
Here there are precisely three Jordan blocks, [5], [3], [3].

2.

A =

1 1 1
0 1 0
0 0 1

 .
Then A has only one eigen value, which is 1 and the rank of A− I is 1, which means that it has nullity
equal to 2 which does not sum up to 3. Since the nullity, that is the geometric multiplicity of 1 is 2, so

41

there will be two Jordan blocks for 1 and also the maximum size of the Jordan block should be 2. Thus,
the Jordan form for A is

J =

1 0 0
0 1 1
0 0 1

 .

Exercise 4.24. 1. Put the matrix

A =

−1 −1 0
0 −1 −2
0 0 −1


into Jordan form.

2. LetA be a 5×5 matrix with characteristic polynomial f(x) = (x−2)3(x+7)2 and minimal polynomial
m = (x− 2)2(x+ 7). What is the Jordan form for A?

3. How many possible ,Jordan forms are there for a 6 × 6 complex matrix with characteristic polynomial
(x+ 2)4(x− 1)2?

4. The differentiation operator on the space of polynomials of degree less than or equal to 3 is represented
in the ’natural’ ordered basis by the matrix 

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .
What is the Jordan form of this matrix?

4.3 Few Probable Questions

1. Show that for a direct-sum decomposition of a finite-dimensional vector space V , V = W1⊕W2⊕· · ·⊕
Wk, there exists k projection operators Ei such that the range of each Ei is Wi and I = E1 + · · ·+Ek.

2. State and prove the primary decomposition theorem.

3. Find the Jordan form of the matrix

A =

5 4 2
4 5 2
2 2 2

 .
Show detailed steps.

42

Unit 5

Course Structure

• Invariant factors and elementary divisors

• Rational forms

5 Introduction

The primary purpose of this section is to prove that if T is any linear operator on a finite-dimensional space
V , then there exist vectors v1, . . . , vk in V such that

V = Z(v1;T)⊕ · · · ⊕ Z(vk;T).

This will show that T is the direct sum of a finite number of linear operators, each of which has a cyclic vector.
The cyclic decomposition theorem is closely related to the following question. Which T -invariant subspaces
W have the property that there exists a T -invariant subspace W ′ such that V = W ⊕ W ′? In fact, there
are many subspaces W ′ for which V = W ⊕W ′ but we can’t say whether they are invariant or not. This
unit is dedicated to the study of the invariant factors and elementary divisors of a linear operator and certain
canonical forms of it.

Objectives

After reading this unit, you will be able to

• define T -admissible subspaces of a vector space

• learn the cyclic decomposition theorem for a finite-dimensional vector space with respect to a linear
operator T

• learn the generalized Cayley-Hamilton theorem for a linear operator on a finite-dimensional vector
space

• define the invariant factors of a matrix

• learn to find the rational canonical form for a matrix

5.1 Invariant Factors

Definition 5.1. Let T be a linear operator on a vector space V . A subspaceW of V is said to be T -admissible
if

1. W is T -invariant;

2. if f(T)(v) is in W , there exists a vector w in W such that f(T)(v) = f(T)(w).

43

Note that, from the discussion we had done in the introduction of this unit, if V is decomposed as V = W⊕
W ′, where bothW andW ′ are invariant, then any vector v ∈ V has a unique representation v = w+w′, where
w ∈ W and w′ ∈ W ′. If f is any polynomial over the scalar field, then f(T)(v) = f(T)(w) + f(T)(w′).
Since W and W ′ are T -invariant, the vectors f(T)(w) and f(T)(w′) lies in W and W ′ respectively. Thus,
f(T)(v) is in W if and only if f(T)(w′) = 0. Hence, we can say that for such a case, W is admissible.

Let W be a proper T -invariant subspace. Let us try to find a non-zero vector v such that

W ∩ Z(v;T) = {0}.

We can choose a vector w′ which is not in W . Consider the T -conductor S(w′;W), which consists of
all polynomials g such that g(T)(w′) is in W . Recall that the monic polynomial f which generates the
ideal S(w′;W) is also called the T -conductor of w′ into W . The vector f(T)(w′) is in W . Now, if W
is T -admissible, there is a w′′ in W with f(T)(w′) = f(T)(w′′). Let w = w′ − w′′ and let g be any
polynomial. Since w′ − w is in W , g(T)(w′) will be in W if and only if g(T)(w) is in W ; in other words,
S(w;W) = S(w′;W). Thus, the polynomial f is also the T -conductor of w into W . But f(T)(w) = 0
which tells us that g(T)(w) is in W if and only if g(T)(w) = 0, that is, the subspaces Z(v;T) and W are
independent and f is the T -annihilator of v.

Theorem 5.2. (Cyclic Decomposition Theorem) Let T be a linear operator on a finite-dimensional vector
space V and let W0 be a proper T -admissible subspace of V . There exist non-zero vectors v1, . . . , vk in V
with respective T -annihilators m1, . . . ,mk such that

1. V = W0 ⊕ Z(v1;T)⊕ · · · ⊕ Z(vk;T);

2. mr divides mr−1, r = 2, . . . , k.

Furthermore, the integer k and the annihilators m1, . . . ,mk are uniquely determined by 1 and 2 and the fact
that no vr is 0.

The proof is rather lengthy and has been omitted for general good.

Our next corollary gives us the answer to our primary question which we asked at the beginning of this
unit regarding the existence of a T -invariant subspace W ′ which forms a complementary for a T -invariant
subspace W of V .

Corollary 5.3. If T is a linear operator on a finite-dimensional vector space, every T -admissible subspace has
a complementary subspace which is also invariant under T .

Proof. Let W be an admissible subspace of V . If W = V , the required complement is {0}. If W is proper,
then we apply the Cyclic decomposition theorem and let

W ′ = Z(v1;T)⊕ · · · ⊕ Z(vk;T).

Then W ′ is invariant under T and V = W ⊕W ′.

Corollary 5.4. Let T be a linear operator on a finite-dimensional vector space V .

1. There exists a vector v in V such that the T -annihilator of v is the minimal polynomial for T .

2. T has a cyclic vector if and only if the characteristic and minimal polynomials for T are identical.

44

Proof. If V = {0}, the results are trivially true. If V 6= {0}, let

V = Z(v1;T)⊕ · · · ⊕ Z(vk;T)

where the T -annihilators m1, . . . ,mk are such that mr+1 divides mr, 1 ≤ r ≤ k − 1. As we noted in the
previous theorem, it follows easily that m1 is the minimal polynomial for T , that is, the T -conductor of V
into {0}.

We saw in the previous unit that if T has a cyclic vector, the minimal polynomial for T coincides with the
characteristic polynomial. Choose any vector v as in 1. If the degree of the minimal polynomial is dimV ,
then V = Z(v;T).

Theorem 5.5. (Generalized Cayley-Hamilton Theorem) Let T be a linear operator on a finite-dimensional
vector space V . Let m and f be the minimal and characteristic polynomials for T , respectively. Then

1. m divides f ;

2. m and f have the same prime factors, except for multiplicities;

3. If m = f r11 . . . f rkk is a prime factorization of m, then f = fd11 . . . fdkk , where di is the nullity of fi(T)ri

divided by the degree of fi.

Proof. If V = {0}, then the case is trivial. To prove 1 and 2, consider a cyclic decomposition of V . As in
the proof of the above corollary, m1 = m. Let Ui be the restriction of T to Z(vi;T). Then Ui has a cyclic
vector and so mi is both the minimal as well as characteristic polynomial for Ui. Hence, the characteristic
polynomial f is the product f = m1 . . .mr. Clearly, m1 = m divides f and this proves 1. Obviously any
prime divisor of m is a prime divisor of f . Conversely, a prime divisor of f = m1 . . .mr must divide one of
the factors mi, which is turn divides m1.

Let the given factorization in the statement of the theorem be the prime factorization of m. We use the
primary decomposition theorem which tells us that, if V is the null space of fi(T)ri , then

V = V1 ⊕ · · · ⊕ Vk

and f rii is the minimal polynomial of the operator Ti, obtained by restricting T to the subspace Vi. Apply
part 2 of the present theorem to the operator Ti. Since its minimal polynomial is a power of the prime fi, the
characteristic polynomial for Ti has the form fdii , where di ≥ ri. Obviously

di =
dimV

deg fi

and (almost by definition) dimVi = nullityfi(T)ri . Since T is the direct sum of the operators T1, . . . , Tk, the
characteristic polynomial f is the product

f = fd11 . . . fdkk .

The polynomials m1, . . . ,mr are called the invariant factors for a matrix B.

45

5.1.1 Rational Forms

Let us try to understand the cyclic-decomposition theorem for matrices. If we have the operator T and the
direct-sum decomposition and Bi be the cyclic ordered basis {vi, T (vi), . . . , T

ki−1(vi)} for Z(vi;T). Here,
ki denotes the dimension of Z(vi;T), that is, the degree of the annihilator mi. The matrix of the induced
operator Ti in the ordered basis Bi is the companion matrix of the polynomial mi. Thus, if we let B be the
ordered basis for V which is the union of the Bi arranged in the order B1, . . . ,Br, then the matrix of T in the
ordered basis B will be

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ar


where Ai is the ki × ki companion matrix of mi. An n × n matrix A, which is the direct-sum of companion
matrices of non-scalar monic polynomials m1, . . . ,mr such that mi+1 divides mi for i = 1, . . . , r − 1, will
be said to be in rational form.

Theorem 5.6. Let F be a field and let B be an n × n matrix over F . Then B is similar over the field F to
unique matrix which is in rational form.

We have seen a simpler form for non-diagonalizable matrices, that is the Jordan form. We have a theorem
for triangular matrices which states that

Theorem 5.7. An n × n is triangulable, that is, similar to a triangular matrix if and only if its minimal
polynomial is the product of linear factors (not necessarily distinct).

Now, the Jordan form is a triangular matrix and we know that the triangular matrices are the next ”simplest”
matrices to deal with, right after diagonal ones and we have also seen with certain examples that the Jordan
form was deducible for a matrix when its minimal polynomial, or we can also say that its characteristic
polynomial was the product of linear factors. But this is not always the case. For example, consider the matrix
over the real field

A =

[
0 −1
1 0

]
.

The characteristic polynomial of the above matrix is f(x) = x2 + 1. Since the minimal polynomial of
a matrix divides its characteristic polynomial, and since the characteristic polynomial is irreducible, so the
minimal polynomial of the matrix is also m(x) = x2 + 1. These are the cases when the rational forms come
into play. We will illustrate how we find the rational form for a matrix.

Illustration 5.8. 1. Consider the real matrix

A =

−2 0 0
−1 −4 −1
2 4 0

 .
Then the characteristic polynomial of the matrix can be calculated and is equal to f(x) = x3 + 6x2 +
12x + 8 = (x + 2)3. We have, A + 2I 6= 0, but (A + 2I)2 = 0. Thus, the minimal polynomial of
the matrix is (x + 2)2. We know that the largest invariant factor is simply the minimal polynomial.
Furthermore, we know that the size of our canonical form matrix must be 3 × 3, and that our invariant
factors must divide the minimal polynomial. Thus, there are two invariant factors (x+2)2 = x2+4x+4
and x+ 2. Therefore, the rational canonical form of the matrix is−2 0 0

0 0 −4
0 1 −4

 .
46

Note that the minimal polynomial of A is the product of linear factors and hence we can find the Jordan
form for A. (Find it)

Exercise 5.9. 1. Find the minimal polynomials and the rational form for the following matrices 0 −1 −1
1 0 0
−1 0 0

 ,
 c 0 −1

0 c 1
−1 1 c

 .
2. Find the rational form of the matrix  1 3 3

3 1 3
−3 −3 −5

 .

5.2 Few Probable Questions

1. State and prove the Generalized Cayley-Hamilton theorem.

2. Find the minimal polynomial, invariant factors and the rational form of the following matrix2 −2 14
0 3 −7
0 0 2

 .

47

Unit 6

Course Structure

• Bilinear and Quadratic forms

• Classification of Quadratic forms

6 Introduction

A bilinear form on a real vector space V is a function f which assigns a number to each pair of elements of
V , a scalar from the underlying field, satisfying certain properties. We can begin with an example of a map
from Rn × Rn → R, where R is the underlying field, defined by

〈X,Y 〉 = XT .Y = x1y1 + · · ·+ xnyn.

This is the most common dot product, that we are familiar with. The property of the dot product which we
will use to generalize to bilinear forms is bilinearity: the dot product is a linear function from V to F , where
F is the underlying field, if one of the elements is fixed. Bilinear forms are meant to be a generalization of the
dot product on Rn.

Objectives

After reading this unit, you will be able to

• define bilinear forms and see certain examples of it

• learn properties related to them

• define quadratic forms and associated matrices

• define definiteness of a form and its associated matrices

• learn about the equivalent definitions of definiteness of a matrix and form

• solve problems related to the definiteness of matrices

6.1 Bilinear Forms

Definition 6.1. Let V be a vector space over F . We define a bilinear form to be a function f : V × V → F
such that

f(v1 + v2, w) = f(v1, w) + f(v2, w), v1, v2, w ∈ V
f(v, w1 + w2) = f(v, w1) + f(v, w2), v, w1, w2 ∈ V

f(cv, w) = cf(v, w) = f(v, cw), v, w ∈W, c ∈ F

We will often use the notation 〈v, w〉 for f(v, w).

48

The zero function from V × V into F is clearly a bilinear form. It is also true that any linear combination
of bilinear forms on V is again a bilinear form(check it). All this may be summarized by saying that the set
of all bilinear forms on V is a subspace of the space of all functions from V × V into F . We denote the space
of bilinear forms on V by L(V, V, F).

Example 6.2. Let V be a vector space over the field F and let L1 and L2 be linear functions on V . Define f
by

f(u, v) = L1(u)L2(v).

If we fix v and regard f as a function of u, then we simply have a scalar multiple of the functional L1. And
fixing u, f is a scalar multiple of L2. Hence f is a bilinear form on V .

Example 6.3. Let m and n be positive integers and F a field. Let V be the vector space of m × n matrices
over F . Let A be a fixed m× n over F . Define

fA(X,Y) = tr(XTAY).

Then fA is a bilinear form on V . If X,Y, Z are m× n matrices over F , then

fA(cX + Z, Y) = tr[(cX + Z)TAY]

= tr(cXTAY) + tr(ZTAY) = cfA(X,Y) + fA(Z, Y).

Of course, we have used the fact that the transpose operation and the trace function are linear. It is even easier
to show that fA is linear as a function of its second argument. In the special case, n = 1, the matrix XTAY
is 1× 1 matrix, that is, a scalar, and the bilinear form is simply

fA(X,Y) =
∑
i,j

Aijxiyj .

Example 6.4. Let F be a field. Let us find all bilinear forms on the space F 2. Suppose f is such a bilinear
form. If x = (x1, x2) and y = (y1, y2) are in F 2, then

f(x, y) = f(x1e1 + x2e2, y)

= x1f(e1, y) + x2f(e2, y)

= x1f(e1, y1e1 + y2e2) + x2f(e2, y1e1 + y2e2)

= x1y1f(e1, e1) + x1y2f(e1, e2) + x2y1f(e2, e1) + x2y2f(e2, e2).

Hence, f is completely determined by the four scalars Aij = f(ei, ej) = 〈ei, ej〉 by

f(x, y) = A11x1y1 +A12x1y2 +A21x2y1 +A22x2y2

=
∑
i,j

Aijxiyj .

Thus, if X and Y are the coordinate matrices of x and y, and if A is the above matrix, then

f(x, y) = XTAY.

This can be generalized for any finite-dimensional vector spaces.

Definition 6.5. (Bilinear forms on Rn) Every bilinear form on Rn has the form

〈x, y〉 = xTAy =
∑
i,j

aijxiyj , x, y ∈ Rn

for some n × n matrix A and we also have aij = 〈ei, ej〉 for all i, j. ei is the n tuple of real numbers whose
ith entry is 1 and all other entries are 0.

49

Definition 6.6. Let V be a finite-dimensional vector space, and let B = {v1, . . . , vn} be an ordered basis for
V . If f is a bilinear form on V , the matrix of f in the ordered basis B is the n × n matrix A with entries
Aij = f(vi, vj). We shall denote this matrix by [f]B.

Theorem 6.7. Let V be a finite-dimensional vector space over the field F . For each ordered basis B of V , the
function which associates with each bilinear form on V , its matrix in the ordered basis B is an isomorphism
of the space L(V, V, F) onto the space of n× n matrices over the field F .

Proof. We have seen that f → [f]B is a one-one correspondence between the set of bilinear forms on V and
the set of all n× n matrices over F . That this is a linear transformation is easy to see, because

(cf + g)(vi, vj) = cf(vi, vj) + g(vi, vj)

for each i and j. This simply says that

[cf + g]B = c[f]B + [g]B.

Corollary 6.8. If B = {v1, . . . , vn} is an ordered basis for V , and B∗ = {L1, . . . , Ln} be an ordered basis
for V ∗, then the n2 bilinear forms

fij(x, y) = Li(x)Lj(y), 1 6= i 6= n, 1 ≤ j ≤ n

form a basis for L(V, V, F). In particular, the dimension of L(V, V, F) is n2.

The concept of the matrix of a bilinear form in an ordered basis is similar to that of the matrix of a lineal’
operator in an ordered basis. Just as for linear operators, we shall be interested in what happens to the matrix
representing a bilinear form, as we change from one ordered basis to another. So, suppose B = {v1, . . . , vn}
and B′ = {v′1, . . . , v

′
n} two ordered bases for V and that f is a bilinear form on V . How are the matrices [f]B

and [f]B′ related? Well, let P be the (invertible) n× n matrix such that

[v]B = P [v]B′

for all v ∈ V . In other words, define P by

v
′
j =

n∑
i=1

Pijvi.

For any vectors v, w ∈ V ,

f(v, w) = [v]TB [f]B[v]B

= (P [v]B′)
T [f]BP [w]B′

= [v]TB′ (P
T [f]BP)[w]B′ .

By the definition and uniqueness of the matrix representing f in the ordered basis B′ , we must have

[f]B′ = P T [f]BP.

One consequence of the change of basis formula is the following: If A and B are n×n matrices which repre-
sent the same bilinear form on V in (possibly) different ordered bases, then A and B have the same rank. For,
if P is an invertible n×n matrix and B = P TAP , it is evident that A and B have the same rank. This makes

50

it possible to define the rank of a bilinear form on V as the rank of any matrix which represents the form in an
ordered basis for V .

It is desirable to give a more intrinsic definition of the rank of a bilinear form. This can be done as follows
: Suppose f is a bilinear form on the vector space V . If we fix a vector v in V , then f(v, w) is linear as a
function of w. If we fix a vector v ∈ V , then f(v, w) is linear as a function of w. In this way, each fixed v
determines a linear functional on V ; let us denote this linear functional by Lf (v). To repeat, if v is a vector
in V , then Lf (v) is the linear functional on V whose value on any vector w is f(v, w). This gives us a
transformation v → Lf (v) from V into the dual space V ∗. Since

f(cv1 + v2, w) = cf(v1, w) + f(v2, w)

we see that
Lf (cv1 + v2) = cLf (v1) + Lf (v2)

that is, Lf is a linear transformation from V into V ∗.

In a similar manner, f determines a linear transformation Rf from V into V ∗. For each fixed w ∈ V ,
f(v, w) is linear as a function of v. We define Rf (w) to be the linear functional on V whose value on the
vector v is f(v, w).

Theorem 6.9. Let f be a bilinear form on the finite-dimensional vector space V . Let Lf and Rf be the linear
transformations from V into V ∗ defined by (Lf (v))(w) = f(v, w) = (Rf (w))(v). Then rank(Lf) =rank(Rf).

Definition 6.10. If f is a bilinear form on the finite-dimensional space V , the rank of f is the integer
r =rank(Lf) =rank(Rf).

Corollary 6.11. The rank of a bilinear form is equal to the rank of the matrix of the form in any ordered basis.

Corollary 6.12. If f is a bilinear form on the n-dimensional vector space V , the following are equivalent:

1. rank(f) = n;

2. For each non-zero v ∈ V , there is a vector w ∈ V such that f(v, w) 6= 0;

3. For each non-zero w ∈ V , there is a vector v ∈ V such that f(v, w) 6= 0.

Definition 6.13. A bilinear form f on a vector space V is called non-degenerate (or non-singular) if it satisfies
conditions 2 and 3 of the above corollary.

If V is finite-dimensional, then f is non-degenerate provided f satisfies any one of the three conditions of
the above corollary. In particular, f is non-degenerate (non-singular) if and only if its matrix in some (every)
ordered basis for V is a non-singular matrix.

Example 6.14. Let V = Rn, and let f be the bilinear form defined on v = (x1, . . . , xn) andw = (y1, . . . , yn)
by

f(v, w) = x1y1 + · · ·+ xnyn.

Then f is a non-degenerate bilinear form on Rn. The matrix of f in the standard ordered basis is the n × n
identity matrix

f(X,Y) = XTY.

51

Example 6.15. Let V = P2 denote the space of real polynomials of degree at most 2. We can define a bilinear
form on V by

〈f, g〉 =

∫ 1

0
f(x)g(x)dx, f, g ∈ V.

By definition, the matrix of the form is given by

aij = 〈xi−1, xj−1〉 =

∫ 1

0
xi+j−2dx =

1

i+ j + 2
.

Thus, the matrix of the form with respect to the standard basis is

A =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 .
6.1.1 Symmetric Bilinear Forms

The main purpose of this section is to answer the following question : If f is a bilinear form on the finite-
dimensional vector space V, when is there an ordered basis B for V in which f is represented by a diagonal
matrix? We prove that this is possible if and only if f is a symmetric bilinear form, that is, f(v, w) = f(w, v).
The theorem is proved only when the scalar field has characteristic zero, that is, that if n is a positive integer
the sum 1 + · · ·+ 1 (n times) in F is not 0.

Definition 6.16. Let f be a bilinear form on the vector space V . We say that f is symmetric if f(v, w) =
f(w, v) for all v, w ∈ V .

If V is a finite-dimensional, the bilinear form f is symmetric if and only if its matrix A in some (or every)
ordered basis is symmetric, AT = A. To see this, one inquires when the bilinear form

f(X,Y) = XTAY

is symmetric. This happens if and only if XTAY = Y TAX , for all column matrices X and Y . Since XTAY
is a 1× 1 matrix, we have XTAY = Y TATX . Thus f is symmetric if and only if Y TATX = Y TAX for all
X,Y . Clearly this just means that AT = A. In particular, one should note that if there is an ordered basis for
V in which f is represented by a diagonal matrix, then f is symmetric, for any diagonal matrix is a symmetric
matrix.

Definition 6.17. If f is a symmetric bilinear form, the quadratic form associated with f is the function q from
V into F defined by

q(v) = f(v, v).

Theorem 6.18. Any quadratic form can be represented by symmetric matrix.

Indeed, if aij 6= aji, we replace them by new a
′
ij = a

′
ji =

aij+aji
2 , this does not change the corresponding

quadratic form.

Definition 6.19. 1. (Positive definite) A bilinear form f on a real vector space V is positive definite, if

〈v, v〉 = f(v, v) > 0, v 6= 0.

A real n× n matrix A is positive definite if xTAx > 0 for all x 6= 0.

52

2. (Negative definite) A bilinear form f on a real vector space V is negative definite, if

〈v, v〉 = f(v, v) < 0, v 6= 0.

A real n× n matrix A is positive definite if xTAx < 0 for all x 6= 0.

3. (Positive Semi-definite) A bilinear form f on a real vector space V is positive semi-definite, if

〈v, v〉 = f(v, v) ≥ 0, v ∈ V.

A real n× n matrix A is positive semi-definite if xTAx ≥ 0 for all x.

4. (Negative Semi-definite) A bilinear form f on a real vector space V is negative semi-definite, if

〈v, v〉 = f(v, v) ≤ 0, v ∈ V.

A real n× n matrix A is negative semi-definite if xTAx ≤ 0 for all x.

5. (Indefinite) A bilinear form f on a real vector space V is indefinite, if

〈v, v〉 = f(v, v) > 0, for some v ∈ V

and
〈v, v〉 = f(v, v) < 0, for some v ∈ V.

Example 6.20. 1. The quadratic form f(x, y) = x2 + y2 is positive for all nonzero (x, y). Hence f is
positive definite.

2. The quadratic form f(x, y) = −x2 − y2 is negative for all nonzero (x, y). Hence f is negative definite.

3. The quadratic form f(x, y) = (x− y)2 is non-negative. This means that f is either zero or positive for
all (x, y). Hence f is positive semi-definite.

4. The quadratic form f(x, y) = −(x − y)2 is non-positive. This means that f is either zero or negative
for all (x, y). Hence f is negative semi-definite.

5. The quadratic form f(x, y) = x2− y2 is indefinite aince it can take both positive as well as negative for
example, f(3, 1) = 9− 1 = 8 > 0 and f(1, 3) = 1− 9 = −8 < 0.

6.1.2 Definiteness of a 2 Variable Quadratic Form

Let f(x, y) = ax2 + 2bxy + cy2 which is equal to

f(x, y) =
[
x y

]
.

[
a b
b a

]
.

[
x
y

]
.

Here,

A =

[
a b
b a

]
is the symmetric matrix of the quadratic form. The determinant∣∣∣∣a b

b a

∣∣∣∣ = ac− b2

53

is called the discriminant of f . It can be easily seen that

ax2 + 2bxy + cy2 = a

(
ax+

b

a
y

)2

+
ac− b2

a
y2.

Let us use the notation D1 = a, D2 = ac− b2. Actually D1 and D2 are leading principal minors of A. Note
that there exists one more principal (non leading) minor (of degree 1) D

′
1 = c. Then

f(x, y) = D1

(
ax+

b

a
y

)2

+
D2

D1
y2.

From this expression we obtain:

1. If D1 > 0 and D2 > 0, then the form x2 + y2 type, so it is positive definite;

2. If D1 < 0 and D2 > 0, then the form −x2 − y2 type, so it is negative definite;

3. If D1 > 0 and D2 < 0, then the form x2 − y2 type, so it is indefinite; If D1 < 0 and D2 > 0, then the
form −x2 + y2 type, so it is also indefinite.

Thus, if D2 < 0, then the form is indefinite.

Semidefiniteness depends not only on leading principal minors D1, D2 but also on all principal minors, in
this case on D

′
1 = c too.

4. If D1 ≥ 0, D
′
1 ≥ 0 and D2 ≥ 0, then the form is positive semidefinite.

Note that the condition D
′
1 ≥ 0 is necessary since the form f(x, y) = −y2 with a = 0, b = 0 and

c = −1 for which D1 = a ≥ 0, D2 = ac− b2 ≥ 0, nevertheless the form is not positive semidiefinite.

5. If D1 ≤ 0, D
′
1 ≤ 0 and D2 ≥ 0, then the form is negative semidefinite.

Note that the condition D
′
1 ≤ 0 is necessary since the form f(x, y) = y2 with a = 0, b = 0 and c = 1

for which D1 = a ≤ 0, D2 = ac− b2 ≥ 0, nevertheless the form is not negative semidiefinite.

6.1.3 Definiteness of a 3 Variable Quadratic Form

Let us start with the following example.

Example 6.21. Let f(x, y, z) = x2 + 2y2 − 7z2 − 4xy + 8xz. The symmetric matrix of this quadratic form
is  1 −2 4

−2 2 0
4 0 −7

 .
The leading principal minors of this matrix are

∣∣D1

∣∣ = 1,
∣∣D2

∣∣ =

∣∣∣∣ 1 −2
−2 2

∣∣∣∣ = −2,
∣∣D3

∣∣ =

∣∣∣∣∣∣
1 −2 4
−2 2 0
4 0 −7

∣∣∣∣∣∣ = −18.

Also, on simplification, we get

f(x, y, z) = x2 + 2y2 − 7z2 − 4xy + 8xz = |D1|l21 +
D2

D1
l22 +

D3

D3
l23,

54

where

l1 = x− 2y + 4z,

l2 = y − 4x,

l3 = z

That is, (l1, l2, l3) are linear combinations of (x, y, z). More precisely,l1l2
l3

 =

1 −2 4
0 1 −4
0 0 1

 .
xy
z

 ,
where

P =

1 −2 4
0 1 −4
0 0 1


is a nonsingular matrix (changing variables).

In general if

f(x, y, z) =
[
x y z

]
.

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .
xy
z

 .
The following three determinants

∣∣D1

∣∣ =
∣∣a11∣∣ , ∣∣D1

∣∣ =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ , ∣∣D3

∣∣ =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
are leading principal minors. It is possible to show that, if |D1| 6= 0, |D2| 6= 0, then

f(x, y, z) = |D1|l21 +
|D2|
|D1|

l22 +
|D3|
|D2|

l23,

where l1, l2, l3 are some linear combinations of x, y, z. This is called Lagrange’s Reduction. This implies the
following

1. The form is positive definite iff |D1| > 0, |D2| > 0, |D3| > 0, that is all principal minors are positive.

2. The form is negative definite iff |D1| < 0, |D2| > 0, |D3| < 0, that is all principal minors alternate in
sign starting with negative one.

Example 6.22. Determine the definiteness of the form f(x, y, z) = 3x2 + 2y2 + 3z2 − 2xy − 2yz.

The matrix of our form is  3 −1 0
−1 2 −1
0 −1 3

 .
The leading principal minors are

∣∣D1

∣∣ = 3 > 0,
∣∣D1

∣∣ =

∣∣∣∣ 3 −1
−1 2

∣∣∣∣ = 5 > 0,
∣∣D3

∣∣ =

∣∣∣∣∣∣
3 −1 0
−1 2 −1
0 −1 3

∣∣∣∣∣∣ = 18 > 0,

thus the form is positive definite.

55

The above process can be generalized for n variable, which we omit here. We arrive at the following theorems.

Theorem 6.23. 1. A quadratic form is positive definite if and only if

|D1| > 0, |D2| > 0, · · · , |Dn| > 0,

that is all principal minors are positive;

2. A quadratic form is negative definite if and only if

|D1| < 0, |D2| > 0, |D3| < 0, , |D4| > 0, · · · ,

that is principal minors alternate in sign starting with negative one.

3. If some kth order leading principal minor is nonzero but does not fit either of the above two sign patterns,
then the form is indefinite.

Theorem 6.24. 1. A quadratic form is positive semidefinite if and only if all principal minors are ≥ 0;

2. A quadratic form is negative semidefinite if and only if all principal minors of odd degree are ≤ 0, and
all principal minors of even degree are ≥ 0.

6.1.4 Definiteness and Eigen Values

As we know a symmetric n× n matrix has n real eigenvalues (maybe some multiple).

Theorem 6.25. Given a quadratic form f(x) = xTAx and let c1, . . . , cn be eigen values of A. Then f is

1. positive definite iff ci > 0, i = 1, . . . , n;

2. negative definite iff ci < 0, i = 1, . . . , n;

3. positive semidefinite iff ci ≥ 0, i = 1, . . . , n;

4. negative semidefinite iff ci ≤ 0, i = 1, . . . , n;

6.2 Few Probable Questions

1. Define bilinear forms. Determine the definiteness of the form f(x, y) = x2 + 2xy + y2.

2. Define quadratic forms. For which real numbers k is the quadratic form f(x, y) = kx2 − 6xy + ky2

positive-definite?

56

References
1. Linear Algebra, Friedberg, Insel, Spence

2. Linear Algebra Done Right, Axler

3. Linear Algebra: A Geometric Approach: S. Kumaresan

57

Core Paper

MATC 3.1
Block - II

Marks : 25 (SSE : 20; IA : 5)

Special Functions
Syllabus

• Unit 7 •

Legendre polynomial : Generating relation, Recurrence relations, Rodrigue’s formula, Schlafli’s and Laplace’s
integral formulae, Orthogonal property, Reconstruction of the Legendre differential equations.

• Unit 8 •

Hermite and Laguerre polynomials : Generating relations, Recurrence relations, Rodrigue’s formulae, Or-
thogonal properties, Reconstructions of the respective differential equations.

• Unit 9 •

Chebyshev polynomial : Definition, Series representation, Recurrence relations, Deduction of Chebyshev
differential equation, Orthogonal property.

• Unit 10 •

Bessel’s functions : Generating relation for integral index, Recurrence relations, Representations for the
indices 1

2 and - 1
2 , Bessel’s integral Formulae, Bessel’s function of second kind.

58

Unit 7

Course Structure

• Legendre polynomial : Generating relation, Recurrence relations,

• Rodrigue’s formula, Schlafli’s and Laplace’s integral formulae,

• Orthogonal property, Reconstruction of the Legendre differential equations.

7 Introduction

We are familiar with the method of solving ordinary differential equations via series solutions. In particular,
we have learnt to find solutions of ODE around a regular point and a regular singular point for the given ODE.
We used to employ Frobenius Method to calculate the solution in the latter case. Here, we will study the
solutions of certain standard and ”difficult” ODE which have applications in various fields using the same
method. We will start with Legendre polynomials and explore certain properties of them.

Objectives

After reading this unit, you will be able to

• find the solution of Legendre equations

• define Legendre polynomials

• represent the solutions in a standard manner for further use

• learn the orthogonal properties and Rodrigue’s formula for Legendre polynomials

7.1 Legendre Equations

The differential equation of the form

(1− x2)d
2y

dx2
− 2x

dy

dx
+ n(n+ 1)y = 0 (7.1.1)

where n is a constant is called Legendre’s equation. x = ±1 are the singular points of this equation. Let us
see whether x =∞ is a regular singular point of (7.1.1). Let x = 1

t . Then

dx

dt
= − 1

t2

and hence
dy

dx
=
dy

dt

dt

dx
= −t2dy

dt
.

Also,
d2y

dx2
=

d

dt

(
dy

dt
.
dt

dx

)
dt

dx
= t4

dy

dt2
+ 2t3

dy

dt
.

59

Hence equation (7.1.1) becomes

t2(t2 − 1)
d2y

dt2
+ 2t3

dy

dt
+ n(n+ 1)y = 0. (7.1.2)

t = 0 is clearly a singular point of (7.1.2) which implies that x =∞ is a singular point of (7.1.1). Now, check
that

lim
t→0

2t4

t2(t2 − 1)
= 0 & lim

t→0
t2
n(n+ 1)

t2(t2 − 1)
= −n(n+ 1).

Hence t = 0 is a regular singular point of (7.1.2).

Assume that

y = ts
∞∑
m=0

amt
m

be a solution of (7.1.2) such that a0 6= 0. Then

dy

dt
=
∞∑
m=0

(m+ s)amt
s+m−1 &

d2y

dt2
=
∞∑
m=0

(m+ s)(m+ s− 1)amt
s+m−2.

Then (7.1.2) becomes

∞∑
m=0

{(m+s−2)(m+s−1)am−2−(m+s+n)(m+s−n−1)am}tm−(s+n)(s−n−1)a0−(s+n+1)(s−n)a1t = 0.

Then the indicial equation is

−(s+ n)(s− n− 1)a0 = 0 =⇒ s = −n, n+ 1, since a0 6= 0.

When s = −n, a1 = 0 and when s = n + 1, a1 = 0. Hence a1 = 0 in all case and the general recurrence
relation is

am =
(m+ s− 2)(m+ s− 1)

(m+ s− n)(m+ s− n− 1)
, m ≥ 2.

Since a1 = 0, so a3 = a5 = · · · = a2m+1 = · · · = 0.

Now,

a2 =
s(s+ 1)

(s+ n+ 2)(s− n+ 1)
a0

a4 =
s(s+ 1)(s+ 2)(s+ 3)

(s+ n+ 2)(s+ n+ 4)(s− n+ 1)(s− n+ 3)
a0

...

Let n be a positive integer. Taking m = n+ 1, we have

an+1 =
(n+ s)(n+ s− 1)

(2n+ s+ 1)s
an−1, an+2 =

(n+ s)(n+ s+ 1)

(2n+ s+ 2)(s+ 1)
an.

When s = −n,

a2 = − n(n− 1)

2(2n− 1)
a0, a4 =

n(n− 1)(n− 2)(n− 3)

2.4.(2n− 1)(2n− 3)
a0, . . .

60

and an+1 = an+2 = 0. Then

y = a0

(
xn − n(n− 1)

2(2n− 1)
xn−2 +

n(n− 1)(n− 2)(n− 3)

2.4.(2n− 1)(2n− 3)
xn−4 + · · ·

)
. (7.1.3)

Taking s = n+ 1, we have

y = a0

(
x−n−1 − (n+ 1)(n+ 2)

2(2n+ 3)
x−n−3 +

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

2.4.(2n+ 3)(2n+ 5)
x−n−5 + · · ·

)
. (7.1.4)

When n is a positive integer, the roots of the indicial equation differ by 2n + 1, which is an integer. There
could be problem in evaluating a2n+1 for s = −n. But, an+1 = an+2 = · · · = 0, and hence we don’t face
that problem.

When n = 1, y1 = a0x.
When n = 2, y1 = a0

(
x2 − 1

3

)
.

When n = 3, y1 =
(
x3 − 3

5x
)
.

If we take

a0 =
1.3.5 . . . (2n− 1)

n!
,

then the solution of (7.1.2) is called the Legendre function of first kind or Legendre Polynomial of degree
n and is denoted by Pn(x). Thus, Pn(x) is a solution of (7.1.1). But even if n is a positive integer, solution
(7.1.3) is an infinite series. In this case if we take

a0 =
n!

1.3.5 . . . (2n+ 1)
,

then solution (7.1.3) is denoted by Qn(x) and is called the Legendre function of second kind. Qn(x) is not a
polynomial and it is linearly independent from Pn(x) and we get the general solution of (7.1.1) as

y = APn(x) +BQn(x).

Definition 7.1. Legendre Polynomial of degree n is defined as

Pn(x) =
1.3.5 . . . (2n− 1)

n!

(
xn − n(n− 1)

2(2n− 1)
xn−2 +

n(n− 1)(n− 2)(n− 3)

2.4.(2n− 1)(2n− 3)
xn−4 + · · ·

)
(7.1.5)

The general term of this polynomial is

(−1)r
n(n− 1)(n− 2) . . . (n− 2r + 1)

2.4 . . . 2r(2n− 1)(2n− 3) . . . (2n− 2r + 1)

1.3.5 . . . (2n− 1)

n!
xn−2r (7.1.6)

Now,

1.3.5 . . . (2n− 1) =
1.2.3. . . . (2n)

2.4. . . . (2n)
=

(2n)!

2n.n!
.

Also,

n(n− 1)(n− 2) . . . (n− 2r + 1) =
n!

(n− 2r)!
.

2.4. . . . (2r) = 2r.r!.

And

(2n− 1)(2n− 3) . . . (2n− 2r + 1) =
(2n)!(n− r)!

2r.n!(2n− 2r)!
.

61

So, using these things, (7.1.6) becomes

(−1)r
(2n− 2r)!

2nr!(n− 2r)!(n− r)!
xn−2r.

(7.1.5) is a polynomial of degree n. Hence n − 2r ≥ 0 or 1 according as n is even or odd, that is, r ≤
[
n
2

]
.

Hence, Legendre polynomial of degree n is given by

Pn(x) =

[n2]∑
r=0

(−1)r
(2n− 2r)!

2nr!(n− 2r)!(n− r)!
xn−2r.

7.1.1 Determination of few Legendre Polynomials

For n = 0, we have

P0(x) = (−1)0
(2.0− 2.0)!

200!0!0!
= 1.

Similarly, putting n = 1, 2, 3, 4 we get

P1(x) = x

P2(x) =
3

2
x2 − 1

2
.

P3(x) =
5

3
x3 − 3

2
x.

P4(x) =
35

8
x4 − 15

4
x2 +

3

8
.

7.1.2 Generating Function for Legendre Polynomial

Theorem 7.2. The function
w(x, z) = (1− 2xz + z2)−1/2

is the generating function for Legendre polynomials, that is,

w(x, z) =

∞∑
n=0

Pn(x).zn,

holds for sufficiently small values of |z|.

Proof. Expanding (1− 2xz + z2)−1/2, we get,

w(x, z) = (1− a)−1/2 taking a = 2xz − z2

= 1 +
a

2
+

(−1/2)(−1/2− 1)

2!
a2 +

(−1/2)(−1/2− 1)(−1/2− 2)

3!
a3 + · · ·

= 1− 2xz − z2

2!
+

3

8
(4x2z2 + z4 − 4xz3) +

15

48
(8x3z3 − z6 − 12x2z4 + 6xz5) + · · ·

= 1− x.z +

(
3

2
x2 − 1

2

)
z2 +

(
5

2
x3 − 3

2
x

)
z3 + · · ·

Now, we know that,

Pn(x) =

[n2]∑
r=0

(−1)r
(2n− 2r)!

2nr!(n− 2r)!(n− r)!
xn−2r.

62

Also,

(1− a)−1/2 = 1 +
a

2
+

(−1/2)(−1/2− 1)

2!
a2 +

(−1/2)(−1/2− 1)(−1/2− 2)

3!
a3 + · · ·

= 1 +
a

2
+

1.3

22.2!
a2 +

1.3.5

23.3!
a3 + · · ·

Thus, the kth term is
1.3.5 . . . (2k − 1)

k!.2k
ak.

Thus, we get

w(x, z) =
∞∑
k=0

1.3.5 . . . (2k − 1)

k!.2k
(2xz − z2)k.

Now,

1.3.5 . . . (2k − 1) =
(2k)!

2kk!
.

Thus,

w(x, z) =

∞∑
k=0

(2k)!

22k(k!)2
(2xz − z2)k

=
∞∑
k=0

(2k)!

22k(k!)2

k∑
s=0

(
k

s

)
(2xz)k(−z2)k−s

=
∞∑
k=0

(2k)!

22k(k!)2

k∑
s=0

(
k

s

)
(2x)k(−1)k−sz2k−s

=
∞∑
k=0

∞∑
s=0

(−1)k−s
(2k)!

22k(k!)2
k!

s!(k − s)!
(2x)sz2k−s.

Consider the portion (k − s)!, where s varies from 0 to k. If s = k + 1, (k − s)! = (−1)! = ∞. Similarly,
for other s > k, (k − s)!→∞ and so, the terms for s > k becomes zero and the summation can be extended
from k to∞. Interchanging the summations, we get

w(x, z) =
∞∑
s=0

∞∑
k=0

(−1)k−s
(2k)!

22k(k!)2
k!

s!(k − s)!
(2x)sz2k−s.

When k = 0, 1, . . . , (s−1), we get (k−s)! =∞. And when k = s, (k−2)! = 0! = 1. So, we can effectively
start the summation from k = s instead of k = 0 and the equation becomes

w(x, z) =

∞∑
s=0

∞∑
k=s

(−1)k−s
(2k)!

22k(k!)2
k!

s!(k − s)!
(2x)sz2k−s.

Putting k − s = p, and eliminating k, we get

w(x, z) =

∞∑
s=0

∞∑
p=0

(−1)p
(2p+ 2s)!

22p+s(s+ p)!

1

s!p!
xsz2p+s.

63

Put 2p+ s = n and eliminate s. Then since p varies from 0 to∞, s varies from 0 to∞, n varies from 0 to∞.
Now, s ≥ 0. So, n− 2p ≥ 0 which implies that p ≤

[
n
2

]
. Since p is an integer, p ≤

[
n
2

]
. So,

w(x, z) =

∞∑
n=0

[n2]∑
p=0

(−1)p
(2n− 2p)!

2n(n− p)!
1

(n− 2p)!p!
xn−2pzn

=

∞∑
n=0

zn
[n2]∑
p=0

(−1)p
(2n− 2p)!

2n(n− p)!
1

(n− 2p)!p!
xn−2p

=

∞∑
n=0

Pn(x)zn.

7.1.3 Recurrence Relations for Legendre Polynomials

Here, we will do certain recurrence relations related to Legendre polynomials.

1. We have, for n = 0, 1, 2, . . . ,

P
′
n+1(x)− 2xPn(x) + Pn−1(x)− Pn(x) = 0.

Proof. We have

w(x, z) = (1− 2xz + z2)−1/2 =
∞∑
n=0

znPn(x).

Taking logarithm on both sides and then differentiating with respect to x, we get

d

dx
[ln((1− 2xz + z2)−1/2)] =

d

dx

[
ln

(∞∑
n=0

znPn(x)

)]

or,
1

2

2z

1− 2xz + z2
=

∑∞
n=0 z

nP
′
n(x)∑∞

n=0 z
nPn(x)

or, (1− 2xz + z2)

∞∑
n=0

znP
′
n(x) = z

∞∑
n=0

znPn(x)

Equating the coefficients of zn on both sides, we get

P
′
n(x)− 2xP

′
n−1(x) + P

′
n−2(x) = Pn−1(x).

Replacing n by n+ 1, we get,

P
′
n+1(x)− 2xPn(x) + Pn−1(x)− Pn(x) = 0.

2. (n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0, for n = 0, 1, 2, . . .

64

Proof. We have

w(x, z) = (1− 2xz + z2)−1/2 =
∞∑
n=0

znPn(x).

Taking logarithm on both sides and then differentiating with respect to z, we get

x− z
1− 2xz + z2

=

∑∞
n=1 nPn(x)zn−1∑∞
n=0 z

nPn(x)

or, (x− z)
∞∑
n=0

znPn(x) = (1− 2xz + z2)
∞∑
n=1

nPn(x)zn−1

= (1− 2xz + z2)
∞∑
n=0

(n+ 1)Pn+1(x)zn.

Equating coefficients of zn on both sides, we get,

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0.

3. nPn(x) = xP
′
n(x)− P ′n−1(x), for n = 0, 1, 2, . . .

Proof. We have

(1− 2xz + z2)−1/2 =
∞∑
n=0

znPn(x). (7.1.7)

Differentiating with respect to z, we get,

x− z
(1− 2xz + z2)3/2

=
∞∑
n=1

nPn(x)zn−1 (7.1.8)

Again, differentiating (7.1.7) with respect to x, we get,

z

(1− 2xz + z2)3/2
=
∞∑
n=0

P
′
n(x)zn (7.1.9)

By (7.1.8)×z− (7.1.9)×(x− z), we get

(x− z)
∞∑
n=0

P
′
n(x)zn =

∞∑
n=1

nPn(x)zn.

Equating the coefficients of zn on both sides, we get the required result.

4. (2n+ 1)Pn(x) = P
′
n+1(x)− P ′n−1(x).

Proof. We have, (n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0 which gives

(2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x).

Differentiating both sides with respect to x, we get,

(2n+ 1)Pn(x) + (2n+ 1)xP
′
n(x) = (n+ 1)P

′
n+1(x) + nP

′
n−1(x).

From the previous relation 3, we get xP
′
n(x) = nPn(x) +P

′
n+1. Hence the previous equation gives the

desired result.

65

Exercise 7.3. 1. Prove that
∫ 1
−1 Pn(x)dx = 2, if n = 0 and

∫ 1
−1 Pn(x)dx = 0, if n ≥ 1.

2. Prove the following:

(a) (n+ 1)Pn(x) = P
′
n+1(x)− xP ′n(x).

(b) (1− x2)P ′n(x) = n(Pn−1(x)− xPn(x)).

(c) (1− x2)P ′n(x) = (n+ 1)(xPn(x)− Pn+1(x)).

3. Show that Pn(x) is a solution of Legendre equation of order n.

7.1.4 Rodrigue’s Formula

Instead of using the Recurrence relations for the coefficients in the Legendre polynomial, it is easier to use the
Rodrigue’s Formula.

Legendre Polynomials satisfy the following Rodrigue’s formula

1

2nn!

dny

dxn
(x2 − 1)n = Pn(x).

To prove the above result, we find

(x2 − 1)n =
n∑
r=0

(
n

r

)
(−1)r(x2)n−r.

Now,

RHS =
1

2nn!

dny

dxn
(x2 − 1)n =

1

2nn!

n∑
r=0

(
n

r

)
(−1)r

dny

dxn
(x2)n−r. (7.1.10)

Now,

dny

dxn
(xm) = 0; m < n

=
m!

(m− n)!
xm−n; m ≥ n

So, dny
dxn [x2n−2r] will be non-zero if 2n − 2r ≥ n, that is, if n ≥ 2r, or, r ≤ n

2 . But, r is an integer. So,
r ≤

[
n
2

]
. Now, from (7.1.10), we get

1

2nn!

dny

dxn
(x2 − 1)n =

1

2nn!

[n2]∑
r=0

(
n

r

)
(−1)r

(2n− 2r)!

(n− 2r)!
xn−2r

=

[n2]∑
r=0

(−1)r
(2n− 2r)!

2n(n− 2r)!(n− r)!r!
xn−2r

= Pn(x) = LHS

66

7.2 Orthogonal Property

The Legendre polynomials are orthogonal in the interval [−1, 1] which gives∫ 1

−1
Pm(x)Pn(x)dx = 0, m 6= n

=
2

2m+ 1
, m = n

To prove the orthogonality of Pn(x), we will consider two cases, viz., m = n and m 6= n. Let us start with
the case m 6= n.

CaseI: Legendre equation of order m is

(1− x2)d
2y

dx2
− 2x

dy

dx
+m(m+ 1)y = 0.

Pm(x) is a solution of the above equation. So,

(1− x2)P ′′m(x)− 2xP
′
m(x) +m(m+ 1)Pm(x) = 0. (7.2.1)

Also, Pn(x) is a solution of Legendre equation of order n. So,

(1− x2)P ′′n (x)− 2xP
′
n(x) +m(m+ 1)Pn(x) = 0. (7.2.2)

Multiplying (7.2.1) by Pn(x) and (7.2.2) by Pm(x) and subtracting, we get

(1− x2)[P ′′m(x)Pn(x)− P ′′n (x)Pm(x)]−
2x[P

′
m(x)Pn(x)− P ′n(x)Pm(x)] + [m(m+ 1)− n(n+ 1)]Pm(x)Pn(x) = 0

or
dy

dx
[(1− x2){P ′m(x)Pn(x)− P ′n(x)Pm(x)}] + [m(m+ 1)− n(n+ 1)]Pm(x)Pn(x) = 0

Integrating both sides with respect to x from −1 to 1, we get∫ 1

−1

d

dx
[(1− x2){P ′m(x)Pn(x)− P ′n(x)Pm(x)}]dx = (n−m)(n+m+ 1)

∫ 1

−1
Pm(x)Pn(x)dx

or, (n−m)(n+m+ 1)

∫ 1

−1
Pm(x)Pn(x)dx = [(1− x2){P ′m(x)Pn(x)− P ′n(x)Pm(x)}]1−1

= 0

or,
∫ 1

−1
Pm(x)Pn(x)dx = 0.

CaseII: When m = n, we have

(1− 2xz + z2)−1/2 =
∞∑
n=0

znPn(x). (7.2.3)

Replacing n by m in (7.2.3), we have

(1− 2xz + z2)−1/2 =
∞∑
m=0

zmPm(x). (7.2.4)

67

Multiplying (7.2.3) and (7.2.4), we get

(1− 2xz + z2)−1 =
∞∑
m=0

∞∑
n=0

zn+mPn(x)Pm(x).

Integrating both sides with respect to x from −1 to 1, we get∫ 1

−1
(1− 2xz + z2)−1dx =

∫ 1

−1

∞∑
m=0

∞∑
n=0

zn+mPn(x)Pm(x)dx

=
∞∑
m=0

∞∑
n=0

∫ 1

−1
Pn(x)Pm(x)zn+mdx

=
∞∑
n=0

∫ 1

−1
Pn(x)Pn(x)z2ndx

Now, ∫ 1

−1
(1− 2xz + z2)−1dx =

1

z
ln

(
1 + z

1− z

)
.

Hence,
∞∑
n=0

∫ 1

−1
Pn(x)Pn(x)z2ndx =

2

z

{
z +

z3

3
+
z5

5
+ · · ·

}
=

∞∑
n=0

2z2n

2n+ 1
.

Hence, Equating the like coefficients on both sides, we get∫ 1

−1
Pn(x)Pn(x)z2ndx =

2

2n+ 1
.

7.3 Few Probable Questions

1. Prove that the Legendre polynomials are orthogonal.

2. State and prove the Rodrigue’s formula.

3. Prove that for any non-negative integer n, we have P
′
n+1(x)− 2xPn(x) + P

′
n−1(x)− Pn(x) = 0.

4. Prove the following:

(a) Pn(1) = 1, Pn(−1) = (−1)n.

(b) P
′
n(1) = n(n+1)

2 , and P
′
n(−1) = (−1)n−1 n(n+1)

2

(c) Pn(−x) = (−1)nPn(x). Hence deduce that Pn(−1) = (−1)n.

68

Unit 8

Course Structure

• Hermite and Laguerre polynomials : Generating relations, Recurrence relations,

• Rodrigue’s formulae, Orthogonal properties,

• Reconstructions of the respective differential equations.

8 Introduction

In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence. These arise in
probability, combinatorics, numerical analysis, systems theory, random matrix theory and many more. Her-
mite polynomials were defined by Pierre-Simon Laplace in 1810, though in scarcely recognizable form, and
studied in detail by Pafnuty Chebyshev in 1859. Chebyshev’s work was overlooked, and they were named
later after Charles Hermite, who wrote on the polynomials in 1864, describing them as new. They were conse-
quently not new, although Hermite was the first to define the multidimensional polynomials in his later 1865
publications. And the Laguerre polynomials arise in quantum mechanics, in the radial part of the solution of
the Schrödinger equation for a one-electron atom. They also describe the static Wigner functions of oscillator
systems in quantum mechanics in phase space. They further enter in the quantum mechanics of the Morse
potential and of the 3D isotropic harmonic oscillator. The generalized Laguerre polynomials are related to the
Hermite polynomials. This unit is dedicated to the study of Hermite as well as Laguerre polynomials.

Objectives

After reading this unit, you will be able to

• solve the Hermite’s equation and find the general structure of Hermite’s polynomial

• define a general Laguerre polynomial

• derive the Rodrigue’s formula for both Hermite and Laguerre polynomials

• establish the orthogonality of Hermite and Laguerre polynomials

• find a generating function for Laguerre and Hermite’s polynomials

• learn some recurrence relations relating to both

• solve certain problems relating to both

69

8.1 Solution of Hermite’s Equations

The Hermite’s equation is
d2y

dx2
− 2x

dy

dx
+ 2ny = 0 (8.1.1)

where, n is a constant. We solve it by Frobenius Method, about x = 0. Assume that

y =
∞∑
m=0

amx
s+m

be the solution of (8.1.1), where a0 6= 0 and s is to be determined. Then

dy

dx
=

∞∑
m=0

(s+m)amx
s+m−1

d2

dx2
=

∞∑
m=0

(s+m)(s+m− 1)amx
s+m−2

Thus, equation (8.1.1) becomes

∞∑
m=0

(s+m)(s+m− 1)amx
s+m−2 − 2

∞∑
m=0

(s+m)amx
s+m + 2n

∞∑
m=0

amx
s+m = 0

or,
∞∑
m=0

(s+m)(s+m− 1)amx
s+m−2 − 2

∞∑
m=0

(s+m− n)amx
s+m = 0

or,
∞∑
m=0

(s+m)(s+m− 1)amx
m − 2

∞∑
m=0

(s+m− n)amx
m+2 = 0

or,
∞∑
m=0

(s+m)(s+m− 1)amx
m − 2

∞∑
m=2

(s+m− n− 2)am−2x
m = 0

or,
∞∑
m=2

{(s+m)(s+m− 1)am − 2(s+m− n− 2)am−2}xm + s(s− 1)a0 + s(s+ 1)a1x = 0

The indicial equation is
s(s− 1)a0 = 0 =⇒ s = 0, 1.

When s = 0, a1 is indeterminate. When s = 1, a1 = 0. The general recurrance relation is

am =
2(s+m− n− 2)

(s+m)(s+m− 1)
am−2, m ≥ 2

For s = 0, we have

am = 2
m− n− 2

m(m− 1)
am−2, m ≥ 2.

70

Putting m = 2, 4, . . . , 2m, . . ., we get

a2 =
(−1)121.na0

2!

a4 =
(−1)2.22n(n− 2)a0

4!

a6 =
(−1)3.23n(n− 2)(n− 4)a0

6!
...

a2m =
(−1)m.2mn(n− 2)(n− 4) . . . (n− 2m+ 2)

(2m)!
a0

Next, put m = 3, 5, . . . , 2m+ 1, . . ., we get

a3 =
(−1).2.(n− 1)

3!
a1

a5 =
(−1)2.22(n− 1)(n− 3)

5!
a1

...

a2m+1 =
(−1)m.2m(n− 1)(n− 3) . . . (n− 2m+ 1)

(2m+ 1)!
a1

Hence, the series solution gives

y = a0

[
1 +

(−1)121.n

2!
x2 + · · ·+ (−1)m.2mn(n− 2)(n− 4) . . . (n− 2m+ 2)

(2m)!
x2m + · · ·

]
+

a1

[
x+

(−1).2.(n− 1)

3!
x3 + · · ·+ (−1)m.2m(n− 1)(n− 3) . . . (n− 2m+ 1)

(2m+ 1)!
x2m+1 + · · ·

]
which is of the form a0y1(x) + a1y2(x). It is observed that in the case when the constant represents a positive
integer, then one of the solutions y1 or y2 reduces to a polynomial according as n is even or odd.

When n = 2, y1 = 1− 2x2.
When n = 4, y1 = 1− 4x2 + 4/3x4. and so on.
If n = 1, y2 = x.
If n = 3, y2 = x− 2/3x3 and so on.

Thus, when n is a positive integer, one solution of Hermite’s equation will be a polynomial and the other
solution will be an infinite power series. We try to find the form of the polynomial solution which is as follows.

y = anx
n + an−2x

n−2 + · · ·+ a1x, when n is odd

= anx
n + an−2x

n−2 + · · ·+ a0, when n is even
(8.1.2)

Here, we are going to have series solution of Hermite’s equation in decreasing powers of x. While solving
Hermite’s equation by Frobenius method, we got the recurrence relation when s = 0, as

am = 2
m− n− 2

m(m− 1)
am−2, m ≥ 2.

71

Here, we would express all the coefficients in terms of an instead of a1 or a0. We have from the previous
equation,

am−2 =
m(m− 1)

2(m− n− 2)
am.

Replacing m by m+ 2, we get

am =
(m+ 1)(m+ 2)

2(m− n)
am+2. (8.1.3)

Put m = n− 2. Then we get

an−2 = (−1)
n(n− 1)

2.2
an.

and putting m = n− 4, we get

an−4 = (−1)2
n(n− 1)(n− 2)(n− 3)

2.2.2.4
an.

Putting these in (8.1.2), we get,

y = an

[
xn − n(n− 1)

2.2
xn−2 + · · ·+ (−1)r

n(n− 1) . . . (n− 2r + 1)

2r.2.4 . . . 2r
xn−2r + · · ·

]
When n is even, n−2r ≥ 0 which gives r ≤ n/2. And when n is odd, n−2r ≥ 1 which gives r ≤ (n−1)/2.
Thus, r vanishes from 0 to n/2 or (n − 1)/2 according as n is even or odd, which implies that r varies from
0 to [n/2]. Hence, the general form of the polynomial solution to (8.1.1) is

y = an

[n2]∑
r=0

(−1)r
n(n− 1) . . . (n− 2r + 1)

22r.r!
xn−2r.

Taking an = 2n, and denoting the solution by Hn(x), we obtain a standard solution to (8.1.1) known as the
Hermite’s polynomial of order n.

Definition 8.1. Hermite’s polynomial of order n is denoted and defined by

Hn(x) =

[n2]∑
r=0

(−1)r
n!

r!(n− 2r)!
(2x)n−2r.

Exercise 8.2. Compute some of the first Hermite’s polynomials.

8.1.1 Generating Function for Hermite’s Polynomial

We have,

e2tx−t
2

=

∞∑
n=0

tn

n!
Hn(x).

Each term in the expansion of e2tx−t
2

gives a Hermite’s polynomial. In fact, coefficient of tn/n! gives a Her-
mite’s polynomial of order n. That is why e2tx−t

2
is called the generating function for Hermite’s polynomial.

72

We have,

e2tx−t
2

= e2tx e−t
2

=

∞∑
s=0

(2tx)s

s!

∞∑
r=0

(−t2)r

r!

=
∞∑
s=0

∞∑
r=0

(−1)r
ts+2r

r!s!
(2x)s.

Putting s+ 2r = n and eliminating s we get

e2tx−t
2

=
∞∑
n=0

[n2]∑
r=0

(−1)r
tn

r!(n− 2r)!
(2x)n−2r

since both r and s varies from 0 to∞, so n varies from 0 to∞ and n− 2r ≥ 0 which gives r ≤ n/2 and we
arrive at the same conclusion as we had arrived in case of Legendre’s polynomial. Thus, we have

e2tx−t
2

=
∞∑
n=0


[n2]∑
r=0

(−1)r
n!

r!(n− 2r)!
(2x)n−2r

 tn

n!
=
∞∑
n=0

tn

n!
Hn(x).

Exercise 8.3. Verify the fact that e2tx−t
2

is indeed the generating function for Hn(x) by expanding the ex-
ponential function and showing that the coefficients of the individual terms tn/n! are indeed the Hermite’s
polynomials.

8.1.2 Rodrogue’s Formula for Hermite’s Polynomial

Hermite’s polynomials satisfy the following formula which is known as the Rodrigue’s formula for Hermite’s
polynomials

Hn(x) = (−1)n ex
2 dn

dxn
(e−x

2
).

The function e2tx−t
2

is analytic in any neighbourhood of the point t = 0. Thus, for any fixed value of x it has
a Taylor series expansion of the form

e2tx−t
2

=
∞∑
n=0

tn

n!

[
∂n

∂tn

(
e2tx−t

2
)]

t=0

. (8.1.4)

Now, we have
∂n

∂tn

(
e2tx−t

2
)

= ex
2 ∂n

∂tn

(
e−(x−t)

2
)
.

On calculation, we get

∂

∂t

(
e−(x−t)

2
)

= −2(x− t) e−(x−t)
2

= − ∂

∂x

(
e−(x−t)

2
)
.

By repeated use of this, we get

∂n

∂tn

(
e−(x−t)

2
)

= (−1)n
∂n

∂xn

(
e−(x−t)

2
)

73

Thus, we get [
∂n

∂tn

(
e2tx−t

2
)]

t=0

= ex
2
(−1)n

dn

dxn

(
e−x

2
)
.

Using this result in (8.1.4), we get

e2tx−t
2

= ex
2
∞∑
n=0

(−1)n
dn

dxn

(
e−x

2
) tn
n!
.

From the formula of generating function of Hermite’s polynomial and equating the coefficients of tn/n! on
both sides, we get the required result.

Exercise 8.4. 1. Verify Rodrigue’s formula for first three Hermite’s polynomials.

2. Find Hermite’s polynomials upto order 6 by using Rodrigue’s formula.

3. Prove that H2n(0) = (−1)n (2n)!
n! and H2n+1(0) = 0.

8.1.3 Recurrence Relations for Hermite’s Polynomials

We have

1. H
′
n(x) = 2nHn−1(x), for n ≥ 1 and H

′
0(0) = 0.

Proof. We have

e2tx−t
2

=

∞∑
n=0

Hn(x)
tn

n!
.

Differentiating both sides with respect to x, we have

∞∑
n=0

H
′
n(x)

tn

n!
= 2t. e2tx−t

2
= 2t

∞∑
n=0

Hn(x)
tn

n!

=
∞∑
n=0

2Hn(x)
tn+1

n!

=

∞∑
n=1

2nHn−1(x)
tn

n!

Equating the power of t0 on both sides, we get H
′
0(0) = 0 and equating the coefficients of tn/n! on

both sides for n ≥ 1, we get the desired result.

2. Hn+1(x) = 2xHn(x)− 2nHn−1(x), for n ≥ 1 and H1(x) = 2xH0(x).

Proof. We have
∞∑
n=0

Hn(x)
tn

n!
= e2tx−t

2
.

74

Differentiating both sides with respect to t, we get

2(x− t). e2tx−t2 =
∞∑
n=0

nHn(x)
tn−1

n!

or, 2(x− t)
∞∑
n=0

Hn(x)
tn

n!
=

∞∑
n=1

Hn(x)
tn−1

(n− 1)!
=

∞∑
n=0

Hn+1(x)
tn

n!

or, 2x
∞∑
n=0

Hn(x)
tn

n!
= 2

∞∑
n=0

Hn(x)
tn+1

n!
+
∞∑
n=0

Hn+1(x)
tn

n!

Equating the coefficients of t0 and tn/n! on both sides, we get the desired results.

3. H
′
n(x) = 2xHn(x)−Hn+1(x).

Proof. Left as an exercise.

4. H
′′
n(x)− 2xH

′
n(x) + 2nHn(x) = 0.

Proof. Left as an exercise.

8.1.4 Orthogonality Properties

We have ∫ ∞
−∞

e−x
2
Hm(x)Hn(x)dx = 0, m 6= n

=
√
π2n.n!, m = n

This shows that the Hermite’s polynomials are orthogonal in the interval (−∞,∞).

We have

e2tx−t
2

=
∞∑
n=0

Hn(x)
tn

n!
.

Replacing n by m and t by s and multiplying the resulting equation with the above equation we get,

∞∑
m=0

∞∑
n=0

Hn(x)Hm(x)

n!.m!
tnsm = e2tx−t

2=2sx−s2 .

Multiplying both sides by e−x
2

and integrating with respect to x from −∞ to∞, we get∫ ∞
−∞

(∞∑
n=0

∞∑
m=0

e−x
2
Hn(x)Hm(x)

n!.m!

)
dx.tnsm =

∫ ∞
−∞

e−x
2+2x(t+s)−(t2+s2)

or,
∞∑
n=0

∞∑
m=0

(∫ ∞
−∞

e−x
2
Hn(x)Hm(x)dx

)
tn.sm

n!.m!
= e2ts

∫ ∞
−∞

e−(x−(t+s))
2
dx (8.1.5)

75

Putting x− (t+ s) = y, we get, dx = dy. Thus,

e2ts
∫ ∞
−∞

e−y
2

= e2ts
√
π, using gamma integral

=

∞∑
n=0

2n.tn.sn

n!

√
π.

Thus, (8.1.5) becomes

∞∑
n=0

∞∑
m=0

(∫ ∞
−∞

e−x
2
Hn(x)Hm(x)dx

)
tn.sm

n!.m!
=
√
π
∞∑
n=0

2n.tn.sn

n!
(8.1.6)

We note that the powers of t and s are always equal in each term of the RHS of (8.1.6). So when m 6= n,
equating the coefficients of tnsm on both sides of (8.1.6), we have∫ ∞

−∞

e−x
2
Hn(x)Hm(x)

n!m!
dx = 0,

and when m = n, we have ∫ ∞
−∞

e−x
2
Hn(x)Hn(x)

n!
dx = 2n.n!

√
π.

Hence, we are done.

Exercise 8.5. 1. Prove that∫ ∞
−∞

x2 e−x
2
Hn(x)Hn(x)dx =

√
π2n.n!

(
n+

1

2

)
.

8.2 Laguerre Polynomials

The Laguerre equation is of the form

x
d2y

dx2
+ (1− x)

dy

dx
+ ny = 0 (8.2.1)

where n is a constant. When n is a positive integer, then the solution of (8.2.1) is called the Laguerre polyno-
mial which is of the form

Ln(x) =

n∑
r=0

(−1)r

r!

(
n

r

)
xr.

Exercise 8.6. Compute the first few Laguerre polynomials using the summation formula.

76

8.2.1 Generating Function for Laguerre Polynomials

The generating function for the Laguerre polynomials is

g(x, t) =
e−

xt
1−t

1− t
=

∞∑
n=0

tnLn(x)

since each term of the summation contains a Laguerre polynomial.

We have,

e−
xt
1−t

1− t
=

1

1− t

∞∑
r=0

(
−xt
1− t

)r 1

r!
=

∞∑
r=0

(−1)r

r!
xrtr(1− t)−r−1

=

∞∑
r=0

(−1)r

r!
xrtr

∞∑
s=0

(r + s)!

r!s!
ts

=
∞∑
r=0

∞∑
s=0

(−1)r
(r + s)!

(r!)2s!
xrtr+s.

We put r + s = n, that is, s = n− r, where r is fixed. Then the coefficients of tn is

(−1)r
n!

(r!)2(n− r)!
xr

Now, s ≥ 0 implies r ≤ n, giving all possible values of r. Hence all the coefficients of tn is given by

n∑
r=0

(−1)r
n!

(r!)2(n− r)!
xr = Ln(x).

Hence the result.

Exercise 8.7. Prove that
∫∞
0 e−st Ln(t)dt = 1/s(1− 1/s)n.

8.2.2 Rodrigue’s Formula for Laguerre polynomial

The Rodrigue’s representation for Laguerre polynomials is

Ln(x) =
ex

n!

dn

dxn
(xn e−x).

By the Leibnitz’s theorem, we have

D(uv) =
dn

dxn
(uv)

= Dnu.v +

(
n

1

)
Dn−1u.Dv + · · ·+

(
n

r

)
Dn−ru.Drv + · · ·+ uDnv.

Using this, we get
ex

n!

dn

dxn
(xn e−x) =

ex

n!

n∑
r=0

(
n

r

)
Dn−rxnDr e−x .

77

We have
Dnxm =

m!

(m− n)!
xm−n and Dn eax = an eax .

Thus, using these in the previous equation, we get

ex

n!

dn

dxn
(xn e−x) =

ex

n!

n∑
r=0

(
n

r

)
n!

(n− (n− r))!
xn−(n−r)(−1)r e−x

=
n∑
r=0

ex

n!

n!

r!(n− r)!
.
n!

r!
.xr.(−1)r e−x = Ln(x).

Exercise 8.8. 1. Verify the Rodrigue’s formula for first four positive integers.

8.2.3 Recurrence Relations

The Laguerre polynomials satisfy the recurrence relations

1. (n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x).

Proof. We have, g(x, t) = e−
xt
1−t

1−t =
∑∞

n=0 t
nLn(x). Differentiating both sides with respect to t, we

get
∞∑
n=0

tn−1nLn(x) =
1

(1− t)2
e−

xt
1−t − 1

(1− t)
e−

xt
1−t .

x

(1− t)2

=
1

1− t

∞∑
n=0

tnLn(x)− x

(1− t)2
∞∑
n=0

tnLn(x).

Multiplying both sides by (1− t2) and simplifying, we obtain
∞∑
n=0

tn−1nLn(x)−2

∞∑
n=0

tnnLn(x)+

∞∑
n=0

tn+1nLn(x) =

∞∑
n=0

tnLn(x)−
∞∑
n=0

tn+1Ln(x)−x
∞∑
n=0

tnLn(x).

Equating the coefficients of tn on both sides, we get the desired result.

2. xL
′
n(x) = nLn(x)− nLn−1(x).

Proof. We have,

g(x, t) =
e−

xt
1−t

1− t
=

∞∑
n=0

tnLn(x).

Differentiating both sides with respect to x, and using the generating function, we get
∞∑
n=0

tnL
′
n(x) =

1

1− t
e−

xt
1−t .

−t
1− t

=
−t

1− t

∞∑
n=0

tnLn(x).

Multiplying both sides by (1− t) and simplifying, we get
∞∑
n=0

tnL
′
n(x)−

∞∑
n=0

tn+1L
′
n(x) =

∞∑
n=0

tn+1Ln(x).

Equating the coefficients of tn on both sides, we get the desired result.

78

3. L
′
n(x) = −

∑n−1
r=0 Lr(x).

Proof. We have,

g(x, t) =
e−

xt
1−t

1− t
=
∞∑
n=0

tnLn(x).

Differentiating both sides with respect to x, and using the generating function, we get
∞∑
n=0

tnL
′
n(x) =

1

1− t
e−

xt
1−t .

−t
1− t

=
−t

1− t

∞∑
r=0

trLr(x) = −t
∞∑
s=0

ts
∞∑
r=0

trLr(x).

Thus,
∞∑
n=0

tnL
′
n(x) =

∞∑
r=0

∞∑
s=0

tr+s+1Lr(x).

The coefficients of tn on the LHS is clearly L
′
n(x). We will find the coefficients of tn on the RHS. Let

r + s+ 1 = n, so that s = n− r − 1. Hence, for a fixed value of r, the coefficient of tn on the RHS of
the above equation is −Lr(x). But, s ≥ 0, which implies that n − r − 1 ≥ 0 =⇒ r ≤ n − 1, which
gives all the values of r for which −Lr(x) is the coefficient of tn. Hence the total coefficients of tn

on the RHS is given by −
∑n−1

r=0 Lr(x) and equating the coefficients on both sides, we get the desired
result.

Exercise 8.9. 1. Deduce the second recurrence relation from the first.

2. Prove that

(a) L
′
n(x) = n[L

′
n−1(x)− Ln−1(x)].

(b) xLn(x) = nLn(x)− n2Ln−1(x).

8.2.4 Orthogonality Properties

If Lm(x) and Ln(x) are Laguerre polynomials (m,n being positive integers), then∫ ∞
0

e−x Ln(x)Lm(x)dx = 0, m 6= n

= 1, m = n.

The generating function for Laguerre polynomial gives

e−
xt
1−t

1− t
=

∞∑
n=0

tnLn(x)

&,
e−

xs
1−s

1− s
=

∞∑
m=0

smLm(x).

Multiplying both the equations we get

∞∑
n=0

∞∑
m=0

sm.tn.Lm(x)Ln(x) =
e−

xs
1−s−

xt
1−t

(1− s)(1− t)

79

Multiplying both sides by e−x and integrating with respect to x from 0 to∞, we get

∞∑
n=0

∞∑
m=0

{∫ ∞
0

e−x Lm(x)Ln(x)dx

}
sm.tn =

1

(1− t)(1− s)

∫ ∞
0

e−x(1+t/(1−t)+s(1−s) dx

=
1

(1− t)(1− s)

∣∣∣∣∣ e−x(1+t/(1−t)+s(1−s)

−(1 + t/(1− t) + s(1− s)

∣∣∣∣∣
∞

0

=
1

1− st
.

Now, we have

(1− st)−1 = 1 + st+ s2t2 + · · · =
∞∑
n=0

sntn.

Using this in the previous equation, we get

∞∑
n=0

∞∑
m=0

{∫ ∞
0

e−x Lm(x)Ln(x)dx

}
sm.tn =

∞∑
n=0

sntn.

Equating the coefficients of tnsm on both sides, we get the desired result.

Exercise 8.10. 1. Prove that
∫∞
x e−y Ln(y)dy = e−x[Ln(x)− Ln−1(x)].

8.3 Few Probable Questions

1. Solve the Hermite’s differential equation and deduce the structure of the Hermite’s polynomial.

2. Establish the Rodrige’s polynomial for Hermite’s polynomial.

3. Establish the Rodrige’s polynomial for Laguerre polynomial.

4. Show that e2xt−t
2

is the generating function for Hermite’s polynomial.

5. Show that e−xt/(1−t) /(1− t) is the generating function for Laguerre polynomial.

6. Establish the orthogonality of Hermite’s polynomials.

7. Establish the orthogonality of Laguerre polynomials.

8. Show that e2tx−t
2

is the generating function for the Hermite’s polynomial. Hence show that for m < n,

dm

dxm
Hm(x) =

2mn!

(n−m)!
Hn−m(x).

80

Unit 9

Course Structure

• Chebyshev polynomial : Definition, Series representation,

• Recurrence relations, Deduction of Chebyshev differential equation,

• Orthogonal property.

9 Introduction

In mathematics the Chebyshev polynomials, named after Pafnuty Chebyshev, are a sequence of orthogonal
polynomials which are related to de Moivre’s formula and which can be defined recursively. Chebyshev
polynomials are important in approximation theory because the roots of the Chebyshev polynomials of the first
kind, which are also called Chebyshev nodes, are used as nodes in polynomial interpolation. The resulting
interpolation polynomial minimizes the problem of Runge’s phenomenon and provides an approximation
that is close to the polynomial of best approximation to a continuous function under the maximum norm.
This approximation leads directly to the method of Clenshaw–Curtis quadrature. We will study about the
Chebyshev polynomials and its properties in this unit.

Objectives

After reading this section, you will be able to

• know the Chebyshev’s equations

• define Chebyshev’s polynomials

• learn the Rodrigue’s formula for Chebyshev’s polynomials

• deduce a generating function for Chebyshev’s polynomials

• learn the orthogonality condition for Chebyshev’s polynomials

• learn the recurrence relations concerning Chebyshev polynomials

• solve various problems related to the above topics

9.1 Chebyshev Polynomials

The Chebyshev differential equation is written as

(1− x2)d
2y

dx2
− xdy

dx
+ n2y = 0, (9.1.1)

81

where |x| < 1 and n is any real number. This equation can be converted to a simpler form using the substitu-
tion x = cos t. Then we have

dx = − sin tdt =⇒ dt

dx
= − 1

sin t
.

Hence,
dy

dx
=
dy

dt

dt

dx
= − 1

sin t

dy

dt
,

and

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dt

dt

dx

(
− 1

sin t

dy

dt

)
= − 1

sin t

d

dt

(
− 1

sin t

dy

dt

)
=

1

sin2 t

[(
−cos t

sin t

)
dy

dt
+
d2y

dt2

]
.

Substituting these in (9.1.1), and simplifying, we get

d2y

dt2
+ n2y = 0,

whose general solution is given by
y(t) = C cos(nt+ a).

For simplicity, we set a = 0. Thus, the general solution of the equation (9.1.1) is given by

y(x) = C cos(n arccosx).

Now, if n is an integer, then the above function is the Chebyshev polynomial of first kind.

Definition 9.1. The Chebyshev polynomial of the first kind is called the function

Tn(x) = cos(n arccosx) =
n

2

[n/2]∑
k=0

(−1)k
(n− k − 1)!

k!(n− 2k)!
(2x)n−2k,

where |x| < 1 and n = 0, 1, 2, . . .

Exercise 9.2. Compute few Chebyshev’s polynomials using the formula given above.

9.2 Recurrence Relations

The Chebyshev’s polynomial follows the following recurrence relations

1. 2xTn(x) = Tn+1(x) + Tn−1(x).

Proof. Putting x = cos t, we have

Tn−1(t) = cos((n− 1) arccosx) = cos((n− 1)t)

Tn+1(t) = cos((n+ 1) arccosx) = cos((n+ 1)t).

Also, we have,

T1(x) = cos(arccosx) = cos(arccos(cos t)) = cos t = x

Tn(x) = cos(n arccosx) = cos(n arccos(cos t)) = cos(nt).

82

Further,

cos((n− 1)t) + cos((n+ 1)t) = 2 cos
(n− 1)t+ (n+ 1)t

2

= 2 cos
2nt

2
cos
−2t

2
= 2 cos(nt) cos t.

Thus, we get
Tn−1(x) + Tn+1 = 2Tn(x)T1(x) = 2xTn(x).

2. (1− x2)T ′n(x) = −nxTn(x) + nTn−1(x).

3. For −1 < x < 1, we have T 2
n(x)− Tn−1(x)Tn+1(x) = 1− x2.

Exercise 9.3. 1. Compute few higher Chebyshev’s polynomials using the first Recurrence relation and
T1(x) = x.

2. Prove that Tn(−x) = (−1)nTn(x). Thus show that Tn(−1) = (−1)n.

3. Show that

Tn(0) = (−1)n, when n is even

= 0, when n is odd.

9.3 Rodrigue’s Formula

The Chebyshev’s polynomial satisfy the following Rodrigue’s formula

Tn(x) =
(−2)nn!

(2n)!

√
1− x2 d

n

dxn
(1− x2)n−1/2.

Exercise 9.4. Verify Rodrigue’s formula for first few Chebyshev’s polynomials.

9.4 Generating Functions

The function
w(x, t) =

2− xt
1− xt+ t2

,

is the generating function for Chebyshev polynomials, that is,

2− xt
1− xt+ t2

=
∞∑
n=0

Tn(x)tn.

83

We have,
1

1− xt+ t2
=
∞∑
k=0

k∑
l=0

(−1)k−l
(

k

k − l

)
xlt2k−l =

∑
k,l

(−1)k−l
(

k

k − l

)
xlt2k−l.

Put m = 2k − l and n = k − l. Then k = m− n and l = m− 2n. Then the above equation changes to∑
m,n

(−1)n
(
m− n
n

)
xm−2ntm.

Now,

(2− xt)
∑
m,n

(−1)n
(
m− n
n

)
xm−2ntm = 2

∑
m,n

(−1)n
(
m− n
n

)
xm−2ntm +

∑
m,n

(−1)n+1

(
m− n
n

)
xm−2n+1tm+1

= 2
∑
m,n

(−1)n
(
m− n
n

)
xm−2ntm +

∑
m,n

(−1)n
(
m− n− 1

n

)
xm−2ntm

=
∑
m,n

(−1)n
{

2

(
m− n
n

)
−
(
m− n− 1

n

)}
xm−2ntm

=
∑
m,n

(−1)n
m

m− n

(
m− n
n

)
xm−2ntm =

∑
m

Tm(x)tm.

9.5 Orthogonality Property

The Chebyshev’s polynomials satisfy the following orthogonal property∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = 0, m 6= n

= π/2, m = n 6= 0

= π, m = n = 0.

9.6 Few Probable Questions

1. Define Chebyshev polynomials. Solve Chebyshev’s equation.

2. Deduce a generating function for Chebyshev polynomials.

84

Unit 10

Course Structure

• Bessel’s functions : Solutions of Bessel’s equations, Generating relation for integral index,

• Recurrence relations, Representations for the indices 1
2 and - 1

2 ,

• Bessel’s integral Formulae, Bessel’s function of second kind.

10 Introduction

The differential equation

x2
d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0 (10.0.1)

where n is a constant, is called a Bessels’s equation whose solution gives the Bessel’s functions. These are
an orthogonal sequence of functions that have many closely related definitions. This unit is dedicated to the
study of Bessel’s functions and its properties.

Objectives

After reading this section, you will be able to

• solve Bessel’s equations by Frobenius method

• deduce the generating functions for integral index

• deduce the recurrence relations for Bessel’s functions

• deduce the orthogonality condition for Bessel’s functions

• solve related problems

10.1 Solution of Bessel’s Equations

To solve the differential equation (10.0.1), we see that x = 0 is a regular singular point of (10.0.1) (Verify!).
We will thus attempt to solve it about x = 0 by Frobenius method. The resulting series solution is valid in a
neighbourhood of x = 0. Let us assume the solution to be

y =

∞∑
m=0

cmx
m+s, where c0 6= 0

and s is to be determined. Thus

dy

dx
=

∞∑
m=0

(m+ s)cmx
m+s−1, &

d2y

dx2
=

∞∑
m=0

(m+ s)(m+ s− 1)cmx
m+s−2

85

Thus, (10.0.1) becomes

∞∑
m=0

(m+ s)(m+ s− 1)cmx
m+s +

∞∑
m=0

(m+ s)cmx
m+s +

∞∑
m=0

cmx
m+s+2 − n2

∞∑
m=0

cmx
m+s = 0

or,
∞∑
m=0

{
(m+ s)(m+ s− 1) + (m+ s)− n2

}
cmx

m+s +
∞∑
m=0

cmx
m+s+2 = 0

or,
∞∑
m=0

(m+ s+ n)(m+ s− n)cmx
m +

∞∑
m=2

cm−2x
m = 0

or,
∞∑
m=2

{(m+ s+ n)(m+ s− n)cm + cm−2}xm + (s+ n)(s− n)c0 + (1 + s+ n)(1 + s− n)c1x = 0

The indicial equation is

(s+ n)(s− n)c0 = 0 =⇒ s = −n, n, since c0 6= 0

and the general recurrence relation is

cm = − 1

(m+ s+ n)(m+ s− n)
cm−2, m ≥ 2.

When s = n, we have (1 + n− n)(1 + n+ n)c1 = 0 which implies c1 = 0 if n 6= −1/2.
When s = −n, we have (1− n− n)(1− n+ n)c1 = 0 which implies c1 = 0 if n 6= 1/2.

CaseI: When n 6= 1/2, then c1 = 0. Then

c2 = − 1

(2 + s+ n)(2 + s− n)
c0

c4 =
1

(2 + s+ n)(4 + s+ n)(2 + s− n)(4 + s− n)
c0

c6 = − 1

(2 + s+ n)(4 + s+ n)(6 + s+ n)(2 + s− n)(4 + s− n)(6 + s− n)
c0

...

c2m = (−1)m
1

(2 + s+ n)(4 + s+ n) . . . (2m+ s+ n)(2 + s− n)(4 + s− n) . . . (2m+ s− n)
c0

and c1 = c3 = c5 = · · · = c2m+1 = · · · = 0. Thus, we get the solution as

y = c0x
s

[
1− 1

(2 + s+ n)(2 + s− n)
x2 + · · ·

]
Putting s = n, we get

y = y1 = c0x
n

[
1− x2

4(n+ 1)
+

x4

4.8.(n+ 1)(n+ 2)
− · · ·

]
. (10.1.1)

Putting s = −n, we get

y = y2 = c
′
0x
−n
[
1− x2

4(1− n)
+

x4

4.8.(1− n)(2− n)
− · · ·

]
. (10.1.2)

86

The particular solution (10.1.1) of (10.0.1), taking

c0 =
1

2nΓ(n+ 1)

is called the Bessel’s function of first kind of order n and denoted by Jn(x), that is,

Jn(x) =
xn

2nΓ(n+ 1)

[
1− x2

4(1− n)
+

x4

4.8.(1− n)(2− n)
− · · ·

]
.

The general term of Jn(x) is, on simplification,

(−1)r.
1

r!(n+ 1) . . . (n+ r).Γ(n+ 1)

xn+2r

2n+2r
.

Now,
Γ(n+ 1) = nΓ(n).

Thus,
Γ(n+ r + 1) = (n+ r)(n+ r − 1) . . . (n+ 1)Γ(n+ 1).

Hence, the general term of the summation in Jn(x) is

(−1)r.
x2r+n

22r+nΓ(r + 1).Γ(n+ r + 1)
.

Thus, we can now formally define the Bessel’s function as

Definition 10.1. The Bessel’s function of first kind, of order n is defined as

Jn(x) =

∞∑
r=0

(−1)r.
1

Γ(r + 1)Γ(n+ r + 1)

(x
2

)2r+n
.

Similarly, the other solution is obtained by putting −n for n, that is, the other solution, when n is not
an integer is given by

J−n(x) =
∞∑
r=0

(−1)r.
1

Γ(r + 1)Γ(r − n+ 1)

(x
2

)2r−n
.

CaseII: When n = ±1/2, then the Bessel’s equation becomes

x2
d2y

dx2
+ x

dy

dx
+

(
x2 − 1

4

)
y = 0.

Let

y =
∞∑
m=0

cmx
m+s

87

be a solution of the above equation, where c0 6= 0 and s is to be determined. Then the above equation
becomes
∞∑
m=0

(m+ s)(m+ s− 1)cmx
m+s +

∞∑
m=0

(m+ s)cmx
m+s +

∞∑
m=0

cmx
m+s+2 − 1

4

∞∑
m=0

cmx
m+s = 0

or,
∞∑
m=0

(
m+ s+

1

2

)(
m+ s− 1

2

)
cmx

m +
∞∑
m=0

cmx
m+2 = 0

or,
∞∑
m=0

{(
m+ s+

1

2

)(
m+ s− 1

2

)
cm + cm−2

}
xm +

(
s+

1

2

)(
s− 1

2

)
c0 +(

s+
3

2

)(
s+

1

2

)
c1x = 0

Thus, the indicial equation is(
s+

1

2

)(
s− 1

2

)
c0 = 0 =⇒ s = ±1

2
, since c0 6= 0.

When s = 1/2, c1 = 0 and when s = −1/2, c1 is indeterminate. Take c1 as constant. Now, the general
recurrence relation is

cm = − 1

(m+ s+ 1/2)(m+ s− 1/2)
cm−2, m ≥ 2.

When s = −1/2, we have

cm = − 1

m(m− 1)
cm−2, m ≥ 2.

Thus

c2 = − 1

2!
c0, c4 =

1

4!
c0, c6 = − 1

6!
c0, . . . ,

c3 = − 1

3!
c1, c5 =

1

5!
c1, c7 = − 1

7!
c1,

Thus, the solution becomes

y = c0

[
x−1/2 − x3/2

2!
+
x7/2

4!
− · · ·

]
+ c1

[
x1/2 − x5/2

3!
+
x9/2

5!
− · · ·

]
= 0.

We have,

Jn(x) =

∞∑
r=0

(−1)r.
1

Γ(r + 1)Γ(n+ r + 1)

(x
2

)2r+n
.

Thus,

J1/2(x) =

∞∑
r=0

(−1)r.
1

Γ(r + 1)Γ(1/2 + r + 1)

(x
2

)2r+1/2
.

Simplification of the above equation yields the same result as we have got on solving the Bessel’s equation
for n = ±1/2.

Note 10.2. The function Jn(x) is one of the solutions of the Bessel’s equation. Also, J−n(x) represents a
solution of Bessel’s equation which may or may not be independent of Jn(x) always.

88

Theorem 10.3. If n is an integer, then

J−n(x) = (−1)nJn(x).

This shows that Jn(x) and J−n(x) do not provide with two independent solutions of Bessel’s equations
when n is an integer.

Proof.CaseI: When n is a positive integer, then

Jn(x) =
∞∑
r=0

(−1)r.
1

Γ(r + 1)Γ(n+ r + 1)

(x
2

)2r+n
,

and J−n(x) =

∞∑
r=0

(−1)r.
1

Γ(r + 1)Γ(r − n+ 1)

(x
2

)2r−n
.

We know that Γ(m) =∞ if m = 0 or a negative integer. Thus, −n+ r+ 1 should be greater than zero,
that is, −n+ r + 1 ≥ 1 =⇒ r 6= n. So,

J−n(x) =
∞∑
r=n

(−1)r.
1

r!Γ(r − n+ 1)

(x
2

)2r−n
.

Put m = r − n and eliminate r. Thus,

J−n(x) =
∞∑
m=0

(−1)m+n.
1

(m+ n)!Γ(m+ 1)

(x
2

)2m+n

=
∞∑
m=0

(−1)m+n.
1

Γ(m+ n+ 1)Γ(m+ 1)

(x
2

)2m+n

= (−1)n
∞∑
m=0

(−1)m.
1

Γ(m+ n+ 1)Γ(m+ 1)

(x
2

)2m+n
= (−1)nJn(x).

CaseII: When n is a negative integer. Let n = −p, where p is a positive integer. Then,

J−p(x) = (−1)pJp(x), [by CaseI]

or, Jn(x) = (−1)−nJ−n(x)

or, J−n(x) = (−1)nJn(x).

Note 10.4. When n is an integer, J−n(x) is not independent of Jn(x). Hence y = AJn(x) +BJ−n(x) is not
a general solution of (10.0.1) when n is an integer. But when n is non-integral, then the general solution is
given by y = AJn(x) +BJ−n(x), for arbitrary constants A and B.

We will investigate the general solution for Bessel’s equation for integral n. We have the theorem below in
this direction.

Theorem 10.5. The two linearly independent solutions of (10.0.1) may be taken to be two functions taken as
y1(x) = Jn(x) and

y2(x) = lim
ν→n

cos(νπ)Jν(x)− J−ν(x)

sin(νπ)
= Yn(x).

89

Proof.CaseI: When n is not an integer. Since n is not an integer, so sinnπ 6= 0. Hence

Yn(x) = cot(nπ)Jn(x)− cosec(nπ)J−n(x),

that is, Yn is a linear combination of Jn(x) and J−n(x). But we know that Jn and J−n are independent
solutions of Bessel’s equation, when n is not an integer, that is,

W (Jn(x), J−n(x)) =

∣∣∣∣Jn J−n
J
′
n J

′
−n

∣∣∣∣ 6= 0.

Now, on simplifying, we get

W (Jn, Yn) =

∣∣∣∣Jn Yn
J
′
n Y

′
n

∣∣∣∣ = −cosec(nπ)W (Jn(x), J−n(x)) 6= 0.

Thus, Jn and Yn are two independent solutions of Bessel’s equation of order n.

CaseII: Let n be an integer. Then sin(nπ) = 0 and cos(nπ) = (−1)n and also J−n(x) = (−1)nJn(x). First,
we deduce a simplified form of Yn(x).

Yn(x) = lim
ν→n

cos(νπ)Jν(x)− J−ν(x)

sin(νπ)

(
0

0

)
=
−π sin(nπ)Jn(x) + cos(nπ)

[
∂
∂νJν(x)

]
ν=n
−
[
∂
∂νJ−ν(x)

]
ν=n

π cos(nπ)

=
1

π

[
∂

∂ν
Jν(x)− (−1)n

∂

∂ν
J−ν(x)

]
ν=n

. (10.1.3)

We now establish the following two results for Yn(x).

1. Yn(x) is a solution of Bessel’s equation.

Proof. Jν(x) and J−ν(x) are solutions of Bessel’s equation of order ν. Thus,

x2
d2

dx2
Jν + x

d

dx
Jν + (x2 − ν2)Jν = 0 (10.1.4)

x2
d2

dx2
J−ν + x

d

dx
J−ν + (x2 − ν2)J−ν = 0 (10.1.5)

Differentiating (10.1.4) and (10.1.5), with respect to ν we get,

x2
d2

dx2

(
∂

∂ν
Jν

)
+ x

d

dx

(
∂

∂ν
Jν

)
+ (x2 − ν2)

(
∂

∂ν
Jν

)
− 2νJν = 0 (10.1.6)

x2
d2

dx2

(
∂

∂ν
J−ν

)
+ x

d

dx

(
∂

∂ν
J−ν

)
+ (x2 − ν2)

(
∂

∂ν
J−ν

)
− 2νJ−ν = 0 (10.1.7)

By (10.1.6) −(−1)ν(10.1.7), we get

x2
d2

dx2

[
∂

∂ν
Jν − (−1)ν

∂

∂ν
J−ν

]
+ x

d

dx

[
∂

∂ν
Jν − (−1)ν

∂

∂ν
J−ν

]
+

(x2 − ν2)
[
∂

∂ν
Jν − (−1)ν

∂

∂ν
J−ν

]
− 2ν[Jν − (−1)νJ−ν] = 0.

90

At ν = n, the above equation becomes[
x2

d2

dx2
+ x

d

dx
+ (x2 − n2)

] [
∂

∂ν
Jν − (−1)ν

∂

∂ν
J−ν

]
ν=n

− 2n(Jn − (−1)nJ−n) = 0

or,
[
x2

d2

dx2
+ x

d

dx
+ (x2 − n2)

] [
∂

∂ν
Jν − (−1)ν

∂

∂ν
J−ν

]
ν=n

= 0

or,
[
x2

d2

dx2
+ x

d

dx
+ (x2 − n2)

]
Yn(x) = 0.

Thus, Yn is a solution of Bessel’s equation of order n.

2. Yn(x) is independent of Jn(x).

This is evident from the structure of Yn and Jn.

Definition 10.6. Bessel’s function of second kind of order n, denoted by Yn(x) is defined as

Yn(x) = lim
ν→n

cos(νπ)Jν(x)− J−ν(x)

sin(νπ)
, when n is an integer

=
Jn(x) cos(nπ)− J−n(x)

sin(nπ)
, when n is not an integer.

Thus, the general solution of Bessel’s equation is

y(x) = C1Jn(x) + C2Yn(x)

where C1 and C2 are independent constants.

10.2 Recurrence Relations for Bessel’s Equations

For integral n, the Bessel’s function satisfies the following recurrence relations:

1. xJ
′
n(x) = nJn(x)− xJn+1(x).

Proof. We have

Jn(x) =
∞∑
r=0

(−1)r
1

r!Γ(r + n+ 1)

(x
2

)n+2r
.

Differentiating with respect to x, we get

J
′
n(x) =

1

2

∞∑
r=0

(−1)r
(n+ 2r)

r!Γ(r + n+ 1)

(x
2

)n+2r−1

or, xJ
′
n(x) =

∞∑
r=0

(−1)r
(n+ 2r)

r!Γ(r + n+ 1)

(x
2

)n+2r

= n

∞∑
r=0

(−1)r
1

r!Γ(r + n+ 1)

(x
2

)n+2r
+ 2

∞∑
r=0

(−1)r
r

r!Γ(r + n+ 1)

(x
2

)n+2r

= nJn(x)− 2

∞∑
s=0

(−1)s
1

s!Γ(n+ s+ 2)

(x
2

)n+2s+2
[Putting r-1=s and eliminating r]

= nJn(x)− x 1

Γ(s+ 1)Γ(n+ s+ 2)

(x
2

)n+1+2s
= nJn(x)− xJn+1(x).

91

2. xJ
′
n(x) = xJn−1(x)− nJn(x).

Proof. We have

Jn(x) =
∞∑
r=0

(−1)r
1

r!Γ(r + n+ 1)

(x
2

)n+2r
.

Differentiating with respect to x, we get

J
′
n(x) =

1

2

∞∑
r=0

(−1)r
(n+ 2r)

r!Γ(r + n+ 1)

(x
2

)n+2r−1

or, 2J
′
n(x) =

∞∑
r=0

(−1)r
2(n+ 2r)

r!Γ(r + n+ 1)

(x
2

)n+2r−1
−
∞∑
r=0

(−1)r
n

r!Γ(r + n+ 1)

(x
2

)n+2r−1

= 2
∞∑
r=0

(−1)r
1

r!Γ(r + n)

(x
2

)n−1+2r
− n

∞∑
r=0

(−1)r
1

r!Γ(r + n+ 1)

(x
2

)n+2r−1

= 2Jn−1(x)− 2n

x

∞∑
r=0

(−1)r
1

r!Γ(r + n+ 1)

(x
2

)n+2r
= 2Jn−1(x)− 2n

x
Jn(x).

Simplifying, we get the desired result.

3. 2n
x Jn(x) = Jn−1(x) + Jn+1(x).

Proof. From 1, we have
xJ
′
n(x) = nJn(x)− xJn+1(x).

From 2, we have
xJ
′
n(x) = xJn−1(x)− nJn(x).

Subtracting and simplifying, we get the desired result.

4. 2J
′
n(x) = Jn−1(x)− Jn+1(x).

Proof. From 1, we have
xJ
′
n(x) = nJn(x)− xJn+1(x).

From 2, we have
xJ
′
n(x) = xJn−1(x)− nJn(x).

Adding and simplifying, we get the desired result.

Exercise 10.7. 1. Prove that for integral n, 4J”
n = Jn−2 − 2Jn + Jn+2.

2. Prove the following:

(a)
d

dx
(xnJn(x)) = xnJn−1(x).

(b)
d

dx

(
x−nJn(x)

)
= −x−nJn+1(x).

92

10.3 Generating Function for Bessel’s Functions

For all values of x and for all values of z such that 0 < |z| <∞, the function

w(x, z) = e
x
2{z− 1

z},

generates the Bessel’s function of integral order n, that is,

e
x
2{z− 1

z} =
∞∑

n=−∞
Jn(x)zn.

Proof. We have,

e
x
2{z− 1

z} = exz/2 . e−x/(2z) =

{ ∞∑
r=0

(xz
2

)r 1

r!

}{ ∞∑
s=0

(−1)s
(x

2z

)s 1

s!

}

=

∞∑
r=0

∞∑
s=0

(−1)s
1

Γ(r + 1)Γ(s+ 1)

(x
2

)r+s
zr−s. (10.3.1)

CaseI: When r − s ≥ 0, let r − s = n. Then n ≥ 0, that is, n is an integer varying from 0 to∞. Eliminating
s, we get

∞∑
n=0

∞∑
r=n

(−1)r−n
1

Γ(r + 1)Γ(r − n+ 1)

(x
2

)2r−n
zn.

[For real values of Γ(r + 1) we must have r + 1 ≥ 1, that is, r ≥ 0 and for real values of Γ(r − n+ 1)
we must similarly have r ≥ n.] Now, let

w(x, z) =

∞∑
n=0

fn(x)zn, where fn(x) =

∞∑
r=n

(−1)r−n
1

Γ(r + 1)Γ(r − n+ 1)

(x
2

)2r−n
.

Putting r − n = p and eliminating r, we get

fn(x) =

∞∑
p=0

(−1)p
1

Γ(p+ 1)Γ(p+ n+ 1)

(x
2

)2p+n
= Jn(x). (10.3.2)

CaseII: When r − s < 0, let r − s = −n1, where n1 is a positive integer. So n1 takes values from 1 to ∞.
Eliminating s, we get,

w(x, z) =

∞∑
n1=1

∞∑
r=0

(−1)r+n1
1

Γ(r + 1)Γ(r + n1 + 1)

(x
2

)2r+n1

z−n1 .

[For real values of Γ(r+ 1) we must have r+ 1 ≥ 1, that is, r ≥ 0 and for real values of Γ(r+n1 + 1)
we must similarly have r ≥ −n1. Both inequalities simultaneously give r ≥ 0.] We assume

w(x, z) =
∞∑

n1=1

fn1(x)z−n1 ,

where

fn1(x) =

∞∑
r=0

(−1)r+n1
1

Γ(r + 1)Γ(r + n1 + 1)

(x
2

)2r+n1

= (−1)n1Jn1(x).

93

Thus,

w(x, z) =

∞∑
n1=1

(−1)n1Jn1(x)z−n1

=

−1∑
n=−∞

(−1)−nJ−n(x)zn

=
−1∑

n=−∞
(−1)−n(−1)nJn(x)zn =

∑
n=−∞

Jn(x)zn. (10.3.3)

Combining (10.3.2) and (10.3.3), we get the desired result.

10.4 Orthogonality Conditions

If ci and cj are the roots of the equation Jn(ca) = 0, then∫ a

0
xJn(cix)Jn(cjx)dx = 0, i 6= j

=
a2

a
J2
n+1(cia), i = j.

To prove the above, we first write the Bessel’s equation of order n.

x2
d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0.

The general solution is
y(x) = AJn(x) +BYn(x).

We first show that Jn(cx) satisfies the following equation, known as the modified Bessel’s equation,

x2
d2y

dx2
+ x

dy

dx
+ (c2x2 − n2)y = 0.

Put z = cx. Then we get

dy

dx
=
dy

dz

dz

dx
= c

dy

dz
,

d2y

dx2
=

d

dx

(
dy

dz
.c

)
=

d

dz

(
dy

dz
.c

)
dz

dx
= c2

d2y

dz2
.

Using these in the modified Bessel’s equation, we get

z2
d2y

dz2
+ z

dy

dz
+ (z2 − n2)y = 0.

This is Bessel’s equation in the variable z whose general solution is

y(z) = AJn(z) +BYn(z).

Thus Jn(z), that is, Jn(cx) is the solution of the modified Bessel’s equation. We now move on to prove the
orthogonality condition.

94

Proof.CaseI: When i 6= j. ci and cj are the roots of Jn(ca) = 0, that is,

Jn(cia) = 0, Jn(cja) = 0.

We know that Jn(cx) satisfies the modified Bessel’s equation. Thus,

x2
d2

dx2
Jn(cx) + x

d

dx
Jn(cx) + (c2x2 − n2)Jn(cx) = 0.

Thus,

x2
d2

dx2
Jn(cix) + x

d

dx
Jn(cix) + (c2ix

2 − n2)Jn(cix) = 0 (10.4.1)

x2
d2

dx2
Jn(cjx) + x

d

dx
Jn(cjx) + (c2jx

2 − n2)Jn(cjx) = 0 (10.4.2)

Putting u = Jn(cix) and v = Jn(cjx), we get from (10.4.1) and (10.4.2),

x2
d2u

dx2
+ x

du

dx
+ (c2ix

2 − n2)u = 0 (10.4.3)

x2
d2v

dx2
+ x

dv

dx
+ (c2jx

2 − n2)v = 0 (10.4.4)

Now, (10.4.3)×v−(10.4.4)×u gives on simplification

d

dx

{
x

(
du

dx
v − dv

dx
u

)}
+ (c2i − c2j)xuv = 0.

Integrating the above equation with respect to x from 0 to a, we get

(c2j − c2i)
∫ a

0
xuvdx =

[
x

(
du

dx
v − dv

dx
u

)]a
0

=

[
x

(
v
d

dx
u− u d

dx
v

)]a
0

= aJn(cja)

[
d

dx
Jn(cix)

]
x=a

− aJn(cia)

[
d

dx
Jn(cjx)

]
x=a

= 0

[since ci and cj are the roots of the equation Jn(ca) = 0]. Hence the result.

CaseII: When i = j. Multiplying (10.4.3) by 2dudx , we get on simplifying,

d

dx

[(
x2
(
du

dx

)2
)
− n2u2 + c2ix

2u2

]
− 2c2ixu

2 = 0.

Integrating the above equation with respect to x from 0 to a, we get

2c2i

∫ a

0
xu2dx =

[(
x2
(
du

dx

)2
)
− n2u2 + c2ix

2u2

]a
0

=

[(
x2
(
d

dx
Jn(cix)

)2
)
− n2[Jn(cix)]2 + c2ix

2[Jn(cix)]2

]a
0

= a2
[
d

dx
Jn(cix)

]
x=a

− n2[Jn(cia)]2 + c2i a
2[Jn(cia)]2 + n2(Jn(0))2

= a2
[
d

dx
Jn(cix)

]
x=a

+ n2(Jn(0))2 = a2
[
d

dx
Jn(cix)

]
x=a

. (10.4.5)

95

Recurrence relation 1 gives
xJ
′
n(x) = nJn(x)− xJn+1(x).

Now, put x = ciy. Then dx = cidy. Thus,

ciy
1

ci

d

dy
Jn(ciy) = nJn(ciy)− ciyJn+1(ciy)

or,
d

dy
Jn(ciy) =

n

y
Jn(ciy)− ciJn+1(ciy)

or,
d

dx
Jn(cix) =

n

x
Jn(cix)− ciJn+1(cix).

Putting x = a on both sides of the last equation, we get[
d

dx
Jn(cix)

]
x=a

=
n

a
Jn(cia)− ciJn+1(cia) = −ciJn+1(cia).

Thus, (10.4.5) gives

2c2i

∫ a

0
x[Jn(cix)]2dx = a2c2i [Jn+1(cia)]2.

Simplifying, we get the desired result.

Example 10.8. Show that

J−1/2(x) =

√
2

πx
cosx and J1/2(x) =

√
2

πx
sinx.

We have,

Jn(x) =
∞∑
r=0

(−1)r
1

Γ(r + 1)Γ(r + n+ 1)

(x
2

)n+2r
.

Thus,

J−1/2(x) =

∞∑
r=0

(−1)r
1

Γ(r + 1)Γ(r + 1/2)

(x
2

)−1/2+2r

=

√
2

πx

[
1− x2

2!
+
x4

4!
− · · ·

]
=

√
2

πx
cosx.

We can similarly prove the other part by expanding the Bessel’s function J1/2(x).

Example 10.9. Show that ∫ π/2

0

√
πxJ1/2(2x)dx = 1.

We have,

J1/2(x) =

√
2

πx
sinx.

Thus,

J1/2(2x) =

√
1

πx
sin 2x.

Integrating the above with respect to x from 0 to π/2, we get the required result.

96

Exercise 10.10. 1. Prove that

J−3/2(x) =

√
2

πx

(
−cosx

x
− sinx

)
and J3/2(x) =

√
2

πx

(
sinx

x
− cosx

)
.

2. Express J3 and J4(x) in terms of J0 and J1.

3. Prove that J
′
0 = −J1.

4. For n > 1 show that ∫ x

0
xn+1Jn(x)dx = xn+1Jn+1(x)dx.

5. Prove that

(a)
d

dx
(xJ1(x)) = xJ0(x).

(b) ∫ b

0
xJ0(ax)dx =

b

a
J1(ab).

10.5 Few Probable Questions

1. Deduce a generating function for Bessel’s functions.

2. Deduce the orthogonality of Bessel’s functions.

3. Define Bessel’s function of second kind. Show that the Bessel’s function of second kind is a solution of
Bessel’s equations.

4. Prove that xJ
′
n(x) = nJn(x)− xJn+1(x). Hence show that

d

dx
J0(x) = −J1(x)

and ∫ b

a
J0(x)J1(x)dx =

1

2
[(J0(a))2 − (J0(b))

2].

97

References
1. Special Functions of Mathematical Physics and Chemistry; I. N. Sneddon.

2. Special Functions & Their Applications; Lebedev & Silverman

3. Special Functions; E. D. Rainville.

98

Core Paper
MATC 3.1
Block - III

Marks : 35 (SSE : 30; IA : 05)

Integral Equations & Integral Transforms

Syllabus
• Unit 11 •

Integral Equations. Definitions of integral equations and their classification. Fredholm integral equations of
second kind : Resolvent kernel, solution in terms of resolvent kernel, solution with separable kernels, Method
of successive approximations, iterative scheme for Fredholm integral equations. Volterra integral equations
of second kind : Solution by successive approximations. Resolvent kernel and solutions of Volterra integral
equations.

• Unit 12 •

Classical Fredholm theory : Fredholm theorems, Fredholm Alternative Principles. Hilbert-Schmidt theory
: Symmetric kernels, Orthogonal system of functions, Fundamental properties of eigenvalues and eigenfunc-
tions for symmetric kernels, Hilbert-Schmidt theorem.

• Unit 13 •

Integral Transforms. Laplace Transform : Definition and basic properties. Laplace integral. Lerch’s the-
orem (statement only). Laplace transforms of elementary functions, of derivatives and Dirac-delta function.
Differentiation and integration. Convolution. Inverse transform. Applications to solve ordinary differential
equations.

• Unit 14 •

Fourier Transform : Definition and basic properties. Fourier transform of some elementary functions, of
derivatives. Inverse Fourier transform. Convolution theorem and Parseval’s relation. Applications of Fourier
inversion and convolution theorems. Fourier sine and cosine transforms.

• Unit 15 •
Hankel Transform : Definition and inversion formula. Hankel transform of derivatives. Finite Hankel trans-
form.

• Unit 16 •
Applications : Applications of integral transforms to solve two-dimensional Laplace and one dimensional
diffusion and wave equations.

99

Unit 11

Course Structure

Integral Equations: Definitions of integral equations and their classification. Fredholm integral equations of
second kind : Resolvent kernel, solution in terms of resolvent kernel, solution with separable kernels, Method
of successive approximations, iterative scheme for Fredholm integral equations. Volterra integral equations
of second kind : Solution by successive approximations. Resolvent kernel and solutions of Volterra integral
equations.

11 Introduction

Many physical problems of science and technology which were solved with the help of theory of ordinary and
partial differential equations can be solved by better methods of theory of integral equations. For example,
while searching for the representation formula for the solution of linear differential equation in such a manner
so as to include boundary conditions or intitial conditions explicitly, we arrive at an integral equation. The
solution of the integral equation is much easier than the orginal boundary value or initial value problem.
The theory of integral equations is very useful tool to deal with problems in applied mathematics, theoretical
mechanis, and mathematical physics. Several situations of science lead to integral equations, e.g., neutron
diffusion problem and radiation transfer problem etc.

Objectives

The objective of this course is to learn the students all of the above topics and by the end of it students should
be able to
(1) know different kinds of kernels and techniques for solving each kind.
(2) know number of numerical methods for solving integral equations.
(3) know the relation between differential and integral equations, and how to change from one to another.
(4) know basic theory of calculus of variations and see some applications.

11.1 Integral Equation

Definition 11.1. An integral equation is an equation is which an unknown function appears under one or more
integral signs. For example, for a ≤ x ≤ b, a ≤ t ≤ b, the equations∫ b

a
K(x, t)y(t)dt = f(x) (11.1.1)

y(x)− λ
∫ b

a
K(x, t)y(t)dt = f(x) (11.1.2)

and y(x) =

∫ b

a
K(x, t)[y(t)]2dt, (11.1.3)

100

where the function y(x), is the unknown function while the functions f(x) and K(x, t) are known functions
and λ, a and b are constants, are all integral equations. The above mentioned functions may be complex-
valued functions of the real variables x and t.

Definition 11.2. Linear and Non-linear Integral Equation : An integral equation is called linear if only
linear operations are performed in it upon the unknown function. An integral equation which is not linear is
known as a non-linear integral equation. By writing either

L(y) =

∫ b

a
K(x, t) y(t) dt or L(y) = y(x)− λ

∫ b

a
K(x, t)y(t)dt, (11.1.4)

we can easily verify that L is a linear integral operator. In fact, for any constants c1 and c2, we have

L{c1y1(x) + c2y2(x)} = c1L{y1(x)}+ c2L{y2(x)} (11.1.5)

which is well known general criterion for a linear operator. In this block, we shall study only linear integral
equations. The most general type of linear integral equation is of the form

g(x)y(x) = f(x) + λ

∫
a
K(x, t)y(t)dt, (11.1.6)

where the upper limit may be either variable x or fixed. The functions f , g andK are known functions while y
is to be determined; λ is a non-zero real or complex, parameter. The function K(x, t) is known as the kernel
of the integral equation.

Remark 11.3. The constant λ can be incorporated into the kernel K(x, t) in Eq.(11.1.6). However, in many
applications λ represents a significant parameter which may take on various values in a discussion being
considered.

Remark 11.4. If g(x) 6= 0, Eq.(11.1.6) is known as linear integral equation of the third kind. When g(x) = 0,
Eq.(11.1.6) reduces to

f(x) + λ

∫
a
K(x, t)y(t)dt,= 0 (11.1.7)

which is known as linear integral equation of the first kind. Again, when g(x) = 1, Eq.(11.1.6) reduces to

y(x) = f(x) + λ

∫
a
K(x, t)y(t)dt. (11.1.8)

which is known as linear integral equation of the second kind. In the present block, we shall study in details
equations of the form (11.1.7) and (11.1.8) only.

Definition 11.5. Fredholm Integral Equation : A linear integral equation of the form

g(x)y(x) = f(x) + λ

∫ b

a
K(x, t)y(t)dt, (11.1.9)

where a, b are both constants, f(x)g(x) andK(x, t) are known functions while y(x) is unknown function and
λ is a non-zero real or complex parameter, is called Fredholm integral equation of third kind. The function
K(x, t) is known as the kernel of the integral equation.

101

• Setting g(x) = 0 in Eq.(11.1.9), we have the Fredholm integral equation of the first kind.

• Setting g(x) = 1 in Eq.(11.1.9), we have the Fredholm integral equation of the second kind.

• Setting g(x) = 1 and f(x) = 0 in Eq.(11.1.9), we have the Homogeneous Fredholm integral equation of
the second kind.

11.2 Solution of Fredholm integral equations

11.2.1 Method of Successive approximations :

Consider the Fredholm integral equation of the second kind given by Eq.(11.2.4). As a zero-order approxima-
tion to the required solution y(x), let us take y0(x) = f(x). Further, if yn(x) and yn−1(x) are the n-th and
(n− 1)-th order approximations respectively, then these are connected by

yn(x) = f(x) + λ

∫ b

a
K(x, t)yn−1(t)dt. (11.2.1)

We know that the iterated kernels (or iterated functions) Kn(x, t), (n = 1, 2, 3, . . .) are defined by

K1(x, t) = K(x, t)

and Kn(x, t) =

∫ b

a
K(x, z)Kn−1(z, t)dz.

Putting n = 1 in Eq.(11.2.1), the first-order approximation y1(x) is given by

y1(x) = f(x) + λ

∫ b

a
K(x, t)y0(t)dt.

⇒ y1(x) = f(x) + λ

∫ b

a
K(x, t)f(t)dt. (11.2.2)

Putting n = 2 in Eq.(11.2.1), the second-order approximation y2(x) is given by

y2(x) = f(x) + λ

∫ b

a
K(x, t)y1(t) dt.

⇒ y2(x) = f(x) + λ

∫ b

a
K(x, z)y1(z) dz

⇒ y2(x) = f(x) + λ

∫ b

a
K(x, z)

[
f(z) + λ

∫ b

a
K(z, t) f(t) dt

]
dz

⇒ y2(x) = f(x) + λ

∫ b

a
K(x, t) f(t) dt+ λ2

∫ b

a
f(t)

[∫ b

a
K(x, z)K(z, t) dz

]
dt

⇒ y2(x) = f(x) + λ

∫ b

a
K1(x, t) f(t) dt+ λ2

∫ b

a
K2(x, t)f(t) dt

⇒ y2(x) = f(x) +
2∑

m=1

λm
∫ b

a
Km(x, t)f(t) dt.

Proceeding likewise, we easily obtain by Mathematical induction the n-th approximate solution yn(x) as

yn(x) = f(x) +
n∑

m=1

λm
∫ b

a
Km(x, t) f(t) dt. (11.2.3)

102

11.2.2 Resolvent kernel :

Suppose solution of Fredholm integral equation of the second kind

y(x) = f(x) + λ

∫ b

a
K(x, t)y(t)dt (11.2.4)

takes the form

y(x) = f(x) + λ

∫ b

a
R(x, t;λ)f(t)dt, (11.2.5)

then R(x, t;λ) is known as the resolvent kernal of (11.2.4). If Kn(x, t) be iterated kernals then

R(x, t;λ) =
∞∑
m=1

λm−1Km(x, t)

Example 11.6. Find the iterated kernels for the following kernels

K(x, t) = sin(x− t), 0 ≤ x ≤ 2π, 0 ≤ t ≤ 2π

Solution : Iterated kernel Kn(x, t) are given by

K1(x, t) = K(x, t) (11.2.6)

and Kn(x, t) =

∫ 2π

0
K(x, z)Kn−1(z, t) dz, (n = 2, 3, . . .) (11.2.7)

From Eq.(11.2.6) K1(x, t) = K(x, t) = sin(x− 2t). Putting n = 2 in Eq.(11.2.7), we have

K2(x, t) =

∫ 2π

0
K(x, z)K1(z, t) dz =

∫ 2π

0
sin(x− 2z) sin(z − 2t) dz

=
1

2

∫ 2π

0
[cos(x+ 2t− 3z)− cos(x− 2t− z)] dz =

1

2

[
−1

3
sin(x+ 2t− 3z) + sin(x− 2t− z

]
= 0, on simplification.

Putting n = 3 in Eq.(11.2.7), we have

K3(x, t) =

∫ 2π

0
K(x, z)K2(z, t) dz = 0 [∵ K2(z, t) = 0]

Thus, K1(x, t) = sin(x− 2t) and Kn(x, t) = 0 for n = 2, 3, 4,

Example 11.7. Determine the resolvent kernels for the Fredholm integral equation having kernels

K(x, t) = ex+t; a = 0, b = 1.

Solution : Iterated kernels Km(x, t) are given by

K1(x, t) = K(x, t) (11.2.8)

Km(x, t) =

∫ 1

0
K(x, z)Km−1(z, t) dz (11.2.9)

103

From Eq.(11.2.8) K1(x, t) = K(x, t) = ex+t.

Putting n = 2 in Eq.(11.2.9), we have

K2(x, t) =

∫ 1

0
K(x, z)K1(z, t) dz =

∫ 1

0
ex+zez+t dz

= ex+t
∫ 1

0
e2z dz = ex+t

[
1

2
e2z
]

= ex+t
(
e2 − 1

2

)
,

Putting n = 3 in Eq.(11.2.9), we have

K3(x, t) =

∫ 1

0
K(x, z)K2(z, t) dz =

∫ 1

0
ex+zez+t

(
e2 − 1

2

)
dz

= ex+t
(
e2 − 1

2

)∫ 1

0
e2z dz = ex+t

[
1

2
e2z
]

= ex+t
(
e2 − 1

2

)2

and so on,

Observing above, we may write

Km(x, t) = ex+t
(
e2 − 1

2

)m−1
, m = 1, 2, 3, . . .

Now, the required resolvent kernel is given by

R(x, t;λ) =
∞∑
m=1

λm−1Km(x, t) =
∞∑
m=1

λm−1ex+t
(
e2 − 1

2

)m−1
= ex+t

∞∑
m=1

{
λ(e2 − 1)

2

}m−1
But

∞∑
m=1

{
λ(e2 − 1)

2

}m−1
= 1 +

λ(e2 − 1)

2
+

{
λ(e2 − 1)

2

}2

+ · · ·

which is an infinite geometric series with common ratio {λ(e2 − 1)}/2.

∴
∞∑
m=1

{
λ(e2 − 1)

2

}m−1
=

1

1− {λ(e2 − 1)}/2
=

2

2− λ(e2 − 1)
,

provided
∣∣∣∣λ(e2 − 1)

2

∣∣∣∣ < 1 or |λ| < 2

e2 − 1

Therefore R(x, t;λ) =
2ex+t

2− λ(e2 − 1)
, provided |λ| < 2

e2 − 1

11.2.3 Solution in terms of resolvent kernel :

Let the Fredholm integral is given by Eq.(11.2.4). Let Km(x, t) be the m-th iterated kernel and let R(x, t;λ)
be the resolvent kernel of Eq.(11.2.4). Then we have

R(x, t;λ) =
∞∑
m=1

λm−1Km(x, t) (11.2.10)

Suppose the sum of the infinite series (11.2.10) exists and so R(x, t;λ) can be obtained in the closed form.
Then, the required solution of Eq.(11.2.4) is given by

y(x) = f(x) + λ

∫ b

a
R(x, t;λ) f(t) dt (11.2.11)

104

Example 11.8. Solve

y(x) = x+

∫ 1/2

0
y(t) dt

Solution : Comparing the given equation with

y(x) = f(x) + λ

∫ 1/2

0
K(x, t) y(t) dt,

we have f(x) = x, λ = 1, K(x, t) = 1 (11.2.12)

Let Km(x, t) be the m-th iterated kernel. Then, we have

K1(x, t) = K(x, t) (11.2.13)

Km(x, t) =

∫ 1

0
K(x, z)Km−1(z, t) dz (11.2.14)

From (11.2.12), K1(x, t) = K(x, t) = 1.

Putting m = 2 in (11.2.14), we have

K2(x, t) =

∫ 1/2

0
K(x, z)K1(z, t) dz =

∫ 1/2

0
dz = [z]

1/2
0 =

1

2
.

Putting m = 3 in (11.2.14), we have

K3(x, t) =

∫ 1/2

0
K(x, z)K2(z, t) dz =

∫ 1/2

0

1

2
dz =

(
1

2

)2

.

Observing above we find

Km(x, t) =

(
1

2

)m−1
Now, the resolvent kernel R(x, t;λ) is given by

R(x, t;λ) =
∞∑
m=1

λm−1Km(x, t) =
∞∑
m=1

(
1

2

)m−1
But

∞∑
m=1

(
1

2

)m−1
= 1 +

1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · ·

which is an infinite geometric series with common ratio 1/2.

∴
∞∑
m=1

(
1

2

)m−1
=

1

1− (1/2)
= 2 and hence R(x, t;λ) = 2

Finally, the required solution of the given equation is given by

y(x) = f(x) + λ

∫ 1/2

0
R(x, t;λ) f(t) dt

⇒ y(x) = x+

∫ 1/2

0
(2t) dt

⇒ y(x) = x+ 2

[
t2

2

]1/2
0

= x+
1

4

105

Exercise 11.9. Solve

i) y(x) = ex − 1

2
e+

1

2
+

1

2

∫ 1

0
y(t) dt ii) y(x) =

5x

6
+

1

2

∫ 1

0
xt y(t) dt

iii) y(x) = sinx− x

4
+

1

4

∫ π/2

0
xt y(t) dt iv) y(x) =

3

2
ex − 1

2
xex − 1

2
+

1

2

∫ 1

0
t y(t) dt

Answers :

i) y(x) = ex, (ii) y(x) = x, (iii) y(x) = sinx, (iv) y(x) =
3ex

2
− xex

2
− e

3
+ 1

11.2.4 Iterative scheme for Fredholm integral equations

When the resolvent kernel cannot be obtained in closed form i.e., the sum of infinite series occurring in the
formula of the resolvent kernel can not be determined, we use the method of successive approximations to
find solutions upto third order.

Let the given Fredholm integral equation of the second kind be

y(x) = f(x) + λ

∫ b

a
K(x, t) y(t) dt

(11.2.15)

As zero-order approximation, we take y0(x) = f(x). If n-th order approximation be yn(x), then

yn(x) = f(x) + λ

∫ b

a
K(x, t)yn−1(x) (11.2.16)

Sometimes the zero-order approximation is mentioned in the problem. In that case, we will modify the scheme
accordingly.

Example 11.10. Solve the following integral equation

y(x) = 1 + λ

∫ 1

0
(x+ t) y(t) dt,

by the method of successive approximation to third order.

Solution : Given

y(x) = 1 + λ

∫ 1

0
(x+ t) y(t) dt (11.2.17)

Let y0(x) denote the zero-order approximation. Then we may take

y0 = 1.

If yn(x) denotes the n-th order approximation, then we know that

yn(x) = 1 + λ

∫ 1

0
(x+ t) yn−1(t) dt, (11.2.18)

106

Putting n = 1 in (11.2.18),

y1(x) = 1 + λ

∫ 1

0
(x+ t) y0(t) dt = 1 + λ

∫ 1

0
(x+ t) dt,

⇒ y1(x) = 1 + λ

[
xt+

1

2
t2
]1
0

= 1 + λ

(
x+

1

2

)
. (11.2.19)

Next, putting n = 2 in (11.2.18), we have

y2(x) = 1 + λ

∫ 1

0
(x+ t) y1(t) dt = 1 + λ

∫ 1

0
(x+ t)

{
1 + λ

(
t+

1

2

)}
,

= 1 + λ

∫ 1

0
(x+ t)

{(
1 +

λ

2

)
+ λt

}
dt = 1 + λ

∫ 1

0

[
x

(
1 +

λ

2

)
+ t

(
1 +

λ

2
+ λx

)
+ λt2

]
dt

= 1 + λ

[
x

(
1 +

λ

2

)
t+

t2

2

(
1 +

λ

2
+ λx

)
+
λt3

3

]1
0

= 1 + λ

[
x

(
1 +

λ

2

)
t+

1

2

(
1 +

λ

2
+ λx

)
+
λ

3

]
= 1 + λ

(
x+

1

2

)
+ λ2

(
x+

7

12

)
Finally, putting n = 3 in (11.2.18), we have

y3(x) = 1 + λ

∫ 1

0
(x+ t) y2(t) dt = 1 + λ

∫ 1

0
(x+ t)

{
1 + λ

(
t+

1

2

)
+ λ2

(
t+

7

2

)}
,

= 1 + λ

∫ 1

0
(x+ t)

{(
1 +

λ

2
+

7λ2

12

)
+ λt(1 + λ)

}
dt

= 1 + λ

∫ 1

0

[
x

(
1 +

λ

2
+

7λ2

12

)
+ t

(
1 +

λ

2
+

7λ2

12
+ λx+ λ2x

)
+ λt2(1 + λ)

]
dt

= 1 + λ

[
x

(
1 +

λ

2
+

7λ2

12

)
t+

t2

2

(
1 +

λ

2
+

7λ2

12
+ λx+ λ2x

)
+
λ1

3
λt3(1 + λ)

]1
0

= 1 + λx

(
1 +

λ

2
+

7λ2

12

)
t+

λ

2

(
1 +

λ

2
+

7λ2

12
+ λx+ λ2x

)
+

1

3
λ2(1 + λ)

Therefore, y3(x) = 1 + λ

(
x+

1

2

)
+ λ2

(
x+

7

12

)
+ λ3

(
13

12
x+

5

8

)
Exercise 11.11. Exercise : Solve the inhomogeneous Fredholm integral equation of the second kind

y(x) = 2x+ λ

∫ 1

0
(x+ t) y(t) dt,

by the method of successive approximations to the third order by taking y0(x) = 1.

Answers :
y3(x) = 2x+ λ

(
x+

2

3

)
+ λ2

(
7

6
x+

2

3

)
+ λ3

(
13

12
x+

5

8

)
Definition 11.12. Volterra Integral Equation : A linear integral equation of the form

g(x)y(x) = f(x) + λ

∫ x

a
K(x, t)y(t)dt, (11.2.20)

107

where a, b are both constants, f(x), g(x) and K(x, t) are known functions while y(x) is unknown function;
λ is a non-zero real or complex parameter is called Volterra integral equation of third kind. The function
K(x, t) is known as the kernel of the integral equation.

• Setting g(x) = 0 in Eq.(11.2.20), we have the Volterra integral equation of the first kind.

• Setting g(x) = 1 in Eq.(11.2.20), we have the Volterra integral equation of the second kind.

• Setting g(x) = 1 and f(x) = 0 in Eq.(11.2.20), we have the Homogeneous Volterra integral equation of
the second kind.

11.3 Solution of Volterra integral equations

11.3.1 Determination of Resolvent kernel for Volterra integral equations

Example 11.13. Find the resolvent kernel of the Volterra integral equation with the kernel K(x, t) = 1.

Solution : Iterated kernels Kn(x, t) are given by

K1(x, t) = K(x, t) (11.3.1)

and Kn(x, t) =

∫ x

t
K(x, z)Kn−1(z, t) dz, n = 1, 2, 3, . . . (11.3.2)

Given K(x, t) = 1. Thus we have
K1(x, t) = K(x, t) = 1

Putting n = 2 in Eq.(11.3.2) we have

K2(x, t) =

∫ x

t
K(x, z)K1(z, t) dz =

∫ x

t
dz =

[
z
]x
t

= x− t

Putting n = 3 in Eq.(11.3.2) we have

K3(x, t) =

∫ x

t
K(x, z)K2(z, t) dz =

∫ x

t
1 · (z − t) dz =

[
(z − t)2)

2

]x
t

=
(x− t)2

2!

Putting n = 4 in Eq.(11.3.2) we have

K4(x, t) =

∫ x

t
K(x, z)K3(z, t) dz =

∫ x

t
1 · (z − t)2

2!
dz =

1

2!

[
(z − t)3)

3

]x
t

=
(x− t)3

3!

Observing above, we find by mathematical induction, that

Kn(x, t) =
(x− t)n−1

(n− 1)!
, n = 1, 2, 3, . . .

Now by the definition of the resolvent kernel, we have

R(x, t;λ) =
∞∑
m=1

Km(x, t) = K1(x, t) + λK2(x, t) + λ2K3(x, t) + · · ·

= 1 +
λ(x− t)

1!
+

[λ(x− t)]2

2!
+

[λ(x− t)]3

3!
+ · · ·

= eλ(x−t)

108

Exercise 11.14. Find the resolvent kernel of the Volterra integral equation with the kernel

i) K(x, t) = ex−t ii) K(x, t) = (2 + cosx)/(2 + cos t)

Answers :
i) R(x, t;λ) = e(x−t)(1+λ), (ii) R(x, t;λ) =

2 + cosx

2 + cos t
eλ(x−t)

11.3.2 Solution of Volterra integral equation in terms of resolvent kernel

Working Rule : Let

y(x) = f(x) + λ

∫ x

a
K(x, t) y(t) dt (11.3.3)

be given Volterra integral equation. LetKm(x, t) be them-th iterated kernel and letR(x, t;λ) be the resolvent
kernel of (11.3.3). Then we have

R(x, t;λ) =
∞∑
m=1

λm−1Km(x, t). (11.3.4)

Suppose the sum of infinite series (11.3.4) exists and so R(x, t;λ) can be obtained in the closed form. Then
the required solution of (11.3.3) is given by

y(x) = f(x) + λ

∫ x

a
R(x, t;λ) f(t) dt. (11.3.5)

Example 11.15. With the aid of the resolvent kernel, find the solution of the integral equation

y(x) = ex
2

+

∫ x

0
ex

2−t2y(t) dt.

Solution : Comparing the given equation with

y(x) = f(x) + λ

∫ x

0
K(x, t) y(t) dt

we have
f(x) = ex

2
, λ = 1, K(x, t) = ex

2−t2

Let Km(x, t) be the m-th iterated kernel. Then we have

K1(x, t) = K(x, t)

and Km(x, t) =

∫ x

t
K(x, z)Km−1(z, t) dz (11.3.6)

Thus we have
K1(x, t) = K(x, t) = ex

2−t2 (11.3.7)

Putting m = 2 in (11.3.6), we have

K2(x, t) =

∫ x

t
K(x, z)K1(z, t) dz =

∫ x

t
ex

2−z2ez
2−t2dz = ex

2−t2
∫ x

t
dz = ex

2−t2(x− t)

109

Putting m = 3 in (11.3.6), we have

K3(x, t) =

∫ x

t
K(x, z)K2(z, t) dz =

∫ x

t
ex

2−z2ez
2−t2(z − t) dz = ex

2−t2
∫ x

t
(z − t) dz

= ex
2−t2

[
(z − t)2

2

]x
t

= ex
2−t2 (x− t)2

2!

Putting m = 4 in (11.3.6), we have

K4(x, t) =

∫ x

t
K(x, z)K3(z, t) dz =

∫ x

t
ex

2−z2ez
2−t2 (z − t)2

2!
dz

=
ex

2−t2

2!

[
(z − t)3

3

]x
t

= ex
2−t2 (x− t)3

3!

Observing above by mathematical induction we may write

Km(x, t) = ex
2−t2 (x− t)m−1

(m− 1)!
, m = 1, 2, 3, . . . (11.3.8)

Now, by the definition of the resolvent kernel, we have

R(x, t;λ) =
∞∑
m=1

Km(x, t) = K1(x, t) + λK2(x, t) + λ2K3(x, t) + · · ·

= ex
2−t2 + ex

2−t2 (x− t)
1!

+ ex
2−t2 (x− t)2

2!
+ · · ·

= ex
2−t2

[
1 +

(x− t)
1!

+
(x− t)2

2!
+ · · ·

]
= ex

2−t2ex−t

Finally, the required solution of the given equation is given by

y(x) = f(x) + λ

∫ x

0
R(x, t;λ) f(t) dt = ex

2
+

∫ x

0
ex

2−t2ex−tet
2
dt

= ex
2

+ ex
2+x

∫ x

0
e−t dt = ex

2
+ ex

2+x
[
− e−t

]x
0

= ex
2

+ ex
2+x[−e−x + 1] = ex

2 − ex2 + ex
2+x = ex

2+x

Exercise 11.16. Solve the following integral equation by means of resolvent kernel

i) y(x) = ex sinx+

∫ x

0

2 + cosx

2 + cos t
y(t) dt ii) y(x) = cosx− x− 2 +

∫ x

0
(t− x) y(t) dt

Answers :

i) y(x) = ex sinx− ex(2 + cosx) log

(
2 + cosx

3

)
, (ii) y(x) = − cosx− sinx− x

2
sinx

110

11.3.3 Method of Successive approximations for solving Volterra integral equation

Working Rule : Let f(x) be continuous in [0, a] and K(x, t) be continuous for 0 ≤ x ≤ a, 0 ≤ t ≤ x. We
start with some function y0(x) continuous in [0, a]. Replacing y(t) on R.H.S of (11.2.20) by y0(x), we obtain

y1(x) = f(x) + λ

∫ x

0
K(x, t) y0(t) dt. (11.3.9)

y1(x) given by (11.3.9) is itself continuous in [0, a]. Proceeding likewise we arrive at a sequence of functions
y0(x), y1(x), . . . , yn(x), . . . , where

yn(x) = f(x) + λ

∫ x

0
K(x, t) yn−1(t) dt. (11.3.10)

In view of continuity of f(x) and K(x, t), the sequence {yn(x)} converges, as n→∞ to obtain the solution
of y(x) of given integral equation (11.2.20). It should be note that when y0(x) = f(x), we obtain the so called
Neumann series.

Example 11.17. Using the method of successive approximations, solve the integral equation

y(x) = 1 +

∫ x

0
y(t) dt, taking y0(x) = 0.

Solution : Comparing the given equation with

y(x) = f(x) + λ

∫ x

0
K(x, t) y(t) dt,

we find
f(x) = 1, λ = 1, K(x, t) = 1

The n-th order approximation is given by

yn(x) = 1 +

∫ x

0
yn−1(t) dt, (11.3.11)

Putting n = 1 in (11.3.11), we have

y1(x) = 1 +

∫ x

0
y0(t) dt = 1 +

∫ x

0
(0) dt = 1.

Putting n = 2 in (11.3.11), we have

y2(x) = 1 +

∫ x

0
y1(t) dt = 1 +

∫ x

0
dt = 1 +

[
t
]x
0

= 1 + x.

Putting n = 3 in (11.3.11), we have

y3(x) = 1 +

∫ x

0
y2(t) dt = 1 +

∫ x

0
(1 + t) dt = 1 +

[
t+

t2

2

]x
0

= 1 + x+
x2

2!
.

Putting n = 4 in (11.3.11), we have

y4(x) = 1 +

∫ x

0
y3(t) dt = 1 +

∫ x

0

(
1 + t+

t2

2!

)
dt = 1 + x+

x2

2!
+
x3

3!
.

111

Observing the above trend, we find

yn(x) = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · ·+ xn−1

(n− 1)!

Making n→∞, we find the required solution is given by

y(x) = lim
n→∞

yn(x)

= 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · · · · · = ex

Exercise 11.18. Using the method of successive approximations, solve the integral following integral equa-
tions.

i) y(x) = 1 + x−
∫ x

0
y(t) dt, taking y0(x) = 1 ii) y(x) = x−

∫ x

0
(x− t) y(t) dt, taking y0(x) = 0

iii) y(x) = 1 +

∫ x

0
(x− t) y(t) dt, taking y0(x) = 1 iv) y(x) =

1

2
x3 − 2x−

∫ x

0
y(t) dt, taking y0(x) = x2

Answers :

i) y(x) = 1, (ii) y(x) = sinx, (ii) y(x) = coshx, (iv) y(x) = x2 − 2x

112

Unit 12

Course Structure

Classical Fredholm theory : Fredholm theorems, Fredholm Alternative Principles. Hilbert-Schmidt theory
: Symmetric kernels, Orthogonal system of functions, Fundamental properties of eigenvalues and eigenfunc-
tions for symmetric kernels, Hilbert-Schmidt theorem.

12 Introduction

In Unit 11, we obtained the solution of the Fredholm integral equation of the second kind

y(x) = f(x) + λ

∫ b

a
K(x, t) y(t) dt (12.0.1)

as a uniformly convergent power series in the parameter λ for |λ| suitably small. Fredholm derived the solution
of (12.0.1) in general form which is valid for all values of the parameter λ. He gave three important results
which are known as Fredholm’s first, second and third fundamental theorems. In the present unit we propose
to discuss these theorems.

Objective

The objective of this course is to learn the students all of the above topics and by the end of it students should
be able to

• know different fundamental theorems of Fredholm integral equation.

• know the method of solution of Fredholm integral equation using fundamental theorems.

• know various aspects of Hilbert-Schmidt theory

• know fundamental properties of eigenvalues and eigenfunctions for symmetric kernels

12.1 Fredholm’s First Fundamental Theorem

The non-homogeneous Fredholm integral equation of second kind

y(x) = f(x) + λ

∫ b

a
K(x, t) y(t) dt (12.1.1)

where the functions f(x) and y(t) are integrable, has a unique solution

y(x) = f(x) + λ

∫ b

a
R(x, t;λ) f(t) dt (12.1.2)

113

where the resolvent kernel R(x, t;λ) is given by

R(x, t;λ) =
D(x, t;λ)

D(λ)
(12.1.3)

with D(λ) 6= 0, is a meromorphic function of the complex variable λ, being the ratio of two entire functions
defined by the series

D(x, t;λ) = K(x, t) +

∞∑
p=1

(−λ)p

p!

∫
· · ·
∫
K

(
x, z1, · · · , zp
t, z1, · · · , zp

)
dz1 · · · dzp

and D(λ) = 1 +

∞∑
p=1

(−λ)p

p!

∫
· · ·
∫
K

(
z1, · · · , zp
z1, · · · , zp

)
dz1 · · · dzp, (12.1.4)

both of which converge for all values of λ. Also, note the following symbol for the determinant formed by the
values of the values of the kernel at all points (xi, ti)∣∣∣∣∣∣∣∣∣

K(x1, t1) K(x1, t2) · · · K(x1, tn)
K(x2, t1) K(x2, t2) · · · K(x2, tn)

...
... . . .

...
K(xn, t1) K(xn, t2) · · · K(xn, tn)

∣∣∣∣∣∣∣∣∣ = K

(
x1, x2, · · · , xn
t1, t2, · · · , tn

)
(12.1.5)

which is known as the Fredholm determinant. In particular, the solution of the Fredholm homogeneous equa-
tion

y(x) = λ

∫ b

a
K(x, t) y(t) dt (12.1.6)

is identically zero.

Result 12.1. For Fredholm integral equation

y(x) = f(x) + λ

∫ b

a
K(x, t) y(t) dt (12.1.7)

the resolvent kernel is given by

R(x, t;λ) =
D(x, t;λ)

D(λ)
(12.1.8)

where

D(x, t;λ) = K(x, t) +
∞∑
m=1

(−λ)m

m!
Bm(x, t) (12.1.9)

and D(λ) = 1 +

∞∑
m=1

(−λ)m

m!
Cm (12.1.10)

where

Bn(x, t) =

∫ b

a
· · ·
∫ b

a︸ ︷︷ ︸
n

∣∣∣∣∣∣∣∣∣∣
K(x, t) K(x, z1) · · · K(x, zn)
K(z1, t) K(z1, z1) · · · K(z1, zn)
· · · · · · · · · · · ·
· · · · · · · · · · · ·

K(zn, t) K(zn, z1) · · · K(zn, zn)

∣∣∣∣∣∣∣∣∣∣
dz1 dz2 · · · dzn, (12.1.11)

114

and Cn =

∫ b

a
· · ·
∫ b

a︸ ︷︷ ︸
n

∣∣∣∣∣∣∣∣∣∣
K(z1, z1) K(z1, z2) · · · K(z1, zn)
K(z2, z1) K(z2, z2) · · · K(z2, zn)
· · · · · · · · · · · ·
· · · · · · · · · · · ·

K(zn, z1) K(zn, z2) · · · K(zn, zn)

∣∣∣∣∣∣∣∣∣∣
dz1 dz2 · · · dzn, (12.1.12)

The function D(x, t;λ) is called the Fredholm minor and D(λ) is called the Fredhom determinant.

12.2 Alternative Procedure of calculating Bm(x, t) and Cm

The following results will be used

C0 = 1

Cp =

∫ b

a
Bp−1(s, s) ds, p ≥ 1

B0(x, t) = K(x, t) (12.2.1)

Bp(x, t) = Cp K(x, t)− p
∫ b

a
K(x, z) Bp−1(z, t) dz, p ≥ 1.

After getting R(x, t;λ), the required solution is given by

y(x) = f(x) + λ

∫ b

a
R(x, t;λ) f(t) dt (12.2.2)

Example 12.2. Using Fredholm determinants, find the resolvent kernel and hence solve the following integral
equation

y(x) = f(x) + λ

∫ 1

0
xet y(t) dt, (λ 6= 1)

Solution : Here
K(x, t) = xet

From Eq.(12.1.11)

B1(x, t) =

∫ 1

0

∣∣∣∣K(x, t) K(x, z1)
K(z1, t) K(z1, z1)

∣∣∣∣ dz1 =

∫ 1

0

∣∣∣∣xet xez1

z1e
t z1e

z1

∣∣∣∣ dz1 = 0

B2(x, t) =

∫ 1

0

∫ 1

0

∣∣∣∣∣∣
K(x, t) K(x, z1) K(x, z2)
K(z1, t) K(z1, z1) K(z1, z2)
K(z2, t) K(z2, z1) K(z2, z2)

∣∣∣∣∣∣ dz1 dz2 =

∫ 1

0

∫ 1

0

∣∣∣∣∣∣
xet xez1 xez2

z1e
t z1e

z1 z1e
z2

z2e
t z2e

z1 z2e
z2

∣∣∣∣∣∣ dz1 dz2 = 0

Since B1(x, t) = B2(x, t) = 0, it follows that Bn(x, t) = 0, for n ≥ 1. Now from Eq.(12.1.12), we have

C1 =

∫ 1

0
K(z1, z1) dz1 =

∫ 1

0
z1e

z1 dz1 =
[
z1e

z1
]1
0
−
∫ 1

0
ez1dz1 = e−

[
ez1
]1
0

= e− (e− 1) = 1.

C2 =

∫ 1

0

∫ 1

0

∣∣∣∣K(z1, z1) K(z1, z2)
K(z2, z1) K(z2, z2)

∣∣∣∣ dz1 dz2 =

∫ 1

0

∫ 1

0

∣∣∣∣z1ez1 z1e
z2

z2e
z1 z2e

z2

∣∣∣∣ dz1 dz2 = 0

It follows that Cm = 0 for all m ≥ 2. Now Eq.(12.1.9) and Eq.(12.1.10) respectively gives

D(x, t;λ) = K(x, t)− λB1(x, t) +
λ2

2!
B2(x, t)− · · · = xet

D(λ) = 1− λC1 +
λ2

2!
C2 − . . . = 1− λ

115

Hence, Eq.(12.1.8) yields

R(x, t;λ) =
D(x, t;λ)

D(λ)
=

xet

1− λ
Hence the required solution is

y(x) = f(x) + λ

∫ 1

0
R(x, t;λ) f(t) dt

⇒ y(x) = f(x) + λ

∫ 1

0

xet

1− λ
f(t) dt

⇒ y(x) = f(x) +
λx

1− λ

∫ 1

0
et f(t) dt.

Alternative Method : We shall use the results of Eqs.(12.2.1) to compute R(x, t;λ) as follows. First write
down these results for complete solution. Here

C0 = 1

B0(x, t) = K(x, t) = xet

C1 =

∫ 1

0
B0(s, s) ds =

∫ 1

0
ses ds =

[
ses
]1
0
−
∫ 1

0
es ds = e−

[
es
]1
0

= e− (e− 1) = 1

B1 = C1K(x, t)−
∫ 1

0
K(x, z)B0(z, t) dz = xet −

∫ 1

0
xezzet dz == xet − xet

∫ 1

0
zez dz = 0

C2 =

∫ 1

0
B1(s, s) ds = 0

B2(x, t) = C2K(x, t)− 2

∫ 1

0
K(x, z) B1(z, t) dz = 0

∴ Bm(x, t) = 0 for all m ≥ 1 and Cm = 0 for all m ≥ 2.

Now we proceed as before to determine R(x, t;λ) and can solve the given Fredholm integral equation.

Important Observation : The reader will find that the above alternative method is a short cut. However,
he should find the required quantities strictly in the following order :

C0, B0(x, t), C1, B1(x, t), C2, B2(x, t) and so on.

Exercise 12.3. Using Fredholm determinants, find the resolvent kernel and hence solve the following integral
equation

i) y(x) = e−x + λ

∫ 1

0
xet y(t) dt, ii) y(x) = 1 +

∫ 1

0
(1− 3xt) y(t) dt,

iii) y(x) = sinx+ λ

∫ 10

4
x y(t) dt, iv) y(x) = 1 +

∫ π

0
sin(x+ t) y(t) dt

Answers :

i) y(x) = e−x +
λx

1− λ
, if λ 6= 1 (ii) y(x) =

8− 6x

3
,

(iii) y(x) = sinx+
2λx sin 7 sin 3

1− 42λ
, (iv) y(x) = 1 +

4

4− π2
(2 cosx+ π sinx)

116

12.3 Fredholm Second Fundamental Theorem

If λ0 is a zero of multiplicity m of the function D(λ), then the homogeneous integral equation

y(x) = λ0

∫ b

a
K(x, t) y(t) dt (12.3.1)

possesses at least one, and the most m, linearly independent solutions

yi(x) = Dr

 x1, · · · , xi−1, x, xi+1, · · · , xr
λ0

t1, · · · , ti−1, t, ti+1, · · · , tr

 , i = 1, 2, . . . , r; 1 ≤ r ≤ m. (12.3.2)

not identically zero. Any other solution of this equation is a linear combination of these solutions. Here, we
have to remember the following definition of the Fredholm minor

Dn

(
x1, x2, · · · , xn
t1, t2, · · · , tn

)
= K

(
x1, x2, · · · , xn
t1, t2, · · · , tn

)
+
∞∑
p=1

(−λ)p

p!

∫ b

a
· · ·
∫ b

a
K

(
x1, · · · , xn, z1 · · · zp
t1, · · · , tn, z1 · · · zp

)
dz1 · · · dzp,(12.3.3)

where {xi} and {ti}, i = 1, 2, . . . , n, are two sequences of arbitrary variables. Series (12.3.3) converges for
all values of λ and hence it is an entire function of λ.

12.4 Fredholm Third Fundamental Theorem

For an inhomogeneous integral equation

y(x) = f(x) + λ0

∫ b

a
K(x, t) y(t) dt (12.4.1)

to possesses a solution in the case D(λ0) = 0, it is necessary and sufficient that the given function f(x) be
orthogonal to all the eigenfunctions zi(x), i = 1, 2, . . . , ν, of the transposed homogeneous equation corre-
sponding to the eigenvalue λ0. The general solution has the form

y(x) = f(x) + λ

∫ b

a

Dr+1

 x, x1, x2, · · · , xr
λ0

t, t1, t2, · · · , tr


Dr

 x1, x2, · · · , xr
λ0

t1, t2, · · · , tr

 f(t) dt+

r∑
h=1

ChΦh(x), (12.4.2)

where Φi(x) are given by

Φi(x) =

Dr

 x1, · · · , xi−1, x, xi+1, · · · , xr
λ0

t1, · · · · · · · · · · · · tr


Dr

 x1, · · · , xi−1, xi, xi+1, · · · , xr
λ0

t1, · · · · · · · · · · · · tr

 , i = 1, 2, . . . , r (12.4.3)

117

12.5 Hilbert-Schmidt Theory

12.5.1 Symmetric Kernels

A kernel is called symmetric if it coincides with its own complex conjugate. Such a kernel is characterized by
the identity

K(x, t) = K(t, x),

where the bar denotes the complex conjugate. If the kernel is real, then its symmetry is defined by the identity
K(x, t) = K(t, x). An integral equation with a symmetric kernel is called a symmetric equation.

Remark 12.4. For a symmetric kernel that is not identically zero, at least one eigenvalue will always exist.
This is an important characteristic of symmetric kernel. An eigenvalue is simple if there is only one corre-
sponding eigenfunction, otherwise the eigenvalues are degenerate. The spectrum of the kernel K(x, t) is the
set of all its eigenvalues. Thus the spectrum of a symmetric kernel is never empty.

12.5.2 Orthogonal system of functions

A finite or an infinite set {φk(x)} defined on an interval a ≤ n ≤ b is said to be an orthogonal set if

(φi, φj) = 0 or
∫ b

a
φi(x)φj(x) = 0, i 6= j. (12.5.1)

If none of the elements of this set is a zero vector, then it is called a proper orthogonal set. The set {φi(x)} is
orthonormal if

(φi, φj) =

∫ b

a
φi(x)φj(x) dx =

{
0, i 6= j,
1, i = j.

(12.5.2)

Any function φ(x) for which ||φ(x)|| = 1 is said to be normalized.

Some examples of the complete orthogonal and orthonormal systems.

(i) The system φn(x) = (2π)−1/2einx, where n takes every integer value from −∞ to∞, is orthonormal
in the interval (−π, π).

(ii) The functions 1, cosx, cos 2x, cos 3x, . . . form an orthogonal system in the interval (0, π). Again
the functions sinx, sin 2x, sin 3x, . . . also form an orthogonal system in (0, π).

(iii) The Legendre polynomials given by

P0(x) = 1, Pn(x) =
1

2nn!

dn(x2 − 1)n)

dxn
, n = 1, 2, 3, . . .

are orthogonal in the interval (−1, 1). It can be shown that∫ 1

−1
Pm(x)Pn(x) dx =

{
0, if m 6= n,
2/(2n+ 1), if m = n.

(iv) The Chebychev polynomials Tn(x) = 21−n cos(n cos−1 x), n = 0, 1, 2, 3, . . . are orthogonal with
weight r(x) = 1/(1 − x2)1/2 in the interval (−1, 1). They can be normalized by multiplying Tn(x) by the
quality (22n−1/π)1/2.

118

12.5.3 Fundamental properties of eigenvalues and eigenfunctions of symmetric kernels

Theorem 12.5. If a kernel is symmetric then all its iterated kernels are also symmetric.

Proof. Let kernel K(x, t) be symmetric. Then by definition

K(x, t) = K(t, x). (12.5.3)

By definition, the iterated kernels Kn(x, t), n = 1, 2, 3, . . . are defined as follows:

K1(x, t) = K(x, t) (12.5.4)

Kn(x, t) =

∫ b

a
K(x, z)Kn−1(z, t) dz, n = 2, 3, . . . (12.5.5)

and Kn(x, t) =

∫ b

a
Kn−1(x, z)K(z, t) dz, n = 2, 3, . . . (12.5.6)

We shall use mathematical induction to prove the required result. Now

K2(x, t) =

∫ b

a
K(x, z)K1(z, t) dz =

∫ b

a
K(x, z)K(z, t) dz

=

∫ b

a
K(z, x)K1(t, z) dz =

∫ b

a
K(t, z)K1(z, x) dz = K2(t, x)

Thus,
K2(x, t) = K2(t, x) (12.5.7)

showing that K2(x, t) is symmetric. Hence the required result is true for n = 1 and n = 2.

Let Kn(x, t) be symmetric for n = m. Then by definition, we have

Km(x, t) = Km(t, x). (12.5.8)

We shall now prove that Kn(x, t) is also symmetric for n = m+ 1, i.e.,

Km+1(x, t) = Km+1(t, x). (12.5.9)

L.H.S of (12.5.9) = Km+1(x, t) =

∫ b

a
K(x, z)Km(z, t) dz =

∫ b

a
K(z, x)Km(t, z) dz

=

∫ b

a
Km(t, z)K(z, x) dz = Km+1(t, x) = R.H.S of (12.5.9)

Thus iterated Kernel Kn(x, t) is symmetric for n = 1 and n = 2. Moreover, Kn(x, t) is symmetric for
n = m+1 whenever it is symmetric for n = m. Hence, by the mathematical induction,Kn(x, t) is symmetric
for n = 1, 2, 3,

Theorem 12.6. Hilbert Theorem

Every symmetric kernel with a norm not equal to zero has at least one eigenvalue.
OR, If the kernelK(x, t) is symmetrical and not identically equal to zero, then it has at least one eigenvalue.

119

Theorem 12.7. The eigenvalues of a symmetric kernel are real. OR, If K(x,t) is real, symmetric, continuous
and identically not equal to zero, then all the characteristic constants (eigenvalues) are real.

Proof. Let λ an φ(x) be an eigenvalue and a corresponding eigenfunction of the kernel K(x, t). Then by
definition

φ(x) = λ

∫ b

a
K(x, t)φ(t) dt (12.5.10)

Multiplying (12.5.10) by φ(x) and integrating with respect x from to x from a to b.∫ b

a
φ(x)φ(x) dx = λ

∫ b

a

{∫ b

a
K(x, t)φ(t) dt

}
φ(x) dx (12.5.11)

By definition of Fredholm operator K, we have

Kφ =

∫ b

a
K(x, t)φ(t) dt (12.5.12)

Also, ||φ(x)|| =
∫ b

a

{
φ(x)φ(x) dx

}1/2
(12.5.13)

Using (12.5.12) and (12.5.13) and the definition of inner product, (12.5.11) reduces to

||φ(x)||2 = λ(Kφ, φ) so that λ = ||φ(x)||2/(Kφ, φ)

Since bothe the numerator and denominator are real, it follows that λ is also real and thus the required result
is proved.

Theorem 12.8. The eigenfunctions of a symmetric kernel, corresponding to different eigenvalues are orthog-
onal. OR The fundamental functions (i.e. eigenfunctions) φm(x) and φn(x) of the symmetric kernel
K(x, t) for corresponding eigenvalues λm and λn (λm 6= λn) are orthogonal in the domain (a, b).

Proof. Since φm(x) and φn(x) are eigenfunctions corresponding to eigenvalues λm and λn respectively,
where λm 6= λn. Then, by definition, we have

φm(x) = λm

∫ b

a
K(x, t)φm(t) dt (12.5.14)

and φn(x) = λn

∫ b

a
K(x, t)φn(t) dt (12.5.15)

Since λn is real, (12.5.15) may be re-written as φ(x) = λn

∫ b

a
K(x, t)φn(t) dt (12.5.16)

Since K(x, t) is symmetric, we have K(x, t) = K(x, t) (12.5.17)

Using (12.5.17), (12.5.16) may be re-written as φ(x) = λn

∫ b

a
K(t, x)φn(t) dt (12.5.18)

Interchanging x and t in (12.5.18), wehave φn(t) = λn

∫ b

a
K(x, t)φn(x) dx (12.5.19)

120

Multiplying both sides of (12.5.14) by φn(x) and then integrating the both sides w.r.t. ‘x’ from a to b, we have∫ b

a
φm(x)φn(x) dx = λm

∫ b

a

{∫ b

a
K(x, t)φm(t) dt

}
φn(x) dx

= λm

∫ b

a

{∫ b

a
K(x, t)φn(x) dx

}
φm(t) dt [on changing the order of integration]

= (λm/λn)

∫ b

a
φm(t)φn(t) dt, by Eq.(12.5.19)

∴
∫ b

a
φm(x)φn(x) dx = λm

∫ b

a
φm(x)φn(x) dx

⇒ (λn − λm)

∫ b

a
φm(x)φn(x) dx = 0,

⇒ (λn − λm)(φm, φn) = 0

Since λn 6= λm, (λn − λm) 6= 0 and so we have (φm, φn) = 0, showing that the eigenfunctions φm and φn
are orthogonal.

12.5.4 Hilbert-Schmidt Theorem

Theorem 12.9. Let F (x) be generated from a continuous function y(x) y the operator

λ

∫ b

a
K(x, t) y(t) dt

where K(x, t) is continuous, real and symmetric, so that

F (x) = λ

∫ b

a
K(x, t) y(t) dt.

Then F (x) can be represented over interval (a, b) by a linear combination of the normalized eigenfunctions
of homogeneous integral equation

y(x) = λ

∫ b

a
K(x, t) y(t) dt,

having K(x, t) as its kernel.

Result 12.10. Schmidt’s Solution of non-homogeneous fredholm integral equation of second kind

Let

y(x) = f(x) + λ

∫ b

a
K(x, t) y(t) dt (12.5.20)

be a non-homogeneous Fredholm integral equation of the second kind in which K(x, t) is continuous, real
and symmetric and λ is not an eigenvalue. Then the solution of Eq.(12.5.20) may be expressed as

y(x) = f(x) + λ
∑
m

fm
λm − λ

φm(x) (12.5.21)

where fm =
∫ b
a f(t)φm(t) dt. Solution exists uniquely if and only if λ does not take on an eigenvalue. If

λ = λk, where λk is the k-th eigenvalue and eigenfunction φk(x) is not orthogonal to f(x), then no solution
exists. Finally, if λ = λk and eigenfunction φk(x) is orthogonal to f(x), then we have infinitely many
solutions of Eq.(12.5.20).

121

Example 12.11. Solve the symmetric integral equation

y(x) = (x+ 1)2 +

∫ 1

−1
(xt+ x2t2)y(t) dt,

by using Hilbert-Schmidt theorem.

Solution:

Given y(x) = (x+ 1)2 +

∫ 1

−1
(xt+ x2t2)y(t) dt, (12.5.22)

Comparing (12.5.22) with y(x) = f(x) + λ

∫ 1

−1
(xt+ x2t2)y(t) dt, (12.5.23)

here f(x) = (x+ 1)2 and λ = 1 (12.5.24)

We begin with determining eigenvalues and the corresponding normalized eigenfunctions of

y(x) = λ

∫ 1

−1
(xt+ x2t2)y(t) dt (12.5.25)

⇒ y(x) = λx

∫ 1

−1
ty(t) dt+ λx2

∫ 1

−1
t2y(t) dt.

Let C1 =

∫ 1

−1
ty(t) dt and C2 =

∫ 1

−1
t2y(t) dt

Thus we have from Eq.(12.5.25)

y(x) = λC1x+ λC2x
2 ⇒ y(t) = λC1t+ λC2t

2 (12.5.26)

Hence C1 =

∫ 1

−1
t(λC1 + λC2t

2) dt ⇒ C1 = C1λ

[
t3

3

]1
−1

+ C2λ

[
t4

4

]1
−1

⇒ C1 =
2C1λ

3
+ 0 ⇒ C1

(
1− 2λ

3

)
+ 0.C2 = 0. (12.5.27)

Again C2 =

∫ 1

−1
t2(λC1 + λC2t

2) dt ⇒ C2 = C1λ

[
t4

4

]1
−1

+ C2λ

[
t5

5

]1
−1

⇒ C2 = 0 +
2C2λ

5
⇒ 0.C1 +

(
1− 2λ

5

)
C2 = 0. (12.5.28)

Equations (12.5.27) and (12.5.28) have a nontrivial solution only if

D(λ) =

∣∣∣∣1− (2λ/3) 0
0 1− (2λ/5)

∣∣∣∣ = 0

⇒ {1− (2λ/3)}{1− (2λ/5)} = 0 giving λ = 3/2 and λ = 5/2

Hence the required eigenvalues are λ1 = 3/2 and λ2 = 5/2.

Determination of eigenfunction corresponding to λ1 = 3/2

122

Putting λ = λ1 = 3/2 in (12.5.27) and (12.5.28), we obtain

C1 · 0 + 0 · C2 = 0 and 0 · C1 +

[
1−

(
2

5
× 3

2

)]
C2 = 0

Hence C2 = 0 and C1 is arbitrary. Putting these values in (12.5.26) and noting that λ = 3/2, we have the
required eigenfunction y1(x) is given by

y(x) = (3/2)× C1x

Setting (3/2)× C1 = 1, we may take y1(x) = x. Now, the corresponding normalized eigenfunction φ1(x) is
given by

φ1(x) =
y1(x)[∫ 1

−1{y1(x)}2
]1/2 =

x[∫ 1
−1 x

2dx
]1/2 =

x{
[x3/3]1−1

}2 =
x√

(2/3)
= x×

(
3

2

)1/2

=
x
√

6

2
.

Determination of eigenfunction corresponding to λ1 = 5/2

Putting λ = λ1 = 5/2 in (12.5.27) and (12.5.28), we obtain[
1−

(
2

3
× 5

2

)]
C1 + 0 · C2 = 0 and 0 · C1 + 0 · C2 = 0

Hence C1 = 0 and C2 is arbitrary. Putting these values in (12.5.26) and noting that λ = 5/2, we have the
required eigenfunction y2(x) is given by

y(x) = (5/2)× C2x
2

Setting (5/2) × C2 = 1, we may take y2(x) = x2. Now, the corresponding normalized eigenfunction φ2(x)
is given by

φ2(x) =
y2(x)[∫ 1

−1{y2(x)}2
]1/2 =

x2[∫ 1
−1 x

4dx
]1/2 =

√
10

2
x2.

Also,

f1 =

∫ 1

−1
f(x)φ1(x) dx =

∫ 1

−1
(x+ 1)2

(√
6

2
x

)
dx

=

√
6

2

∫ 1

−1
(x2 + 2x+ 1)x dx =

2
√

6

3

f2 =

∫ 1

−1
f(x)φ2(x) dx =

∫ 1

−1
(x+ 1)2

(√
10

2
x2

)
dx =

8

15

√
10

(12.5.29)

Now we have λ = 1. Also λ1 = 3/2 and λ2 = 5/2. Hence λ 6= λ1 and λ 6= λ2. Therefore the unique solution

123

given by

y(x) = f(x) + λ
2∑

m=1

fm
λm − λ

φm(x)

⇒ y(x) = (x+ 1)2 +
f1φ1(x)

λ1 − 1
+
f2φ2(x)

λ2 − 1

⇒ y(x) = (x+ 1)2 +
(2
√

6/3)× (x
√

6/2)

(3/2)− 1
+ +

(8
√

10/15)× (x2
√

10/2)

(5/2)− 1

⇒ y(x) = (x+ 1)2 + 4x+ (16/9)× x2 = x2 + 2x+ 1 + 4x+ (16/9)× x2

⇒ y(x) =
25

9
x2 + 6x+ 1.

Exercise 12.12. Using Hilbert-Schmidt theorem, find the solution of the symmetric integral equation

i) y(x) = x2 + 1 +
3

2

∫ 1

−1
(xt+ x2t2) y(t) dt, ii) y(x) = 1 +

∫ π

0
cos(x+ t) y(t) dt,

Answers :

i) y(x) = 5x2 + Cx+ 1, where C is constant (ii) y(x) = 1 + C cosx− (2/π) sinx,

124

Unit 13

Course Structure

Integral Transforms. Laplace Transform : Definition and basic properties. Laplace integral. Lerch’s the-
orem (statement only). Laplace transforms of elementary functions, of derivatives and Dirac-delta function.
Differentiation and integration. Convolution. Inverse transform. Applications to solve ordinary differential
equations.

13 Introduction

The integral transform methods are very convenient in solving integral equations of some special forms.
Suppose that a relationship of the form

y(x) =

∫ b

a

∫ b

a
Γ[x, z]K(z, t)y(t) dt dz (13.0.1)

be known to be valid and that this double integral can be evaluated as an iterated integral. Then from (13.0.1),
it follows that if

F (x) =

∫ b

a
K(x, t) y(t) dt (13.0.2)

we also have

y(x) =

∫ b

a
Γ(x, t) F (t) dt. (13.0.3)

Thus, if Eq.(13.0.2) is an integral equation in y, a solution is given by Eq., whereas if Eq.(13) is regarded as
an integral equation in F a solution is given by Eq.(13.0.2). It is conventional to refer to one of the function
as the transform of the second function, and to the second function as an inverse transform of the first.

Definition 13.1. Function of exponential order: A function f(x) is said to be of exponential order a as
x→∞ if

lim
x→∞

e−axf(x) = finite quantity

i.e., if given a positive integer n0, there exists a real number M > 0 s.t.

|e−axf(x)| < M ∀x ≥ n0 or |f(x)| < Meax ∀x ≥ n0

Example 13.2. Show that xn is of exponential order as x→∞, n being any positive integer.

Solution:
lim
x→∞

e−axxn = lim
x→∞

xn

eax
= lim

x→∞

n!

aneax
=
n!

∞
= 0

Example 13.3. Show that F (t) = et
2

is not of exponential order as t→∞.

Solution:
lim
t→∞

e−atF (t) = lim
t→∞

et(t−a) =∞

Hence F (t) is not of exponential order.

125

Definition 13.4. Laplace transform: SupposeF (t) is a real valued function defined over the interval (−∞,∞)
such that F (t) = 0. The Laplace transform of F (t), denoted by L{F (t)}, is defined as

L{F (t)} = f(s) =

∫ ∞
0

e−stF (t) dt (13.0.4)

Sometimes we use symbol p for the parameter s. The Laplace transform is said to exist if the integral (13.0.4)
is convergent for some value of s.

Table of Laplace transform of some elementary functions
Serial Number F(t) L{F(t)} or F (p) or f(p)

1 1 1/p, p > 0
2 tn, n > −1 Γ(n+ 1)/pn+1, p > 0
3 tn (n is positive integer) n!/pn+1, p > 0
4 eat 1/(p− a), p > a
5 sin at a/(p2 + a2), p > 0
6 cos at p/(p2 + a2), p > 0
7 sinh at a/(p2 − a2), p > |a|
8 cosh at p/(p2 − a2), p > |a|

Theorem 13.5. Linear Property: Suppose f1(s) and f2(s) are Laplace forms of F1(t) and F2(t) respectively.
Then

L{c1F1(t) + c2F2(t)} = c1L{F1(t)}+ c2L{F2(t)}

where c1 and c2 are constants.

Proof. Let

L{F1(t)} = f1(s) =

∫ ∞
0

e−stF1(t) dt and L{F2(t)} = f2(s) =

∫ ∞
0

e−stF2(t) dt

Also let c1 and c2 be arbitrary constants. Now

L{c1F1(t) + c2F2(t)} =

∫ ∞
0

e−st
[
c1F1(t) + c2F2(t)

]
dt

= c1

∫ ∞
0

e−stF1(t) dt + c2

∫ ∞
0

e−stF2(t) dt

= c1L{f1(t)}+ c2L{f2(t)}

Theorem 13.6. First Shifting Theorem (First Translation): If L{F (t)} = f(s), then L{eatF (t)} = f(s−
a).

Proof. We know that

L{eatF (t)} =

∫ ∞
0

e−steatF (t) dt =

∫ ∞
0

e−(s−a)tF (t) dt =

∫ ∞
0

e−utF (t) dt, where u = s− a > 0

= f(u) = f(s− a)

Example 13.7. Find L{e−t(3 sinh 2t− 5 cosh 2t)}

126

Solution: We know that

L{sinh 2t} =
2

s2 − 22
, L{cosh 2t} =

s

s2 − 22

Therefore

L{e−t(3 sinh 2t− 5 cosh 2t)} = 3
2

(s+ 1)2 − 22
− 5

s+ 1

(s+ 1)2 − 22
=

1− 5s

s2 + 2s− 3

Theorem 13.8. Second Shifting Theorem (Second Translation)

If L{F (t)} = f(s) and G(t) =

{
F (t− a) t > a
0 t < a

Then L{G(t)} = e−asf(s)

Proof.

Let L{F (t)} = f(s) and G(t) =

{
F (t− a) t > a
0 t < a

Now

L{G(t)} =

∫ ∞
0

e−stG(t) dt =

∫ a

0
e−stG(t) dt+

∫ ∞
a

e−stG(t) dt

=

∫ a

0
e−st · 0 dt+

∫ ∞
0

e−stF (t− a) dt = 0 +

∫ ∞
a

e−stF (t− a) dt

Now putting t − a = p so that dt = dp. If t = a, then p = t − a = a − a = 0 and if t = ∞, then
p =∞− a =∞.

∴ L{G(t)} =

∫ ∞
0

e−s(p+a)F (p) dp = e−sa
∫ ∞
0

e−spF (p) dp = e−saf(s)

Example 13.9. Find the Laplace transform of F (t), where F (t) =

{
cos
(
t− 2π

3

)
if t > 2π

3
0 if t > 2π

3

Solution: Let a = 2π
3 , and G(t) = cos t, then

L{G(t)} =
p

p2 + 1
= g(p), as L{cos at} =

p

p2 + a2
. Also F (t) =

{
G(t− a) t > a
0 t < a

By second shifting theorem,
L{F (t)} = e−apg(p) = e−

2πp
3

p

p2 + 1

Theorem 13.10. Change of Scale Property

If L{F (t)} = f(s), then L{F (at)} =
1

a
f
(s
a

)

127

Proof.

Let L{F (t)} = f(s), then L{F (at)} =

∫ ∞
0

e−stF (at) dt =

∫ ∞
0

e−
sx
a F (x)

dx

a
, Putting x = at

=
1

a

∫ ∞
0

e−
sx
a F (x) dx =

1

a

∫ ∞
0

e−
st
a F (t) dt

=
1

a

∫ ∞
0

e−ptF (t) dt, where p =
s

a
=

1

a
f(p) =

1

a
f
(s
a

)

Example 13.11. If L{cos2 t} = s2+2
s(s2+4)

, then find L{cos2(at)}. Answer: (s2+2a2)
s(s2+4a2)

13.1 Laplace Transform of Derivatives

Theorem 13.12. IfL{F (t)} = f(s), thenL{F (n)(t)} = snf(s)−sn−1F (0)−sn−2F ′(0)−. . .−sF (n−2)(0)−
F (n−1)(0) where F (n)(t) stands for d

nF (t)
dtn .

13.2 Laplace Transform of Integral

Theorem 13.13. If L{F (t)} = f(s), then 1
sf(s) = L

{∫ t
0 F (u) du

}
.

13.3 Multiplication by Powers of t

Theorem 13.14. If L{F (t)} = f(s), then L{tnF (t)} = (−1)n dn

dsn f(s) for n = 1, 2, 3,

13.4 Division by t

Theorem 13.15. If L{F (t)} = f(s), then L{F (t)
t } =

∫∞
s f(x) dx.

Note: Proofs of the above theorems are left for the readers.

Example 13.16. Find L{cos2 t} and L{sin2 t}.

Solution:

L{cos2 t} =
1

2
L{1 + cos 2t} =

1

2

[
1

s
+

s

s2 + 22

]
=

(s2 + 2)

s(s2 + 4)

L{sin2 t} =
1

2
L{1− cos 2t} =

1

2

[
1

s
− s

s2 + 22

]
=

2

s(s2 + 4)

Example 13.17. Using Laplace transform prove that (i)
∫∞
0

(
sin t
t

)
dt = π

2 and (ii)
∫∞
0 te−3t sin t dt = 3

50 .

Solution: (i) We know, L{sin t} = 1
p2+1

, then

L

{
sin t

t

}
=

∫ ∞
p

dp

1 + p2
=
(

tan−1 p
)∞
p

=
π

2
− tan−1(p) = cot−1(p) = tan−1

(
1

p

)
Putting p = 0, we get

∫∞
0

(
sin t
t

)
dt = tan−1(∞) = π

2 .

(ii) Since L{sin t} = 1
p2+1

and so L{t sin t} = (−1)1 d
dp

(
1

p2+1

)
= 2p

(p2+1)2

⇒
∫ ∞
0

e−pt(t sin t) dt =
2p

(p2 + 1)2
Putting p = 3, we have

∫ ∞
0

e−3t(t sin t) dt =
3

50

128

Example 13.18. Find L{Fε(t)} where Fε(t) is dirac delta function.

Solution:

Fε(t) =

{
1/ε if 0 ≤ t ≤ ε
0 if t > ε

L{Fε(t)} =

∫ ∞
0

e−stFε(t) dt =

∫ ε

0
e−stFε(t) dt+

∫ ∞
ε

e−stFε(t) dt

=

∫ ε

0

e−st

ε
dt+

∫ ∞
ε

e−st · 0 · dt =
1

ε

[
e−st

−s

]ε
t=0

+ 0

=
1

εs
(1− e−εs). (13.4.1)

13.5 Inverse Laplace transform

Let L{F (t)} = F (p). Then F (t) is called an inverse Laplace transform of F (p), and we write F (t) =
L−1{F (p)}, in which L−1 is known as the inverse Laplace transformation operator.

Theorem 13.19. Lerch’s Theorem: Let L{F (t)} = f(s). Let F (t) be piecewise continuous in every finite
interval 0 ≤ t ≤ a and of exponential order for t > a, then the inverse Laplace transform of F (t) is unique
f(s).

Table of inverse Laplace transform of some elementary functions
Serial Number F (p) L−1{F (p)}

1 1/p 1
2 1/pn+1, n > −1 tn/Γ(n+ 1)
3 1/pn+1 (n is positive integer) tn/n!
4 1/(p− a) eat

5 1/(p2 + a2) (sin at)/a
6 p/(p2 + a2) cos at
7 1/(p2 − a2) (sin at)/a
8 p/(p2 − a2) cos at

Theorem 13.20. Inverse Laplace transform of derivatives: If L−1{f(s)} = F (t), then L−1{f (n)(s)} =
(−1)ntnF (t)

Theorem 13.21. First Shifting theorem: If L−1{f(s)} = F (t), then L−1{f(s− a)} = eatF (t).

Theorem 13.22. Second Shifting theorem: If L−1{f(s)} = F (t), then L−1{e−asf(s)} = G(t), where

G(t) =

{
F (t− a) if t > a
0 if t < a

Example 13.23.

Find L−1
{

s− 2

(s− 2)2 + 52
+

s+ 4

(s+ 4)2 + 92
+

1

(s+ 2)2 + 32

}

129

Solution:

L−1
{

s− 2

(s− 2)2 + 52
+

s+ 4

(s+ 4)2 + 92
+

1

(s+ 2)2 + 32

}
= L−1

{
s− 2

(s− 2)2 + 52

}
+ L−1

{
s+ 4

(s+ 4)2 + 92

}
+ L−1

{
1

(s+ 2)2 + 32

}
= e2tL−1

{
s

s2 + 52

}
+ e−4tL−1

{
s

s2 + 92

}
+ e−2tL−1

{
1

s2 + 32

}
= e2t cos 5t+ e−4t cos 9t+

e−2t

3
sin 3t

Example 13.24. Find L−1
{

e4−3p

(p+4)5/2

}
Solution:

L−1
[

1

(p+ 4)5/2

]
= e−4tL−1{ 1

(p− 4 + 4)5/2
} = e−4tL−1

{
1

p(3/2)+1

}
= e−4t

t3/2

Γ(5/2)

But Γ

(
5

2

)
=

3

2
· 1

2
·
√
π =

3

4

√
π,

Therefore, L−1
[

1

(p+ 4)5/2

]
=

4

3
√
π
e−4tt3/2 ⇒ L−1

[
e4−3p

(p+ 4)5/2

]
= e4L−1

[
e−3p

(p+ 5)5/2

]
Using second shifting theorem

L−1
[

e4−3p

(p+ 4)5/2

]
=

{
4e4

3
√
π
e−4(t−3)(t− 3)3/2 if t > 3

0 if t < 4
=

4e4

3
√
π
e−4(t−3)(t− 3)3/2H(t− 3).

Note 13.25. In the above example H(t) =

{
1 if t > 0
0 if t < 0

is Heaviside unit step function.

Definition 13.26. Convolution (or Faltung): The convolution of F (t) and G(t) is denoted and defined as

F ∗G =

∫ t

0
F (x)G(t− x) dx or F ∗G =

∫ t

0
F (t− x)G(x) dx

Theorem 13.27. Convolution theorem or Convolution property: If L−1{F (p)} = F (t) and L−1{G(p)} =
G(t), then L−1{F (p)G(p)} =

∫ t
0 F (x)G(t− x) dx = F ∗G or L−1{F (p)G(p)} =

∫ t
0 F (t− x)G(x) dx =

F ∗G.

Example 13.28. Find L−1
{

1
(s+a)(s+b)

}
.

Solution: Let f(s) = 1
s−a , g(s) = 1

s+b . Then F (t) = e−at, G(t) = e−bt. Hence

L−1{f(s) · g(s)} =

∫ t

0
F (u)G(t− u) du

=

∫ t

0
e−aue−b(t−u) du = e−bt

∫ t

0
eu(b−a)du

= e−bt

[
eu(b−a)

b− a

]t
u=0

=
e−bt

b− a
[et(b−a) − 1] =

e−at − e=bt

b− a

130

Example 13.29. Apply the convolution theorem to show that∫ t

0
sinu cos(t− u) du =

1

2
(t sin t).

Solution: Let F (t) =
∫ t
0 sinu cos(t− u) du. Then, by convolution theorem,

L{F (t)} = L{sin t}L{cos t} =
1

s2 + 1
· s

s2 + 1
=

s

(s2 + 1)2

∴ F (t) = L−1
{

s

(s2 + 1)2

}
In order to calculate the above inverse Laplace transform, let F (t) = sin t. Therefore,

f ′(s) = − 2s

(s2 + 1)2
⇒ L−1{f ′(s)} = L−1

{
− 2s

(s2 + 1)2

}
⇒ (−1)1t1L−1{f(s)} = L−1

{
− 2s

(s2 + 1)2

}
⇒ t sin t

2
= L−1

{
s

(s2 + 1)2

}
Hence F (t) = t sin t

2 .

Exercise 13.30. (i) Evaluate L−1
{

1
(s+1)(s+2)

}
Answer: e2t−e−t

3 .

(ii) Evaluate L−1
{

1
(s−3)(s+4)

}
Answer: 1

7(e3t− e−4t).

13.6 Some special types of integral equations

Definition 13.31. (i) Integro-differential equation: An integral equation in which various derivatives of the
unknown function y(t) can also be present is said to be an integro-differential equation. For example, the
following integral equation is an integro-differential equation.

y′(t) = y(t) + f(t) +

∫ t

0
sin(t− x)y(x) dx.

Definition 13.32. (i) Integral equation of convolution type: The integral equation

y(t) = f(t) +

∫ t

0
K(t− x)y(x) dx,

in which the kernel K(t− x) is a function of the difference (t− x) only, is known as integral equation of the
convolution type. Using the definition of convolution, we may re-write it as

y(t) = f(t) +K(t) ∗ y(t).

Example 13.33. Solve the integro-differential equation

y′(t) = sin t+

∫ t

0
y(t− x) cosx dx, where y(0) = 0

131

Solution: Rewriting the given equation, we have

y′(t) = sin t+ y(t) ∗ cos t, y(0) = 0

Applying the Laplace transform on both sides, we obtain

L{y′t)} = L{sin t}+ L{y(t) ∗ cos t}

⇒ pL{y(t)} − y(0) =
1

p2 + 1
+ L{y(t)}L{cos t}

⇒
(

1− 1

p2 + 1

)
pL{y(t)} =

1

p2 + 1

⇒ L{y(t)} =
1

p3
, Inverting we have y(t) = L−1{ 1

p3
} =

t2

2!
=
t2

2
.

Exercise 13.34. (i) Solve y′(t) = t+
∫ t
0 y(t− x) cosx dx, y(0) = 4 Answer: y(t) = 4 + 5

2 t
2 + 1

24 t
4.

Example 13.35. Solve the integral equation y(t) = 1 +
∫ t
0 y(x) sin(t− x) dx, .

Solution: The given integral equation can be re-written as y(t) = 1 + y(t) ∗ sin t. Applying Laplace
transform, we obtain

L{y(t)} = L{1}+ L{y(t)} · L{sin t}

⇒ L{y(t)} =
1

p
+ L{y(t)} × 1

p2 + 1
⇒
(

1− 1

p2 + 1

)
L{y(t)} =

1

p

⇒ L{y(t)} =
p2 + 1

p3
=

1

p
+

1

p3

Inverting the above equation, we have

y(t) = L−1{y(t)} = L−1{1

p
}+ L−1{ 1

p3
} = 1 +

t2

2!
= 1 +

t2

2
.

Exercise 13.36. (i) Solve y(t) = a sin t−
∫ t
0 y(x) cos(t−x) dx, Answer: y(t) = a t e−t.

(ii) Solve y(t) = e−t − 2
∫ t
0 cos(t− x) y(x) dx Answer: y(t) = e−t(1− t)2.

(iii) Solve y(t) = t+2
∫ t
0 cos(t−x)y(x) dx Answer: y(t) = 2et(t−1)+2+ t.

(iv) Solve t =
∫ t
0 e

t−xy(x) dx Answer: y(t) = 1− t.

13.7 Application to solve ordinary differential equations

Consider the differential equation

a
d2x

dt2
+ b

dx

dt
+ x = F (t) (13.7.1)

Case I: When a, b are constants. Taking Laplace transform on the both sides of Eq. (13.7.1), we have

aL{x′′}+ bL{x′}+ L(x) = L{F (t)}. (13.7.2)

132

Letting L{x(t)} = x(s), we have from Eq. (13.7.2)

a{s2x− s x(0)− x′(0)}+ b{sx− x(0)}+ x = f(s)

Required solution is obtained by taking the inverse Laplace transform of x(s).

Example 13.37. Solve by using Laplace transformation:

(D2 + 9)y = cos(2t) if y(0) = 1, y(π/2) = −1

Solution: Taking Laplace transform, we get

p2y − py(0)− y′(0) + 9y =
p

p2 + 22

⇒ (p2 + 9)y = p+ a+
p

p2 + 22
where y′(0) = a

⇒ y =
p

p2 + 32
+

a

p2 + 32
+

p

(p2 + 22)(p2 + 32)

⇒ y =
p

p2 + 32
+

a

p2 + 32
+

1

5

[
p

p2 + 22
− p

p2 + 32

]
⇒ y =

4

5

p

p2 + 32
+

a

p2 + 32
+

1

5

p

p2 + 22

Taking inverse Laplace transform, we get

y =
4

5
cos 3t+

a

3
sin 3t+

1

5
cos 2t ⇒ −1 = y(π/2) = 0− a

3
− 1

5
⇒ a

3
=

4

5

∴ y =
4

5
cos 3t+

4

5
sin 3t+

1

5
cos 2t.

Example 13.38.

Solve 2
d2y

dt2
+ 5

dy

dt
+ 2y = e−2t, y(0) = 1, y′(0) = 1

Solution: Taking Laplace transform of the equation

(2D2 + 5D + 2)y = e−2t,

we get 2[s2y − sy(0)− y′(0)] + 5[sy − y(0)] + 2y =
1

s− 2

Putting y(0) = 1 = y′(0), we get

2[s2y − s− 1] + 5[sy − 1] + 2y =
1

s− 2

⇒ (2s2 + 5s+ 2)y − 2s− 7 =
1

s− 2

⇒ y =
1

(s+ 2)(2s2 + 5s+ 2)
+

2s+ 7

2s2 + 5s+ 2

⇒ y =
1

(s+ 2)2(2s+ 1)
+

2s+ 7

(s+ 2)(2s+ 1)

133

Now L−1
{

1

(s+ 2)2
(2s+ 1)

}
= e−2tL−1

{
1

s2{2(s− 2) + 1}

}
= e−2tL−1

{
1

s2(2s− 3)

}
But

1

s(2s− 3)
=

1

3

[
2

2s− 3
− 1

s

]
=

1

3

[
1

s− 3
2

− 1

s

]

⇒ L−1
{

1

s(2s− 3)

}
=

1

3

[
e3t/2 − 1

]
⇒ L−1

{
1

s2(2s− 3)

}
=

1

3

∫ t

0

[
e3t/2 − 1

]
dx

⇒ L−1
{

1

s2(2s− 3)

}
=

2

3

[
e3t/2 − 1

]
− 1

3
t

and
2s+ 7

(s+ 2)(2s+ 1)
=

4

2s+ 1
− 1

s+ 2
=

2

s+ 1
2

− 1

s+ 2

⇒ L−1
{

2s+ 7

(s+ 2)(2s+ 1)

}
= 2e−t/2 − e−2t.

Using these inverse Laplace transforms we get

y(t) = (2e−t/2 − e6−2t) + e−2t
[

2

9
(e3t/2 − 1)− t

3

]
=

20

9
e−t/2 − e−2t

(
11

9
+
t

3

)

Exercise 13.39. (i) Solve y′′ + 25y = 10 cos(5t), y(0) = 2, y′(0) = 0, Answer: y(t) =
t sin 5t+ 2 cos(5t).
(ii) Solve (D + D2)x = 2 when x(0) = 3, x′(0) = 1 Answer:
y(t) = e−t + 2t+ 2.
(iii) Solve (D2+D)y = t2+2twhen y(0) = 4, y′(0) = −2 Answer: 2+2e−t+ t3

3 .

Case II: When a, b are functions of t, i.e., of the form

t2
d2x

dt2
+ t

dx

dt
+ x = F (t) (13.7.3)

In this case, we use the theorem

L

{
tm
dnx

dtn

}
= L{tmx(n)(t)} = (−1)m

dm

dsm
L{x(n)} (13.7.4)

Taking the Laplace transform of Eq. (13.7.3),

(−1)2
d2

ds2

[
s2x− s x(0)− x′(0)

]
− d

ds

{
sx− x(0)

}
+ x = f(s)

The required solution is obtained by taking inverse Laplace transform of x(s).

Example 13.40. Using Laplace transform solve the following differential equation.

y′′ + ty′ − y = 0 if y(0) = 0, y′(0) = 1

134

Solution: Taking Laplace transform of y′′ + ty′ − y = 0, we get

p2y − py(0)− y′(0) + (−1)1
d

dp

[
py − y(0)

]
− y = 0

Putting y(0) = 0, y′(0) = 1, we get

p2y − 1− d

dp

[
p y
]
− y = 0

⇒ (p2 − 1)y −
(
y + p

dy

dp

)
= 1

⇒ (p2 − 2)y − pdy
dp

= 1

⇒ dy

dp
+

(
2

p
− p
)
y = −1

p

Therefore the integrating factor

I.F = e
∫ (

2
p
−p
)
dp

= e2 log p−p
2/2 = elog p

2 · e−p2/2 = p2e−p
2/2

Therefore

yp2e−p
2/2 = c+

∫
(p2e−p

2/2)

(
−1

p
dp

)
= c−

∫
pep

2/2dp.

Put p2/2 = z, then p dp = dz. Therefore,

yp2e−p
2/2 = c−

∫
e−zdz = c+ e−z = c+ e−p

2/2

⇒ y =
c

p2
ep

2/2 +
1

p2

Taking inverse transform,

y(t) = t+ cL−1
{

1

p2
ep

2/2

}
Subjecting this to the condition y = 0 when t = 0, we get c = 0. Therefore, the solution is

y(t) = t

Exercise 13.41. (i) Solve ty′′ + (1− 2t)y′ − 2y = 0, y(0) = 1, y′(0) = −2 Answer: y(t) = e2t.

135

Unit 14

Course Structure

Fourier Transform : Definition and basic properties. Fourier transform of some elementary functions, of
derivatives. Inverse Fourier transform. Convolution theorem and Parseval’s relation. Applications of Fourier
inversion and convolution theorems. Fourier sine and cosine transforms.

14 Introduction

The Fourier transform is a generalization of the Fourier series representation of functions. The Fourier series
is limited to periodic functions, while the Fourier transform can be used for a larger class of functions which
are not necessarily periodic. Since the transform is essential to the understanding of several exercises, we
briefly explain some basic Fourier transform concepts in this unit.

Objective

After reading this unit readers will able to know fundamental mathematical properties of the Fourier transform
including linearity, shift, symmetry, scaling, modulation and convolution. Further, the reader will be able to
calculate the Fourier transform or inverse transform of common functions.

14.1 The Infinite Fourier Transform

Definition 14.1. Infinite Fourier sine transform: The Fourier sine transform of F (x) on 0 < x < ∞ is
denoted by fs(s) or Fs{F (x)} and is defined as

fs(s) = Fs{F (x)} =

∫ ∞
0

F (x) sin sx dx.

The inverse formula for infinite Fourier sine transform is given by

F (x) = F−1s {fs(s)} =
2

π

∫ ∞
0

fs(s) sin sx ds.

Definition 14.2. Infinite Fourier cosine transform: The Fourier sine transform of F (x) on 0 < x < ∞ is
denoted by fc(s) or Fc{F (x)} and is defined as

fc(s) = Fc{F (x)} =

∫ ∞
0

F (x) cos sx dx.

The inverse formula for infinite Fourier cosine transform is given by

F (x) = F−1c {fc(s)} =
2

π

∫ ∞
0

fc(s) cos sx ds.

136

Definition 14.3. Infinite Fourier transform: The infinite Fourier transform of F (x) on 0 < x < ∞ is
denoted by f(s) or F{F (x)} and is defined as

f(s) = F{F (x)} =

∫ ∞
−∞

F (x)e−isx dx.

The inverse formula for infinite Fourier sine transform is given by

F (x) = F−1{f(s)} =
1

2π

∫ ∞
−∞

f(s) eisx ds.

14.2 Relationship between Fourier transform and Laplace transform

We define a function as follows:

F (t) =

{
e−xtφ(t), , t > 0
0 , t < 0

Taking infinite Fourier transform of this function we obtain

F{F (t)} =

∫ ∞
−∞

e−iytF (t) dt =

∫ 0

−∞
e−iytF (t) dt+

∫ ∞
0

e−iytF (t) dt

=

∫ 0

−∞
e−iyt · 0 dt+

∫ ∞
0

e−iyte−xtφ(t) dt =

∫ ∞
0

e−(x+iy)tφ(t) dt

= e−stφ(t) dt = L{φ(t)}, where s = x+ iy

Therefore F{F (t)} = L{φ(t)}. This is the required relation between Fourier transform and Laplace trans-
form.

14.3 Some theorems

Theorem 14.4. Linear Property: If c1 and c2 are arbitrary constants, then

F{c1F (x) + c2G(x)} = c1F{F (x)}+ c2F{G(x)}

Theorem 14.5. Change of Scale Property: If f(s) is the Fourier transform of F (x), then 1
af
(
s
a

)
is the

Fourier transform of F (ax).

Theorem 14.6. Shifting Property: If f(s) is the Fourier transform of F (x), then e−iasf(s) is the Fourier
transform of F (x− a).

Theorem 14.7. Modulation Theorem: If F (x) has the Fourier transform f(s), then F (x) cos ax has the
Fourier transform

1

2
f(s− a) +

1

2
f(s+ a).

Theorem 14.8. Derivative Theorem: The Fourier transform of F ′(x), the derivative of F (x), is is f(s),
where f(s) is the Fourier transform of F (x). Moreover,

F

{
dnF

dxn

}
= (is)nf(s), where F{F (x)} = f(s)

if the first (n− 1) derivative of F (x) vanish identically as x→ ±∞.

137

• Proofs are left as exercise.

Theorem 14.9. Convolution Theorem: The convolution for the Fourier transform is defined as

F ∗G =

∫ ∞
−∞

F (u) G(x− u) du.

If F{f(x)} and F{g(x)} are the Fourier transforms of functions f(x) and g(x) respectively, then Fourier
transform of the convolution of f(x) and g(x) is the product of the their Fourier transforms, i.e.,

F{f(x) ∗ g(x)} = F{f(x)} · F{g(x)}

Proof.

We have F{f(x) ∗ g(x)} =

∫ ∞
−∞
{f(x) ∗ g(x)}e−isxdx

=

∫ ∞
x=−∞

[∫ ∞
u=−∞

f(u) g(x− u) du

]
e−isxdx

=

∫ ∞
u=−∞

f(u)

[∫ ∞
x=−∞

g(x− u)e−isxdx

]
du (Changing order of integration)

=

∫ ∞
u=−∞

f(u)e−isuF{g(x)}du (Using Shifting Property)

= F{g(x)}
∫ ∞
u=−∞

f(u)e−isudu

= F{g(x)} · F{f(x)} = F{f(x)} · F{g(x)}

Example 14.10. Find the Fourier transform of f(x) =

{
x |x| ≤ a
0 |x| > a.

Solution: Given that f(t) =

{
t −a ≤ t ≤ a
0 |t| > a.

Now

F{f(t)} =

∫ ∞
−∞

e−istf(t) dt

=

∫ −a
−∞

e−istf(t) dt+

∫ a

−a
e−istf(t) dt+

∫ ∞
a

e−istf(t) dt

=

∫ a

∞
eisyf(−y) (−dy) +

∫ a

−a
e−ist t dt+

∫ ∞
a

e−ist · 0 · dt

=

∫ ∞
a

eisy · 0 · dy +

∫ a

−a
e−ist t dt

=
(
− a
is

)
{e−isa + eisa}+

1

s2
{e−isa − eisa}

=

(
2ai

s

)
cos(sa)− 2

s2
sin(sa)

Example 14.11. Find the Fourier transform of f(x) =

{
1 |x| < a
0 |x| > a.

and hence evaluate

(i)

∫ ∞
−∞

sin sa · cos sx

s
dx, (ii)

∫ ∞
0

sin s

s
ds.

138

Solution: For the first part, proceed as the above example and find the answer is 2
s sin sa. For the second

part, let F{f(x)} = f(s). We know that if

f(s) = F{f(x)} =

∫ ∞
−∞

f(x)e−isxdx then f(x) = F−1{f(s)} =
1

2π

∫ ∞
−∞

f(s)eisxds.

∴
∫ ∞
−∞

f(s)eisxds = 2πf(x) =

{
2π if|x| < a
0 if|x| > a.

But f(s) = 2 sin sa
s , by first part.

∴
∫ ∞
−∞

2 sin sa

s
(cos sx+ i sin sx) ds =

{
2π if |x| < a
0 if |x| > a.

⇒
∫ ∞
−∞

sin sa cos sx

s
ds+ i

∫ ∞
−∞

sin sa sin sx

s
ds =

{
π if |x| < a
0 if |x| > a.

Equating real parts on the both sides, we obtain∫ ∞
−∞

sin sa sin sx

s
ds =

{
π if |x| < a
0 if |x| > a.

Now if x = 0 and a = 1, then the second part gives∫ ∞
−∞

sin s

s
ds = π ⇒ 2

∫ ∞
0

sin s

s
ds = π ⇒

∫ ∞
0

sin s

s
ds =

π

2
.

Exercise 14.12. (i) Find the Fourier transform of F (x) =

{
(1− x2), |x| < 1
0 |x| > 1.

and hence evaluate
∫∞
0

(
x cosx−sinx

x3

)
cos
(
x
2

)
dx. Answer: f(s) = 4

s3
(sin s−s cos s);−3π

16 .
(ii) Show that the Fourier transform of f(x) = e−x

2/2 is
√

2πe−s
2/2

(iii) Find the complex Fourier transform of f(x) = e−a|x| Answer: f(s) = 2a
s2+a2

.
(iv) Find the inverse Fourier transform of f(s) = e−|s|y Answer: F−1{f(s)} = y

π(y2+x2)
.

14.4 Problems related to Integral Equations

Example 14.13. Solve the integral equation
∫∞
0 f(x) cos sx dx = e−λ.

Solution: We have
∫∞
0 f(x) cos sx dx = e−s. By definition,

Fc{f(x)} =

∫ ∞
0

f(x) cos sx dx = f c(s) and F−1c {f c(s)} = f(x) =
2

π

∫ ∞
0

f c(s) cos sx ds

Comparing this with the given equation, we have f c(s) = e−s. Using this, we obtain

f(x) =
2

π

∫ ∞
0

e−s cosxs ds =
2

π

1

1 + x2
.

Example 14.14. Solve the integral equation
∫∞
0 F (x) sin(xt) dx = F (x) =


1 , 0 ≤ t < 1
2 , 1 ≤ t < 2
0 , t ≥ 2

139

Solution: By the definition, we know

Fs{F (x)} =

∫ ∞
0

F (x) sin(sx) dx = fc(s). (14.4.1)

Then fs(s) =


1 , 0 ≤ t < 1
2 , 1 ≤ t < 2
0 , t ≥ 2

The sine inversion formula relative to (14.5.1) is

F−1s {fs(s)} = F (x) =
2

π

∫ ∞
0

fs(s) sin sx ds

From which we have

π

2
F (x) =

∫ ∞
0

fs(s) sin sx ds

⇒ π

2
F (x) =

∫ 1

0
fs(s) sin sx dx+

∫ 2

1
fs(s) sin sx ds+

∫ ∞
2

fs(s) sin sx ds

⇒ π

2
F (x) =

∫ 1

0
1 · sin sx dx+

∫ 2

1
2 · sin sx ds+

∫ ∞
2

0 · sin sx ds

⇒ π

2
F (x) =

1

x

[
(1− cosx) + 2(cosx− cos 2x)

]
=

1 + cosx− 2 cos 2x

x

⇒ F (x) =
2

πx
(1 + cosx− 2 cos 2x)

Exercise 14.15. (i) Show that
∫∞
0

cosλx
λ2+1

dλ = π
2 e
−x

(ii) Solve the integral equation
∫∞
0 F (x) cosλx dx =

{
1− λ, 0 ≤ λ ≤ 1
0, λ > 1.

Answer: F (x) = 2
πx2

(1− cosx)

14.5 The finite Fourier Transform

Definition 14.16. The finite Fourier sine transform of F (x): The finite Fourier sine transform of F (x) on
0 < x < l, is defined by

Fs{F (x)} = fs(s) =

∫ l

0
F (x) sin

sπx

l
dx

where s is a positive integer. The function F (x) is then called the inverse finite Fourier sine transform of fs(s)
and is given by

F−1s {fs(s)} = F (x) =
2

l

∞∑
s=1

fs(s) sin
sπx

l

This formula is obtained from Fourier sine series f(x) =
∞∑
n=1

bn sin
nπx

l
.

Definition 14.17. The finite Fourier cosine transform of F (x): The finite Fourier cosine transform of F (x)
on 0 < x < l, is defined by

Fc{F (x)} = fc(s) =

∫ l

0
F (x) cos

sπx

l
dx

140

where s is a positive integer or zero. The function F (x) is then called the inverse finite Fourier cosine
transform of fc(s) and is given by

F−1c {fc(s)} = F (x) =
1

l
fc(0) +

2

l

∞∑
s=1

fc(s) cos
sπx

l

This formula is obtained from Fourier cosine series F (x) =
a0
2

+
∞∑
n=1

bn cos
nπx

l
.

Theorem 14.18. Fourier Integral Theorem: It sates that if f(x) satisfies the following conditions:

• f(x) satisfies the Dirichlet conditions in every interval −l ≤ x ≤ l.

•
∫∞
−∞ |f(x)| dx converges, i.e., f(x) is absolutely integrable in the interval −∞ < x <∞, then

f(x) =
1

2π

∫ ∞
s=−∞

∫ ∞
t=−∞

f(t) cos s(x− t) ds dt.

The integral on R.H.S is called Fourier integral or Fourier integral expansion of f(x).

Theorem 14.19. Different forms of Fourier integral formula:

(i)f(x) =
1

π

∫ ∞
s=0

∫ ∞
t=−∞

f(t) cos s(x− t) ds dt.

(ii)f(x) =
2

π

∫ ∞
0

∫ ∞
0

f(t) cos st cos sx ds dt (Cosine Form)

(iii)f(x) =
2

π

∫ ∞
0

∫ ∞
0

f(t) sin st sin sx ds dt (Sine Form)

(iv)f(x) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(t) e−isteisx ds dt (Exponential Form)

Theorem 14.20. Parseval’s identity for Fourier series: Suppose the Fourier series corresponding to f(x)
converges uniformly to f(x) in the interval −l < x < l, then

1

l

∫ l

−l

[
f(x)

]2
dx =

a20
2

+

∞∑
n=1

(a2n + b2n),

where the integral on L.H.S is supposed to exist.

Proof. Let the Fourier series of f(x) converges uniformly to f(x) at every point of the interval −l < x < l,
so that

f(x) =
a0
2

+
∞∑
n=1

(
an cos

nπx

l
+ bn sin

nπx

l

)
(14.5.1)

and that term by term integration of this series is possible. Here

an =
1

l

∫ l

−l
f(x) cos

nπx

l
dx (n = 0, 1, 2, 3, . . .) and bn =

1

l

∫ l

−l
f(x) sin

nπx

l
dx (n = 1, 2, 3, . . .)

141

Multiplying (14.5.1) by f(x) and integrating term by term from −l to l, we get∫ l

−l

[
f(x)

]2
dx =

a0
2

∫ l

−l
f(x) dx+

∞∑
n=1

an

∫ l

−l
f(x) cos

nπx

l
dx+

∞∑
n=1

bn

∫ l

−l
f(x) sin

nπx

l
dx

⇒
∫ l

−l

[
f(x)

]2
dx =

a0
2
· la0 +

∞∑
n=1

l(a2n + b2n)

⇒ 1

l

∫ l

−l

[
f(x)

]2
dx =

a20
2

+

∞∑
n=1

(a2n + b2n)

Theorem 14.21. Parseval’s identity for Fourier transform. Rayleigh’s Theorem: If f(p) and g(p) are
complex Fourier transforms of F (x) and G(x) respectively, then

(i)
1

2π

∫ ∞
−∞

f(p) g(p) dp =

∫ ∞
−∞

F (x) G(x) dx and (ii)
1

2π

∫ ∞
−∞
|f(p)|2 dp =

∫ ∞
−∞
|F (x)|2 dx

where bar represents the complex conjugate.

Proof. Using the inversion formula for Fourier transform, we get

G(x) =
1

2π

∫ ∞
−∞

g(p) eipx dp (14.5.2)

Taking conjugate complex of the both sides in (14.5.2), we obtain

G(x) =
1

2π

∫ ∞
−∞

g(p)e−ipx dp (14.5.3)

Therefore,∫ ∞
−∞

F (x) G(x) dx =

∫ ∞
−∞

F (x) dx ·
{

1

2π

∫ ∞
−∞

g(p)e−ipx dp

}
, (Using (14.5.3))

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

F (x) g(p)e−ipx dx dp (On changing order of integration)

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

F (x) g(p)e−ipx dp dx

=
1

2π

∫ ∞
−∞

g(p) dp

[∫ ∞
−∞

F (x) e−ipx dx

]
=

1

2π

∫ ∞
−∞

g(p) dp {f(p)} (By the def. of Fourier transform)

=
1

2π

∫ ∞
−∞

f(p) g(p) dp

Thus, we have proved that ∫ ∞
−∞

F (x) G(x) dx =
1

2π

∫ ∞
−∞

f(p) g(p) dp. (14.5.4)

This proves the first part. Now putting G(x) = F (x) in (14.5.4), we get∫ ∞
−∞

F (x) F (x) dx =
1

2π

∫ ∞
−∞

f(p) f(p) dp ⇒
∫ ∞
−∞
|F (x)|2 dx =

1

2π

∫ ∞
−∞
|f(p)|2 dp.

142

Example 14.22. Use Parseval’s identity to prove that

(i)

∫ ∞
0

dt

(a2 + t2)(b2 + t2)
=

π

2ab(a+ b)
, (ii)

∫ ∞
0

sin(at) dt

t(a2 + t2)
=
π

2

(
1− e−a2

a2

)
.

Solution: (i) Let F (x) = e−ax, G(x) = e−bx. Now,

fc(p) =

∫ ∞
0

F (x) cos(px) dx =

∫ ∞
0

e−ax cos(px) dx =
a

a2 + p2

Similarly, we can find gc(p) = b
b2+p2

. By Parseval’s identity for Fourier transform, we get

2

π

∫ ∞
0

fc(p) gc(p) dp =

∫ ∞
0

F (x) G(x) dx.

Putting values, we get

2

π

∫ ∞
0

a

(a2 + p2)
· b

(b2 + p2)
dp =

∫ ∞
0

e−ax · e−bx dx

⇒
∫ ∞
0

dp

(b2 + p2)(a2 + p2)
=

π

2ab

[
e−(a+b)x

−(a+ b)

]∞
x=0

=
π

2ab(a+ b)
{1− 0}

⇒
∫ ∞
0

dt

(b2 + t2)(a2 + t2)
=

π

2ab(a+ b)

(ii) Let F (x) = e−ax, then fc(p) = a
a2+p2

. Also let G(x) =

{
1 , 0 < x < a
0 , x > a.

Then

gc(p) =

∫ ∞
0

G(x) cos(px) dx

=

∫ a

0
G(x) cos(px) dx+

∫ ∞
a

G(x) cos(px) dx

=

∫ a

0
cos(px) dx+

∫ ∞
a

0 · cos(px) dx

=

[
sin(px)

p

]a
x=0

=
sin(pa)

p

Since
2

π

∫ ∞
0

fc(p) gc(p) dp =

∫ ∞
0

F (x) G(x) dx

⇒ 2

π

∫ ∞
0

a

a2 + p2
sin(pa)

p
dp =

∫ ∞
0

e−ax G(x) dx

⇒ 2a

π

∫ ∞
0

sin(pa) dp

p(a2 + p2)
dp =

∫ a

0
e−ax G(x) dx+

∫ ∞
a

e−ax G(x) dx

⇒ 2a

π

∫ ∞
0

sin(pa) dp

p(a2 + p2)
dp =

∫ a

0
e−ax · 1 dx+

∫ ∞
a

e−ax · 0 dx

⇒ 2a

π

∫ ∞
0

sin(pa) dp

p(a2 + p2)
dp =

1

a
(1− e−a2)

⇒
∫ ∞
0

sin(pa) dp

p(a2 + p2)
dp =

π

2a2
(1− e−a2).

143

Example 14.23. Find the Fourier transform of f(x) defined by

f(x) =

{
1 , |x| < a
0 , |x| > a.

and hence prove that ∫ ∞
0

sin2(ax)

x2
dx =

πa

2
.

Solution: First Part:

F{f(x)} =

∫ ∞
−∞

e−ipxf(x) dx

=

∫ −a
−∞

e−ipx f(x) dx+

∫ a

−a
e−ipx f(x) dx+

∫ ∞
a

e−ipx f(x) dx

=

∫ a

∞
eipy f(−y) (−dy) +

∫ a

−a
e−ipx dx+

∫ ∞
a

e−ipx · 0 dx

=

∫ ∞
a

eipy · 0 · dy +
1

−ip

(
e−ipx

)a
−a

+ 0

=
eipa − e−ipa

ip
=

2

p
sin pa = f(p)

Second Part: Using Parseval’s identity for Fourier integral, we get∫∞
−∞ |f(x)|2dx =

1

2π

∫ ∞
−∞
|f(p)|2dp

⇒
∫ a
−a 12dx =

1

2π

∫ ∞
−∞

4

p2
sin2 pa dp

⇒ 2a =
2

2π

∫ ∞
0

4

p2
sin2 pa dp

⇒
∫∞
0

sin2(ax)
x2

dx =
πa

2
.

14.6 Problems related to finite Fourier Sine and Cosine transform:

Example 14.24. Find finite Fourier sine and cosine transform of

f(x) = x2, 0 < x < 4.

Solution: (i)

Fs{f(x)} =

c∫
0

f(x) sin
nπx

c
dx =

4∫
0

x2 sin
nπx

4
dx

=

[
− 4

nπ
x2 cos

nπx

4

]4
x=0

+

4∫
0

2x
4

nπ
cos

nπx

4
dx

= − 43

nπ
cosnπ +

8

nπ

[
4x

nπ
sin

nπx

4
+

42

n2π2
cos

nπx

4

]4
x=0

= − 43

nπ
cosnπ +

8 · 42

nπ · n2π2
(cosnπ − 1)

∴ fs(n) = − 64

nπ
cosnπ +

128

n3

144

(ii)

Fc{f(x)} = f c(n) =

4∫
0

f(x) cos
nπx

4
=

4∫
0

x2 cos
nπx

4
dx

=

[
4x2

nπ
sin

nπx

4

]4
x=0

−
4∫

0

4

nπ
2x sin

nπx

4
dx

= 0− 8

nπ

[
− 4x

nπ
cos

npx

4
+

42

n2π2
sin

nπx

4

]4
x=0

=
128

n2π2
cosnπ

Example 14.25. Find f(x) if its finite sine transform is given by

f s(s) =
1− cos sπ

s2π2
, where 0 < x < π, s = 1, 2, 3, . . .

Solution: We know that

f(x) =
2

l

∞∑
n=1

fs(n) sin
nπx

l
.

In our case this becomes

f(x) =
2

π

∞∑
s=1

fs(s) sin
(sπx
π

)
=

2

π

∞∑
s=1

1− cos sπ

s2π2
sin sx

⇒ f(x) =
2

π3

∞∑
s=1

(
1− cosπs

s2

)
sinxs.

Exercise 14.26. (i) Find the finite cosine transform of
(

1− x

π

)2
. Answer: fc(s) =

{
π
3 , s = 0
2
πs2

, s = 1, 2, 3, . . .

(ii) Show that the finite sine transform of x
π is (−1)s+1 1

s

(iii) When f(x) = sinmx, where, m is a positive integer, show that fs(p) =

{
0, p 6= m
π
2 , p = m

(iv) If fs(n) = 2π (−1)n−1

n2 , n = 1, 2, 3, . . . where 0 < x < π, then find f(x). Answer: 2
s sin sπ

2 , s > 0

(v) Find the finite cosine transform of f(x) if f(x) =

{
1, 0 < x < π

2
−1, π

2 < x < π

(vi) Show that fc

{
x2

2π
− π

6

}
=

{
0, n = 0
(−1)n/n2, n = 1, 2, 3, . . .

145

Unit 15

Course Structure

Hankel Transform : Definition and inversion formula. Hankel transform of derivatives. Finite Hankel trans-
form.

15 Introduction

Hankel transforms are integral transformations whose kernels are Bessel functions. They are sometimes re-
ferred to as Bessel transforms. When we are dealing with problems that show circular symmetry, Hankel
transforms may be very useful. Laplace’s partial differential equation in cylindrical coordinates can be trans-
formed into an ordinary differential equation by using the Hankel transform. Because the Hankel transform is
the two-dimensional Fourier transform of a circularly symmetric function, it plays an important role in optical
data processing.

15.1 Definition: Infinite Hankel Transform

The infinite Hankel transform of a function f(x), 0 < x <∞, is defined as

H{f(x)} = f(s) =

∫ ∞
0

fn(x) · xJn(sx) dx (15.1.1)

where Jn(sx) is the Bessel function of the first kind of order n. Also here f(s) is defined as Hankel transform
of order n of the function f(x).

Remark: In the integral (15.1.1), xJn(sx) is called the Kernel of the transformation.

15.2 Definition: Inverse Hankel Transform

If f(s) is the infinite Hankel transform of order n of the function f(x), then we write

H{f(x)} = f(s) =

∫ ∞
0

f(x) · xJn(sx) dx. (15.2.1)

Here f(x) is called the inverse transform of the function f(s) and we write f(x) = H−1{f(s)}. The inverse
formula for inverse Hankel Transform is

f(x) = H−1{f(s)} =

∫ ∞
0

f(s) · sJn(sx) ds. (15.2.2)

15.3 Some Important Results on Bessel functions

I. Bessel function of first kind:Jn(x) =

∞∑
r=0

(−1)r

r!Γ(n+ r + 1)

(x
2

)n+2r

146

II. Recurrence formula forJn(x) :

(i) xJ ′n(x) = nJn(x)− xJn+1(x) (ii) xJ ′n(x) = −nJn(x) + xJn−1(x)

(iii) 2Jn(x) = Jn−1(x)− Jn+1(x) (iv) 2nJ ′n(x) = x[Jn−1(x) + Jn+1(x)]

(v)
d

dx

[
x−nJn(x)

]
= −x−nJn+1(x) (vi)

d

dx
[xnJn(x)] = xnJn−1(x)

III. Infinite Integrals Involving Bessel Functions

(i)

∫ ∞
0

e−axJ0(sx) dx = (a2 + s2)−1/2 (ii)

∫ ∞
0

e−axJ1(sx) dx =
1

s
− a

s(a2 + s2)1/2

(iii)

∫ ∞
0

xe−axJ0(sx) dx = a(a2 + s2)−3/2 (iv)

∫ ∞
0

e−axJ1(sx) dx = s(a2 + s2)−3/2

(v)

∫ ∞
0

e−ax

x
J1(sx) dx =

(a2 + s2)1/2 − a
s

Theorem: If f(x) and g(x) are two functions and a, b two constants, then

H{af(x) + bg(x)} = aH{f(x)}+ bH{g(x)}

Proof:

H{af(x) + bg(x)} =

∫ ∞
0

x[af(x) + bg(x)]Jn(sx) dx

= a

∫ ∞
0

xf(x)Jn(sx) dx + b

∫ ∞
0

xg(x)Jn(sx) dx

= aH{f(x)}+ bH{g(x)}

Theorem: If H{f(x)} = f(s), then H{f(ax)} = 1
a2
f
(
s
a

)
, a being a constant.

Proof: Let H{f(x)} = f(s). Then

H{f(ax)} =

∫ ∞
0

xf(ax)Jn(sx) dx

=

∫ ∞
0

y

a
f(y)Jn

(sy
a

) dy
a
, where ax = y

=
1

a2

∫ ∞
0

yf(y)Jn

(s
a
y
)
dy

=
1

a2
f
(s
a

)
Example: Find the Hankel transform of e

−ax

x , taking xJ0(sx) as the kernel of the transform.

Solution:

H

{
e−ax

x

}
=

∫ ∞
0

e−ax

x
xJ0(sx) dx =

∫ ∞
0

e−axJ0(sx) dx = (a2 + s2)−1/2

147

Theorem: Hankel transform of the derivatives of a function

Let f(s) be the Hankel transform of order n of the function f(x) and f ′n(s) is the transform of f ′(x). Then

f ′n(s) = − s

2n

[
(n+ 1)fn−1(s)− (n− 1)fn+1(s)

]
.

Proof:

fn(s) =

∫ ∞
0

xf(x)Jn(sx) dx

and f ′n(s) =

∫ ∞
0

x
df

dx
Jn(sx) dx ⇒ f ′n(s) =

∫ ∞
0

df

dx
[xJn(sx)] dx

Integrating by parts and assuming that x f(x)→ 0 as x→ 0 and x f(x)→ 0 as x→∞, we obtain

f ′n(s) =
[
f(x) · xJn(sx)

]∞
0
−
∫ ∞
0

f(x) · d
dx

[xJn(sx)] dx

= 0−
∫ ∞
0

f(x) [Jn(sx) + sx J ′n(sx)] dx (15.3.1)

But xJ ′n(x) = −nJn(x) + xJn−1(x). Replacing x by sx, we get

sxJ ′n(sx) = −nJn(sx) + sxJn−1(sx)

⇒ sxJ ′n(sx) + Jn(sx) = (1− n)Jn(sx) + sxJn−1(sx)

Using this in Eq.(15.3.1), we have

f ′n(sx) = −
∫ ∞
0

f(x)
[
(1− n)Jn(sx) + sxJn−1(sx)

]
dx

⇒ f ′n(sx) = −(1− n)

∫ ∞
0

f(x)Jn(sx) dx− s
∫ ∞
0

xf(x)Jn−1(sx) dx

⇒ f ′n(sx) = −(1− n)

∫ ∞
0

f(x)Jn(sx) dx− sfn−1(s) (15.3.2)

We know from Recurrence formula for Jn(x), that

2nJn(x) = x
[
Jn−1(x) + Jn+1(x)

]
Replacing x by sx, we have

2nJn(sx) = sx
[
Jn−1(sx) + Jn+1(sx)

]
Multiplying this by f(x) and then integrating, we obtain

2n

∫ ∞
0

f(x)Jsx dx = s

[∫ ∞
0

xf(x)Jn−1(sx) dx+

∫ ∞
0

xf(x)Jn+1(sx) dx

]
= s
[
fn−1(s) + fn+1(s)

]
⇒
∫ ∞
0

f(x)Jn(sx) dx =
s

2n

[
fn−1(s) + fn+1(s)

]

148

In this event Eq.(15.3.2) becomes

f ′n(s) = −(1− n)s

2n

[
fn−1(s) + fn+1(s)

]
− sfn−1(s)

⇒ f ′n(s) =
s

2n

[
(n− 1)fn−1(s) + (n− 1)fn+1 − 2nfn+1(s)

]
⇒ f ′n(s) =

s

2n

[
− (n+ 1)fn−1(s) + (n− 1)fn+1

]
⇒ f ′n(s) = − s

2n

[
(n+ 1)fn−1(s)− (n− 1)fn+1(s)

]
(15.3.3)

Remark 1. When n = 1, from Eq.(15.3.3) we have

f ′1(s) = −sf0(s)
⇒ H{f ′(x), n = 1} = −sH{f(x), n = 0}

Remark 2. When n = 2, from Eq.(15.3.3) we have

f ′2(s) = −s
4

[
3f1(s)− f3(s)

]
Remark 3. When n = 3, from Eq.(15.3.3) we have

f ′3(s) = −s
6

[
4f2(s)− 2f4(s)

]
Result 1. Prove that

f ′′n(s) =
s2

4

[(
n+ 1

n− 1

)
fn−2(s)− 2

(
n2 − 3

n2 − 1

)
fn(s) +

(
n− 1

n+ 1

)
fn+2(s)

]
.

Proof: From Eq.(15.3.3) we have

f ′n(s) = −s
[(

n+ 1

2n

)
fn−1(s)−

(
n− 1

2n

)
fn+1(s)

]
(15.3.4)

Replacing f by f ′, we get

f ′′n(s) = −s
[(

n+ 1

2n

)
f ′n−1(s)−

(
n− 1

2n

)
f ′n+1(s)

]
(15.3.5)

Replacing n by (n− 1), and (n+ 1) respectively in Eq.(15.3.4), we get

f ′n−1(s) = −s
[(

n

2(n− 1)

)
fn−2(s)−

(
n− 2

2(n− 1)

)
fn(s)

]
f ′n+1(s) = −s

[(
n+ 2

2(n+ 1)

)
fn(s)−

(
n

2(n+ 1)

)
fn+2(s)

]
Writing Eq.(15.3.5) with the help of these two equations, we obtain

f ′′n(s) =
s2

4

[(
n+ 1

n

){
n

n− 1
fn−2(s)−

n− 2

n− 1
fn(s)

}
−
(
n− 1

n

){(
n+ 2

n+ 1

)
fn(s)−

(
n

n+ 1

)
fn+2(s)

}]
=

s2

4

[(
n+ 1

n− 1

)
fn−2(s)− 2

(
n2 − 3

n2 − 1

)
fn(s) +

(
n− 1

n+ 1

)
fn+2(s)

]
.

149

Example: Find the Hankel transform of df
dx , when f = e−ax

x and n = 1.

Solution: Let f(x) = e−ax

x . To determine H
{
df
dx , n = 1

}
= f

′
1(s), we know that

f
′
1(s) = −sf0(s) = −s

∫ ∞
0

xf(x)J0(sx) dx

= −s
∫ ∞
0

x
e−ax

x
J0(sx) dx

= −s
∫ ∞
0

e−axJ0(sx) dx

= −s(a2 + s2)−1/2.

Example: Find the Hankel transform of x−2e−x of order one.

Solution:

H{x−2e−x, n = 1} =

∫ ∞
0

x−2e−xxJ1(sx) dx

=

∫ ∞
0

e−x

x
J1(sx) dx =

(1 + s2)1/2 − 1

s
.

Example: Evaluate H−1{s−2eas} when n = 1, that is, find out inverse Hankel transform of s−2e−as of
order one.

Solution:

H−1{s−2eas, n = 1} =

∫ ∞
0

s−2e−assJ1(sx) ds

=

∫ ∞
0

e−as

s
J1(sx) ds

=
(a2 + x2)1/2 − a

x

Example: Find the Hankel transformation of

f(x) =

{
1 0 < x < a, n = 0,
0 x > a, n = 0.

Solution:

H{f(x), n = 0} =

∫ ∞
0

f(x) · xJ0(sx) dx

=

∫ a

0
f(x) · xJ0(sx) dx+

∫ ∞
0

f(x) · xJ0(sx) dx

=

∫ a

0
1 · xJ0(sx) dx+

∫ ∞
0

0 · xJ0(sx) dx

=

∫ a

0
xJ0(sx) dx (15.3.6)

By Recurrence formula for Bessel’s function, we have

d

dx
{xnJn(x)} = xnJn−1(x).

150

Replacing n and x by 1 and sx respectively,

d

s dx
{sxJ1(sx)} = sxJ0(sx)

⇒ d

dx
{xJ1(sx)} = sxJ0(sx).

Integrating this form x = 0 to x = a,[
xJ1(sx)

]a
0

= s

∫ a

0
xJ0(sx) dx ⇒

∫ a

0
xJ0(sx) dx =

a

s
J1(sa). (15.3.7)

Now using Eq.(15.3.7) in Eq.(15.3.6) we obtain

H{f(x), n = 0} =
a

s
J1(sa)

Exercise 15.1. (i) Find the Fourier transform of F (x) =

{
(1− x2), |x| < 1
0 |x| > 1.

and hence evaluate
∫∞
0

(
x cosx−sinx

x3

)
cos
(
x
2

)
dx. Answer: f(s) = 4

s3
(sin s−s cos s);−3π

16 .

15.4 Finite Hankel Transform

Definition 15.2. Finite Hankel Transform: If f(x) satisfies Dirichlet’s conditions in the closed interval
[0, a], then its finite Hankel transform f(si) of order n is given by

f(si) =

∫ a

0
f(x) · xJn(xsi) dx, (15.4.1)

where a is positive root of the transcendental equation

Jn(asi) = 0 (15.4.2)

If the function f(x) is continuous at any point of the interval [0, a], then the inversion formula for f(si) is

f(x) =
2

a2

∑
i

f(si)
Jn(xsi

[J ′n(aci)]2
(15.4.3)

where the sum is taken over all the positive roots of the Eq.(15.4.2). If f(x) is represented by generalised
Fourier Bessel series

f(x) =
∑
i

ciJn(xsi), 0 ≤ x ≤ a, (15.4.4)

then the coefficient ci is given by

ci =
2

a2J2
n+1(asi)

∫ a

0
f(x) · xJn(xsi) dx

=
2f

a2[Jn+1(asi)]2
=

2f(si)

a2[J ′n(asi)]2

151

The recurrence formula,

xJ ′n(x) = nJn(x)− xJn+1(x).

∴ asiJ
′
n(asi) = nJn(asi)− asiJn+1(asi), [Replacing x by asi]

⇒ asiJ
′
n(asi) = −asiJn+1(asi) [Using (15.4.2)]

⇒ J ′n(asi) = −Jn+1(asi).

Consequently,

f(x) =
2

a2

∑
i

f(si)
Jn(xsi)

[Jn+1(asi)]2

Remark 15.3. It has been found in practice that the choice of unity as the upper limit of the integral defining
the transform is more convenient. Therefore the definition of finite Hankel transform becomes

f(si) =

∫ 1

0
f(x) · xJn(xsi) dx

Theorem 15.4. Finite Hankel transform of df
dx , i.e.,

Hn

(
df

dx

)
=

a∫
0

df

dx
xJn(sx) dx,

where s is any root of Jn(sa) = 0. To show that

Hn

{
df

dx

}
=

s

2n
[(n− 1)Hn+1{f(x)} − (n+ 1)Hn−1{f(x)}]

Proof. The finite Hankel transform of df
dx of order n is denoted by Hn

{
df
dx

}
.

Hn

{
df

dx

}
=

a∫
0

df

dx
· xJn(sx) dx

=
[
f(x) · xJn(sx)

]x=a
x=0
−

a∫
0

f(x) · d
dx
{xJn(sx)} dx

= −
a∫

0

f(x)
d

dx
{xJn(sx)} dx (15.4.5)

By Recurrence formula,

2J ′n(x) = Jn−1(x)− Jn+1(x) and 2nJn(x) = x[Jn−1(x) + Jn+1(x)]

Replacing x by sx in both equations,

2J ′n(sx) = Jn−1(sx)− Jn+1(sx) and 2nJn(sx) = sx[Jn−1(sx) + Jn+1(sx)]

Now
d

dx
{xJn(sx)} = Jn(sx) + sxJ ′n(sx)

=
sx

2n
[Jn−1(sx) + Jn+1(sx)] +

sx

2
[Jn−1(sx)− Jn+1(sx)]

=
sx

2n
[Jn−1(sx) · (1 + n) + (1− n)Jn+1(sx)]

152

Now from Eq.(15.4.5) we have

Hn

{
df

dx

}
= −

a∫
0

f(x) · sx
2n

[Jn−1(sx) · (n− 1) + (1− n)Jn+1(sx)]

= − s

2n

a∫
0

[f(x) · xJn−1(sx) · (1 + n)− (n− 1)f(x)xJn+1(sx)]dx

=
s

2n
[(n− 1)Hn+1{f(x)} − (1 + n)Hn−1{f(x)}]

Corollary 15.5. If n = 1, the the last gives

H1

{
df

dx

}
=
s

2
[0− 2H0{f(x)}] = −sH0{f(x)}

Theorem 15.6.

H

{
d2f

dx2
+

1

x

df

dx

}
=

s

2n

[
−Hn−1

{
df

dx

}
+Hn+1

{
df

dx

}]
H

{
d2f

dx2
+

1

x

df

dx
− n2

x2
f

}
= −sa f(a)J ′n(sa)− s2Hn{f(x)}

Proof. Proof of the above theorems are left as exercise.

Example 15.7. Show that
H0(c) =

ca

s
J1(as)

Solution:

H0{c} =

a∫
0

cxJ0(sx) dx = c

a∫
0

xJ0(sx) dx (15.4.6)

By recurrence formula No. (vi), we know that

d

dx
[xnJn(x)] = xnJn−1(x).

Putting n = 1,
d

dx
[xJ1(x)] = xJ0(x).

Replacing x by sx,we have
d

s dx
[sxJ1(sx)] = sxJ0(sx)

⇒ d

dx
{xJ1(sx)} = sxJ0(sx).

Using this in (15.4.6), we get

H0{c} =
c

s

a∫
0

d

dx
{xJ1(sx)} =

c

s

[
xJ1(sx)

]∞
0

=
ca

s
J1(sa).

Example 15.8. Find finite Hankel transform of x2 if xJ0(sx) is the Kernel of the transform.

153

Solution: By recurrence formula No. (iv) and (vi) we have

2nJn(x) = x[Jn−1(x) + Jn+1(x)] and
d

dx
[xnJn(x)] = xnJn−1(x)

Replacing x by sx, we have
2nJn(sx) = sx[Jn−1(sx) + Jn+1(sx)] (15.4.7)

d

s dx
[xnJn(sx)] = xnJn−1(sx). (15.4.8)

Now

H0{x2} =

a∫
0

x2 · xJ0(sx) dx =

a∫
0

x2 · d

s dx
{xJ1(sx)}dx, according to (15.4.8)

Integrating by parts, we obtain

H0{x2} =
1

s

[
x2 · xJ1(sx)

]a
0
− 1

s

a∫
0

2x · xJ1(sx) dx

=
a3

s
J1(sa)− 2

s

a∫
0

x2J1(sx) dx

=
a3

s
J1(sa)− 2

s

a∫
0

d

s dx
[x2J2(sx)] dx, [according to (15.4.8)]

=
a3

s
J1(sa)− 2

s2

[
x2J2(sx)

]a
0

=
a3

s
J1(sa)− 2a2

s2
J2(sa). (15.4.9)

Putting n = 1, x = a in (15.4.7), we have

2J1(sa) = sa[J0(sa) + J2(sa)] ⇒ 2

sa
J1(sa)− J0(sa) = J2(sa).

Putting this in Eq.(15.4.9), we obtain

H0{x2} =
a2

s
J1(sa)− 2a2

s2

[
2

sa
J1(sa)− J0(sa)

]
=

a3

s
J1(sa)− 4a2

s3a
J1(sa) +

2a2

s2
J0(sa)

=
a2

s2

[(
as− 4

as

)
J1(sa) + 2J0(sa)

]
Example 15.9. Find the finite Hankel transform of

1

r

∂

∂r

(
r
∂V

∂r

)
− n2V

r2
, where V =

{
0 when r = 0
V1 when r = 1.

Solution: From the problem it is clear that we should take the limits x = 0 and x = 1 of the transform.

Let f(r) =
1

r

∂

∂r

(
r
∂V

∂r

)
− n2V

r2

154

Then f(r) is expressible as

f(r) =
1

r

(
∂V

∂r
+ r

∂2V

∂r2

)
− n2V

r2

=
∂2V

∂r2
+

1

r

∂V

∂r
− n2V

r2
. (15.4.10)

By Theorem 15.6, we can write

Hn{f(r)} = −sf(1)J ′n(s)− s2Hn{f} = −sV1J ′n(s)− s2Hn{f}

Exercise 15.10. (i) Find the finite Hankel transform of xn, (n > −1) if xJn(sx) is the Kernel of the trans-
form. Answer: Hn{xn} = an+1

s Jn+1(sa).
(ii) Find the finite Hankel transform of (1− x2), taking xJ0(sx) as the kernel.
Answer: H0{1− x2} = a

sJ1(as)−
a2

s2

[(
as− 4

as

)
J1(sa) + 2J0(sa)

]
(iii) Find the Hankel transform of (a2 − x2) if xJ0(sx) is the kernel of the transform.
Answer: H0{a2 − x2} = 4a

s3
J1(sa)− 2a2

s2
J0(sa)

(iv) Show that
a∫

0

r3J0{pr} dr =
a2

p2

[
2J0(pa) +

(
ap− 4

ap
J1(pa)

)]

155

Unit 16

Course Structure

Applications : Applications of integral transforms to solve two-dimensional Laplace and one dimensional
diffusion and wave equations.

16 Introduction

The given partial differential equations are given along with certain prescribed conditions on the functions
which arise from the physical situation. The conditions which are given at t = 0 are known as initial condi-
tions whereas the conditions given at the boundary of the region or interval are called boundary conditions.
Most of the well known partial differential equations like Laplace equation, Heat equation and Wave equation
can be solved by using the method of integral transform. Readers are suggested to familiar with the following
important partial differential equations.

1. One dimensional heat conduction or diffusion equation:

∂u

∂t
= k

∂2u

∂x2
, 0 < x <∞, t > 0

Here u(x, t) is the temperature in a solid at position x at time t. The constant k is called the diffusivity of the
material of the solid. Again k = K/σρ, where the thermal conductivity K, the specific heat σ and the density
ρ are assumed constant. The amount of heat per unit area per unit time conducted across a plane is given by
−K ux(x, t).

2. One dimensional wave equation:

∂2u

∂t2
= c2

∂2u

∂x2
, x > 0, t > 0

This equation is applicable to the small transverse vibrations of a taut flexible string initially located on the
x−axis and set into motion. Here u(x, t) is the transverse displacement of the string at any time t. Again,
c2 = T/ρ, where T is constant tension in the string and ρ is constant mass per unit length of the string.

3. Two dimensional Laplace’s equation:

∂2u

∂x2
+
∂2u

∂y2
= 0

We can solve one dimensional heat and wave equation by the method of Laplace transform as well as Fourier
transform while only Fourier transform method is used to solved boundary value problem governed by Laplace
equation.

156

Objective

The unit is aimed at exposing the students to learn the application of Laplace transforms and Fourier trans-
forms. To make them familiar with the methods of solving differential equations, partial differential equations,
IVP and BVP using Laplace transforms and Fourier transforms.

16.1 Solution of two dimensional Laplace Equation using Finite Fourier Transform (FFT)

In this subsection, we will solve the two dimensional Laplace equation over a finite region using the finite
Fourier transform. Let us begin with the following example. For infinite or semi infinite range, one may use
infinite cosine or sine transform.

Example 16.1. Determine a function V (x, y) which is harmonic in the open square 0 < x < π, 0 < y < π,
takes a constant value V0 on the edge y = π and vanishes on the other edges of the square.

or

Find the steady temperature V (x, y) in a long square bar of side π when one face is kept at constant tempera-
ture V0 and the other faces at zero temperature. Also V (x, y) is bounded.

Solution: The steady temperature V (x, y) is governed by the Laplace equation (since V is harmonic)

∂2V

∂x2
+
∂2V

∂y2
= 0 (16.1.1)

with the conditions (i) V (x, π) = V0, (ii) V (0, y) = 0 = V (π, y) for every y and (iii) V (x, y) is bounded.
Taking finite Fourier sine transform of Eq. (16.1.1), we have

π∫
0

∂2V

∂x2
sin sx dx+

π∫
0

∂2V

∂y2
sin sx dx = 0

⇒
[
∂V

∂x
sin sx

]π
0

− s
∫
∂V

∂x
cos sx dx+

∂2

∂y2

π∫
0

V sin sx dx = 0

⇒ d2Vs
dy2

+ 0− s

(V cos sx
)π
0

+ s

π∫
0

V sin sx dx

 = 0

⇒ d2Vs
dy2

− s2Vs − s
[
V (π, y) cos sπ − V (0, y) cos 0

]
= 0

⇒ d2Vs
dy2

− s2Vs − s
[
V (π, y) cos sπ − V (0, y) cos 0

]
= 0

⇒ d2Vs
dy2

− s2Vs = 0 [using boundary condition (ii)]

The solution of this equation is
Vs = A cosh sy +B sinh sy. (16.1.2)

157

Now, V (x, π) = V0 ⇒ Fs{V (x, π)} = Fs{V0}

⇒
π∫

0

V (x, π) sin sx dx =

π∫
0

V0 sin sx dx

⇒ Vs(s, π) =
V0
s

(
− cos sx

)π
0

= V0

(
1− cos sπ

s

)
∴ Vs(s, π) = V0

1− cos sπ

s

Again, V (x, 0) = 0 ⇒ Vs(s, 0) = 0

⇒ A · 1 +B · 0 = 0 [Using Eq.(16.1.2)]

⇒ A = 0

∴ From Eq. (16.1.2), we have Vs = B sinh sy, (16.1.3)

⇒ Vs(s, π) = B sinh(sπ)

⇒ V0

(
1− cos sπ

s

)
= B sinh sπ

⇒ B = V0
1− cos sπ

s sinh sπ

Now Eq.(16.1.3) takes the form

Vs =
V0
s

(1− cos sπ)

sinh sπ
sinh(sy)

Taking inverse finite sine transform, we obtain

V (x, y) =
2

π

∞∑
s=1

V0(1− cos sπ) sinh sy sin sx

s sinh sπ

=
2V0
π

∞∑
s=1

[1− (−1)s] sinh sy sin sx

s sinh sπ

=
4V0
π

∞∑
n=0

sinh(2n+ 1)y · sin(2n+ 1)x

(2n+ 1) sinh(2n+ 1)π
.

Example 16.2. Use a cosine transform to show that the steady temperature in the semi-infinite solid y > 0
when the temperature on the surface y = 0 is kept at unity over the strip |x| < a and at zero outside the strip,
is

1

π

[
tan−1

(
a+ x

y

)
+ tan−1

(
a− x
y

)]

The result

∞∫
0

e−sxx−1 sin rx dx = tan−1
r

s
, r > 0, s > 0 may be assumed.

Solution: We know that the steady temperature in the semi-infinite solid is represented by two-dimensional
Laplace equation

∂2U

∂x2
+
∂2U

∂y2
= 0 0 < y <∞, −∞ < x <∞ (16.1.4)

158

subject to the boundary conditions:

U(x, 0) = 1, |x| < a i.e. − a < x < a (16.1.5)

U(x, 0) = 1, x < −a or x > a (16.1.6)

Taking the Fourier cosine transform of (16.1.4), we get
∞∫
0

∂2U

∂x2
cos sx dx+

∞∫
0

∂2U

∂y2
cos sx dx = 0

⇒
[
∂U

∂x
cos sx

]∞
0

−
∞∫
0

∂U

∂x
(−s sin sx) dx+

d2

dy2

∞∫
0

U(x, y) cos sx dx = 0

⇒ s

∞∫
0

∂U

∂x
sin sx dx+

d2Uc
dy2

= 0, where Uc(s, y) =

∞∫
0

U(x, y) cos sx dx

[
∵ due to symmetry,

∂U

∂x
→ 0 as x→∞ and

∂U

∂x
→ 0 as x→ 0.

]

⇒ s

[U(x, y) sin sx]∞0 −
∞∫
0

U(x, y) s cos sx dx

+
d2Uc
dy2

= 0

⇒ −s2Uc +
d2Uc
dy2

= 0 if U(x, y)→ 0 as x→∞

⇒ (D2 − s2)Uc = 0 where D ≡ d

dy

whose general solution is

Uc(s, y) = C1e
sy + C2e

−sy, C1 and C2 being arbitrary constants. (16.1.7)

Since Uc(s, y) is finite, we must take C1 = 0 in (16.1.7), otherwise Uc(s, y) would become infinite as y →∞.
Hence (16.1.7) reduces to

Uc(s, y) = C2e
−sy (16.1.8)

Again
∞∫
0

U(x, 0) cos sx dx =

a∫
0

U(x, 0) cos sx dx+

∞∫
a

U(x, 0) cos sx dx

⇒ Uc(s, 0) =

a∫
0

cos sx dx =
sin sa

s
= C2 (16.1.9)

Hence from (16.1.8), we finally find

Uc(s, y) =
sin sa

s
e−sy (16.1.10)

Now taking the inverse Fourier cosine transform, we get

U(x, y) =
2

π

∞∫
0

sin sa

s
e−sy cos sx ds =

1

π

∞∫
0

e−sy

s

[
sin(a+ x)s+ sin(a− x)s

]
ds

=
1

π

[
tan−1

(
a+ x

y

)
+ tan−1

(
a− x
y

)]
159

Exercise 16.3. (i) Using the finite Fourier transform, solve
∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < π, 0 < y < y0 subject

to u(0, y) = 0, u(π, y) = 1, uy(x, 0) = 0, u(x, y0) = 0 Answer: u(x, y) =
2

π
+

2

π

∞∑
n=1

(−1)n

n

coshny

coshny0
sinnx

(ii) Solve the boundary value problem in the half-plane y > 0, described by
∂2u

∂x2
+
∂2u

∂y2
= 0, −∞ < x <

∞, y > 0 subject to u(x, 0) = f(x), −∞ < x < ∞, u is bounded as y → ∞, u and
∂u

∂x
both vanish as

|x| → ∞. Answer: u(x, y) =
y

π

π∫
−π

f(ξ)

(ξ − x)2 + y2
dξ

(iii) Solve the boundary value problem in the half-plane x > 0, described by
∂2u

∂x2
+
∂2u

∂y2
= 0, −∞ < y <

∞, x > 0 subject to u(0, y) = f(y), −∞ < y < ∞, u is bounded as x → ∞, u and
∂u

∂y
both vanish as

|y| → ∞. Answer: u(x, y) =
x

π

π∫
−π

f(ξ)

x2 + (y − ξ)2
dξ

16.2 Application to Heat Conduction and Wave Equations

16.2.1 Formulae for Laplace transform method

In order to solve heat equation using the method of Laplace transform, the following results will be used
frequently

L{u(x, t)} = u(x, s)

L

{
∂u

∂x

}
=
du

dx
, L

{
∂2u

∂x2

}
=
d2u

dx2
,

L

{
∂u

∂t

}
= su− u(x, 0)

L

{
∂2u

∂t2

}
= s2u− s u(x, 0)− ut(x, 0).

Example 16.4. Find the temperature u(x, t) in a slab whose ends x = 0 and x = a are kept at temperature
zero and whose initial temperature is sin(πx/a).

Solution: We have to solve one-dimensional heat conduction equation

∂u

∂t
= k

∂2u

∂x2
, 0 < x < a, t > 0, (16.2.1)

u(x, t) being the temperature in the slab at any point x at any time t and k being the diffusivity of the material
of the bar, subject to the boundary conditions u(0, t) = 0, u(a, t) = 0 and initial condition u(x, 0) =
sin(πx/a). Let L{u(x, t)} = u(x, s). Taking the Laplace transform of both sides of (16.2.1), we have

L

{
∂u

∂t

}
= kL

{
∂2u

∂x2

}
⇒ su(x, s)− u(x, 0) = k

d2u

dx2

⇒ su− sin
(πx
a

)
= k

d2u

dx2
⇒

(
D2 − s

k

)
u = −1

k
sin

πx

a

160

Calculating the complementary function corresponding to the homogeneous part and the particular solution
using classical methods of ordinary differential equations, we may write the general solution of the aforesaid
ODE as

u(x, s) = c1e
x
√
s/k + c1e

−x
√
s/k +

1

s+ (π2k/a2)
sin

πx

a
. (16.2.2)

Taking the Laplace transform of boundary conditions, we have

u(0, s) = 0 and u(a, s) = 0 (16.2.3)

Now using the conditions (16.2.3) in (16.2.1), we obtain c1 = c2 = 0 and therefore (16.2.1) reduces to

u(x, s) =
sin(πx/a)

s+ (π2k/a2)
so that u(x, t) = sin

πx

a
L−1

{
1

s+ (π2k/a2)

}
= sin

πx

a
e−(π

2kt/a2)

Example 16.5. The faces x = 0 and x = 1 of a slab of material for which k = 1 are kept at temperature 0
and 1 respectively until the temperature distribution becomes u = x. After time t = 0 both faces are held at
temperature 0. Determine the temperature formula. It is given that

L−1
{

sinhx
√
s

s sinh a
√
s

}
=
x

a
+

2

π

∞∑
n=1

(−1)n

n
e−n

2π2t/a2 sin
(nπx

a

)
.

Solution: The temperature u(x, t) in the slab is governed by the partial differential equation

∂u

∂t
=
∂2u

∂x2
(16.2.4)

with the boundary conditions (i) u(0, t) = 0, (ii) u(1, t) = 0, (iii) u(x, 0) = x. From Eq. (16.2.4) we
have

L

{
∂u

∂t

}
= L

{
∂2u

∂x2

}
⇒ s u− u(x, 0) =

d2u

dx2

⇒ d2u

dx2
− s u = −x [∵ u(x, 0) = x]

⇒ (D2 − s)u = −x

The solution of it is

u = a e−x
√
s + b ex

√
s +

1

D2 − s
(−x)

= a e−x
√
s + b ex

√
s +

1

s

(
1− D2

s

)−1
x

= a e−x
√
s + b ex

√
s +

x

s
.

It is also expressed as
u = a coshx

√
s+ b sinhx

√
s+

x

s
.

Now
(i)⇒ L{u(0, t)} = 0⇒ u(0, s) = 0⇒ a = 0

161

Hence,

u = b sinhx
√
s+

x

s
.

(ii)⇒ L{u(1, t)} = 0⇒ u(1, s) = 0⇒ 0 = b sinh
√
s+

1

s
⇒ b = − 1

s sinh
√
s

Using this we obtain

u =
x

s
− sinhx

√
s

s sinh
√
s

⇒ u = L−1
{x
s

}
− L−1

{
sinhx

√
s

s sinh
√
s

}
⇒ u = x−

[
x+

2

π

∞∑
n=1

(−1)n

n
e−n

2π2t sin(nπx)

]

⇒ u = − 2

π

∞∑
n=1

(−1)n

n
e−n

2π2t sin(nπx)

Example 16.6. Solve the wave equation
∂2u

∂t2
+c2

∂2u

∂x2
, x > 0, t > 0,where u(x, 0) = 0, ut(x, 0) = 0, x > 0

and u(0, t) = F (t). lim
x→∞

u(x, t) = 0, t > 0.

Solution: We have to solve one-dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2
(16.2.5)

subject to boundary condition: u(0, t) = F (t), lim
x→∞

u(x, t) = 0

and initial conditions: u(x, 0) = 0, ut(x, 0) = 0.
Let L{u(x, t)} = u(x, s). Applying Laplace transform to Eq.(16.2.5), we have

s2u(x, s)− su(x, 0)− ut(x, 0) = c2
d2u

dx2
⇒ d2u

dx2
− s2

c2
u = 0

Its solution is
u(x, s) = c1 e

sx/c + c2 e
−sx/c, c1, c2 being the arbitrary constants

Now using the above boundary conditions we have u(0, s) = f(s) where f(s) = L{F (t)} and u(x, s) = 0
as x→∞. Since u(x, s) = 0 as x→∞, we must choose c1 = 0. Hence the solution reduces to

u(x, s) = c2 e
−sx/c

Putting x = 0 in the above equation and using u(0, s) = f(s), we get c2 = f(s). Then the solution reduces to

u(x, s) = f(s) e−sx/c

Taking inverse Laplace transform, we obtain

u(x, t) = L−1{f(s) e−sx/c} = F (t− x/c)H(t− x/c)

where H(t− x/c) is the Heaviside unit step function.

162

Exercise 16.7. (i) A string is stretched between two fixed points (0, 0) and (a, 0). If it is displaced into the
curve u = b sin(πx/a) and released from rest in that position at time t = 0, find its displacement at any time

t < 0 and at any point 0 < x < a. Answer: u(x, t) = b sin
πx

a
cos

πct

a

(ii) Solve the boundary value problem
∂2u

∂t2
= a2

∂2u

∂x2
− g, x > 0, t > 0 with the boundary conditions

u(x, 0) = 0 = ut(x, 0), x > 0; u(0, t) = 0, lim
x→∞

ux(x, t) = 0, t ≥ 0.

Answer: u(x, t) =
1

2
g(t− x/a)2H(t− x/a)− 1

2
gt2

Reference

(i) M.D. Raisinghania, Integral Equations and Boundary Value Problems.

(ii) Wazwaz and Abdul, A First Course in Integral Equations

(iii) D.C. SHARMA and M. C. GOYAL, INTEGRAL EQUATIONS

(iv) M.D. Raisinghania Advanced Differential Equations

163

POST GRADUATE DEGREE PROGRAMME (CBCS) IN

MATHEMATICS

SEMESTER III

SELF LEARNING MATERIAL

PAPER : MATC 3.2
(Pure & Applied Streams)

Block - I : Numerical Analysis (Theory)
Block - II : Calculus of Rn

Directorate of Open and Distance Learning
University of Kalyani

Kalyani, Nadia
West Bengal, India

Course Preparation Team

1. Mr. Biswajit Mallick 2. Ms. Audrija Choudhury
Assistant Professor (Cont.) Assistant Professor (Cont.)
DODL, University of Kalyani DODL, University of Kalyani

November, 2019

Directorate of Open and Distance Learning, University of Kalyani

Published by the Directorate of Open and Distance Learning

University of Kalyani, 741235, West Bengal

All rights reserved. No part of this work should be reproduced in any form without the permission in writing
form the Directorate of Open and Distance Learning, University of Kalynai.

Director’s Massage
Satisfying the varied needs of distance learners, overcoming the obstacle of distance and reaching the un-
reached students are the threefold functions catered by Open and Distance Learning (ODL) systems. The
onus lies on writers, editors, production professionals and other personnel involved in the process to overcome
the challenges inherent to curriculum design and production of relevant Self Learning Materials (SLMs). At
the University of Kalyani a dedicated team under the able guidance of the Hon’ble Vice-Chancellor has in-
vested its best efforts, professionally and in keeping with the demands of Post Graduate CBCS Programmes
in Distance Mode to devise a self-sufficient curriculum for each course offered by the Directorate of Open and
Distance Learning (DODL), University of Kalyani.

Development of printed SLMs for students admitted to the DODL within a limited time to cater to the
academic requirements of the Course as per standards set by Distance Education Bureau of the University
Grants Commission, New Delhi, India under Open and Distance Mode UGC Regulations, 2017 had been our
endeavour. We are happy to have achieved our goal.

Utmost care and precision have been ensured in the development of the SLMs, making them useful to the
learners, besides avoiding errors as far as practicable. Further suggestions from the stakeholders in this would
be welcome.

During the production-process of the SLMs, the team continuously received positive stimulations and feed-
back from Professor (Dr.) Sankar Kumar Ghosh, Hon’ble Vice-Chancellor, University of Kalyani, who kindly
accorded directions, encouragements and suggestions, offered constructive criticism to develop it within
proper requirements. We gracefully, acknowledge his inspiration and guidance.

Sincere gratitude is due to the respective chairpersons as weel as each and every member of PGBOS
(DODL), University of Kalyani, Heartfelt thanks is also due to the Course Writers-faculty members at the
DODL, subject-experts serving at University Post Graduate departments and also to the authors and aca-
demicians whose academic contributions have enriched the SLMs. We humbly acknowledge their valuable
academic contributions. I would especially like to convey gratitude to all other University dignitaries and
personnel involved either at the conceptual or operational level of the DODL of University of Kalyani.

Their persistent and co-ordinated efforts have resulted in the compilation of comprehensive, learner-friendly,
flexible texts that meet the curriculum requirements of the Post Graduate Programme through Distance Mode.

Self Learning Materials (SLMs) have been published by the Directorate of Open and Distance Learning,
University of Kalyani, Kalyani-741235, West Bengal and all the copyright reserved for University of Kalyani.
No part of this work should be reproduced in any from without permission in writing from the appropriate
authority of the University of Kalyani.

All the Self Learning Materials are self writing and collected from e-book, journals and websites.

Director

Directorate of Open and Distance Learning

University of Kalyani

CONTENTS

Serial Number Block Unit Page Number

1 2− 8
2 9− 19
3 20− 29

1 Numerical Analysis (Theory) 4 30− 38
5 39− 45
6 46− 54
7 55− 58
8 59− 72

9 74− 83
10 84− 91
11 92− 102

2 Calculus of Rn 12 103− 116
13 117− 124
14 125− 130
15 131− 140
16 141− 149

Core Paper
MATC 3.3
Block - II

Marks : 50 (SSE : 40; IA : 10)

Numerical Analysis (Theory)
(Pure and Applied Streams)

Syllabus

• Unit 1 • Interpolation : Hermite’s interpolation. Interpolation by iteration – Aitken’s and Neville’s
schemes.

• Unit 2 • Approximation of Function : Least square approximation. Weighted least square approximation.
Orthogonal polynomials, Gram – Schmidt orthogonalisation process, Chebysev polynomials, Minimax poly-
nomial approximation.

• Unit 3 • Numerical Integration : Gaussian quadrature formula and its existence. Euler- MacLaurin for-
mula. Gregory-Newton quadrature formula. Romberg integration.

• Unit 4 • Systems of Linear Algebraic Equations : Direct methods, Factorization method; Eigen value and
Eigenvector Problems : Direct methods, Iterative method – Power method.

• Unit 5 • Nonlinear Equations : Fixed point iteration method, convergence and error estimation. Modified
Newton-Raphson method, Muller’s method, Inverse inter- polation method, error estimations and convergence
analysis.

• Unit 6 • Ordinary Differential Equations: Initial value problems – Picard’s successive approximation
method, error estimation. Single-step methods – Euler’s method and Runge-Kutta method, error estimations
and convergence analysis.

• Unit 7 • Ordinary Differential Equations: Multi-step method – Milne’s predictor-corrector method, error
estimation and convergence analysis.

• Unit 8 • Partial Differential Equations: Finite difference methods for Elliptic and Parabolic differential
equations.

1

Unit 1

Course Structure

Interpolation : Hermite’s interpolation; Interpolation by iteration – Aitken’s and Neville’s schemes.

1 Introduction

The statement y = f(x), x0 ≤ x ≤ xn means: corresponding to every value of x in the range x0 ≤ x ≤ xn,
there exists one or more values of y. Assuming that f(x) is single-valued and continuous and that it is known
explicitly, then the values of f(x) corresponding to certain given values of x, say x0, x1, . . . , xn can easily
be computed and tabulated. The central problem of numerical analysis is the converse one: Given the set of
tabular values (x0, y0), (x1, y1), (x2, y2), . . . , (xn, yn) satisfying the relation y = f(x) where the explicit
nature of f(x) is not known, it is required to find a simpler function, say φ(x), such that f(x) and φ(x) agree
at the set of tabulated points. Such a process is called interpolation. If φ(x) is a polynomial, the the process
is called polynomial interpolation and φ(x) is called the interpolating polynomial. In this unit, we shall be
concerned with Hermite’s interpolation and iterative interpolation by Aitken’s and Neville’s schemes.

1.1 Hermite’s Interpolation Formula

The interpolation formulae so far considered make use of only a certain number of function values. We now
derive an interpolation formula in which both the function and its first derivative values are to be assigned at
each point of interpolation. This is refereed to as Hermite’s interpolation formula. The interpolation problem
is then defined as follows: Given the set of data points (xi, yi, y

′
i), i = 0, 1, . . . , n, it is required to determine

a polynomial of the least degree, say H2n+1(x), such that

H2n+1(xi) = yi and H ′2n+1(xi) = y′i; i = 0, 1, . . . , n, (1.1.1)

where the primes denote differentiation with respect to x. The polynomial H2n+1(x) is called Hermite’s
interpolation polynomial. We have here (2n + 2) conditions and therefore the number of coefficients to be
determined is (2n+2) and the degree of the polynomial is (2n+1). In analogy with the Lagrange interpolation
formula, we seek a representation of the form

H2n+1(x) =
n∑
i=0

ui(x)yi +
n∑
i=0

vi(x)y′i, (1.1.2)

where ui(x) and vi(x) are polynomials in x of degree (2n+ 1). Using conditions (1.1.1), we obtain

ui(xj) =

{
1 if i = j
0 if i 6= j

; vi(x) = 0, for all i

u′i(x) = 0, for all i ; v′i(xj) =

{
1 if i = j
0 if i 6= j

(1.1.3)

Since ui(x) and vi(x) are polynomials in x of degree (2n+ 1), we write

ui(x) = Ai(x) [li(x)]2 and vi(x) = Bi(x) [li(x)]2 (1.1.4)

2

where li(x) are given by

li(x) =
Πn+1(x)

(x− xi)Π′n+1(xi)
(1.1.5)

where

Πn+1(x) = (x− x0)(x− x1) . . . (x− xi−1)(x− xi)(x− xi+1) . . . (x− xn)

and Π′n+1(xi) = (xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)

It is easy to see that Ai(x) and Bi(x) are both linear functions in x. We therefore write

ui(x) = (aix+ bi) [li(x)]2 and vi(x) = (cix+ di) [li(x)]2 (1.1.6)

Using conditions Eq.(1.1.3) in (1.1.6), we obtain

aixi + bi = 1, cixi + di = 0, ai + 2l′i(xi) = 0, ci = 1 (1.1.7)

From Eq.(1.1.7), we deduce

ai = −2l′i(xi), bi = 1 + 2xil
′
i(xi), ci = 1, di = −xi (1.1.8)

Hence Eq.(1.1.6) becomes

ui(x) = [−2xl′i(xi) + 1 + 2xil
′
i(xi)] [li(x)]2

= [1− 2(x− xi)l′i(xi)] [li(x)]2 (1.1.9)

and
vi(x) = (x− xi) [li(x)]2 (1.1.10)

Using the above expressions for ui(x) and vi(x) in Eq.(1.1.2), we obtain finally

H2n+1(x) =
n∑
i=0

[
1− 2(x− xi)l′i(xi)

]
[li(x)]2 yi +

n∑
i=0

(x− xi) [li(x)]2 y′i, (1.1.11)

which is the required Hermite interpolation formula.

The following example demonstrate the application of Hermite’s formula.

Example 1.1. Find the third-order Hermite polynomial passing through the points (xi, yi, y
′
i), i = 0, 1.

Solution : Putting n = 1 in Hermite’s formula (1.1.11), we obtain

H3(x) =
[
1− 2(x− x0)l′0(x0)

]
[l0(x)]2y0 +

[
1− 2(x− x1)l′1(x1)

]
[l1(x)]2y1

+(x− x0)[l0(x)]2y′0 + (x− x1)[l1(x)]2y′1. (1.1.12)

Since
l0(x) =

x− x1
x0 − x1

=
x1 − x
h1

and l1(x) =
x− x0
x1 − x0

=
x− x0
h1

,

where h1 = x1 − x0. Hence

l′0(x) = − 1

h1
and l′1(x) =

1

h1
. (1.1.13)

3

Then, Eq. (1.1.12) simplifies to

H3(x) =

[
1 +

2(x− x0)
h1

]
(x1 − x)2

h21
y0 +

[
1 +

2(x1 − x)

h1

]
(x− x0)2

h21
y1

+(x− x0)
x1 − x)2

h21
y′0 + (x− x1)

x− x0)2

h21
y′1 (1.1.14)

which is the required Hermite formula.

Example 1.2. Determine the Hermite polynomial of degree 5, which fits the following data and hence find an
approximate value of ln 2.7.

x y = lnx y′ = 1/x

2.0 0.69315 0.5
2.5 0.91629 0.4000
3.0 1.09861 0.33333

Solution : The polynomials li(x) are given by

l0(x) =
(x− 2.5)(x− 3.0)

(−0.5)(−1.0)
= 2x2 − 11x+ 15.

Similarly, we find
l1(x) = −(4x2 − 20x+ 24) and l2(x) = 2x2 − 9x+ 10.

We therefore obtain

l′0(x) = 4x− 11, l′1(x) = −8x+ 20, l′2(x) = 4x− 9.

Hence
l′0(x0) = −3, l′1(x1) = 0, l′2(x2) = 3

Equations (1.1.9) and (1.1.10) gives

u0(x) = (6x− 11)(2x2 − 11x+ 15)2, v0(x) = (x− 2)(2x2 − 11x+ 15)2,

u1(x) = (4x2 − 20x+ 24)2, v1(x) = (x− 2.5)(4x2 − 20x+ 24)2,

u2(x) = (19− 6x)(2x2 − 9x+ 10)2, v2(x) = (x− 3)(2x2 − 9x+ 10)2,

Substituting these expressions in Eq.(1.1.11), we obtain the required Hermite polynomial

H5(x) = (6x− 11)(2x2 − 11x+ 15)2(0.69315) + (4x2 − 20x+ 24)(0.91629)

+(19− 6x)(2x2 − 9x+ 10)2(1.09861) + (x− 2)(2x2 − 11x+ 15)2(0.5)

+(x− 2.5)(4x2 − 20x+ 24)2(0.4) + (x− 3)(2x2 − 9x+ 10)2(0.33333).

Putting x = 2.7 and simplifying, we obtain

ln(2.7) ≈ H5(2.7) = 0.993252,

which is correct to six decimal places. It is worthwhile to note that this result is more accurate than that
obtained by using the Lagrange interpolation formula.

4

1.2 Divided Differences

The Lagrange interpolation formula has the disadvantage that if another interpolation point were added, then
the interpolation coefficients li(x) will have to be recomputed. We therefore seek an interpolation polynomial
which has the property that a polynomial of higher degree may be derived from it by simply adding new
terms. Newton’s general interpolation formula is one such formula and it employs what are called divided
differences. It is our principal purpose in this subsection to define such differences and discuss certain of their
properties to obtain the basic formula due to Newton.

Let (x0, y0), (x1, y1), . . . , (xn, yn) be the given (n+ 1) points. Then the divided differences of order 1, 2,
. . ., n are defined by the relations:

[x0, x1] =
y1 − y0
x1 − x0

,

[x0, x1, x2] =
[x1, x2]− [x0, x1]

x2 − x0
,

... (1.2.1)

[x0, x1, . . . , xn] =
[x1, x2, . . . , xn]− [x0, x1, . . . , xn−1]

xn − x0
.

1.3 Newton’s General Interpolation Formula

By definition, we have

[x, x0] =
y − y0
x− x0

,

so that
y = y0 + (x− x0)[x, x0] (1.3.1)

Again

[x, x0, x1] =
[x, x0]− [x0, x1]

x− x1
which gives

[x, x0] = [x0, x1] + (x− x1)[x, x0, x1]

Substituting this value of [x, x0] in Eq.(1.3.1), we obtain

y = y0 + (x− x0)[x0, x1] + (x− x0)(x− x1)[x, x0, x1] (1.3.2)

But

[x, x0, x1, x2] =
[x, x0, x1]− [x0, x1, x2]

x− x2
,

and so
[x, x0, x1] = [x0, x1, x2] + (x− x2)[x, x0, x1, x2] (1.3.3)

Equation (1.3.2) now gives

y = y0 + (x− x0)[x0, x1] + (x− x0)(x− x1)[x0, x1, x2]
+(x− x0)(x− x1)(x− x2)[x, x0, x1, x2] (1.3.4)

5

Proceeding in this way, we obtain

y = y0 + (x− x0)[x0, x1] + (x− x0)(x− x1)[x0, x1, x2]
+(x− x0)(x− x1)(x− x2)[x0, x1, x2, x3] + . . .

+(x− x0)(x− x1)(x− x2) · (x− xn)[x, x0, x1, . . . , xn] (1.3.5)

This formula is called Newton’s general interpolation formula with divided differences, the last term being
the remainder term after (n + 1) terms. Hence after generating the divided differences, interpolation can be
carried out.

Example 1.3. Certain corresponding values of x and log10 x are (300, 2.4771), (304, 2.4829),
(305, 2.4843) (307, 2.4871). Find log10 301.

Solution : The divided difference table is

x y = log10 x

300 2.4771
0.00145

304 2.4829 0.00001
0.00140

305 2.4843 0
0.00140

307 2.4871

Hence, Eq.(1.3.5) gives

log10 301 = 2.4771 + 0.00145 + (−3)(−0.00001) = 2.4786

1.4 Interpolation by Iteration

Newton’s general interpolation formula may be considered as one of a class methods which generate succes-
sively higher-order interpolation formulae. We now describe another method of this class, due to A.C. Aitken,
which has the advantage of being very easily programmed for a digital computer.

Given the (n + 1) points (x0, y0), (x1, y1), . . . , (xn, yn), where the values of x need not necessarily be
equally spaced, then to find the value of y corresponding to any given value of x we proceed iteratively as
follows:

Obtain a first approximation to y by considering the first-two points only; then obtain its second approxi-
mation by considering the first-three points, and so on. We denote the different interpolation polynomials by
∆(x), with suitable subscripts, so that at the first stage of approximation, we have

∆01(x) = y0 + (x− x0)[x0, x1] =
1

x1 − x0

∣∣∣∣y0 x0 − x
y1 x1 − x

∣∣∣∣ (1.4.1)

Similarly, we can form ∆02(x), ∆03(x), . . . Next, we form ∆012 by considering the first-three points:

∆012(x) =
1

x2 − x1

∣∣∣∣∆01(x) x1 − x
∆02(x) x2 − x

∣∣∣∣ (1.4.2)

6

Similarly, we obtain ∆013(x),∆014(x), etc. At the n-th stage of approximation, we obtain

∆0123...n(x) =
1

xn − xn−1

∣∣∣∣∆0123...n−1(x) xn−1 − x
∆0123...n−2n(x) xn − x

∣∣∣∣ (1.4.3)

The computations may conveniently be arranged as in Table 1.1 below:

Table 1.1 Aitken’s Scheme
x y

x0 y0
∆01(x)

x1 y1 ∆012(x)
∆02(x) ∆0123(x)

x2 y2 ∆013(x) ∆01234(x)
∆03(x) ∆0124(x)

x3 y3 ∆014(x)
∆04(x)

x4 y4

A modification of this scheme, due to Neville, is given in Table 1.2. Neville’s scheme is particularly suited
for iterated inverse interpolation.

Table 1.2 Neville’s Scheme
x y

x0 y0
∆01(x)

x1 y1 ∆012(x)
∆12(x) ∆0123(x)

x2 y2 ∆123(x) ∆01234(x)
∆23(x) ∆1234(x)

x3 y3 ∆234(x)
∆34(x)

x4 y4

As an illustration of Aitken’s method, we consider, again, Example (1.3).

Example 1.4. Aitken’s scheme is

x log10 x

300 2.4771
2.47855

304 2.4829 2.47858
2.47854 2.47860

305 2.4843 2.47857
2.47853

307 2.4871

Hence log10 301 = 2.4786, as before.

7

An obvious advantage of AItken’s method is that gives a good idea of the accuracy of the result at any stage.

Exercise 1.5. (i) Using Hermite’s interpolation formula, estimate the value of ln 4.2 from the data (value of
x, lnx and 1

x):

(4.0, 1.38629, 0.25000), (4.5, 1.50408, 0.22222), (5.0, 1.60944, 0.20000)

Answer: 1.435081
(ii) Find the Hermite polynomial of the third degree approximating the function y(x) such that

y(0) = 1, y′(0) = 0

y(1) = 3, y′(1) = 5.

Answer: 1 + x2 + x3

(iii) Given f(x) = 1
x2

. Find the divided differences [a, b], and [a, b, c]. Answer: −a+ b

a2b2
,
ab+ bc+ ca

a2b2c2
(iv) Given the set of tabulated points (0, 2), (1, 3), (2, 12) and (15, 3587) satisfying the function y = f(x),
compute f(4) using Newton’s divided difference formula. Answer: 1454

8

Unit 2

Course Structure

Approximation of Function : Least square approximation. Weighted least square approximation. Orthog-
onal polynomials, Gram – Schmidt orthogonalisation process, Chebysev polynomials, Minimax polynomial
approximation.

2 Introduction

In experimental work, we often encounter the problem of fitting a curve to data which are subject to errors.
The strategy for such cases is to derive an approximating function that broadly fits the data without necessarily
passing through the given points. The curve drawn is such that the discrepancy between the data points and
the curve is least. In the method of least squares, the sum of the squares of the errors is minimized. The
problem of approximating a function by means of Chebyshev polynomials is described in this unit.

2.1 Least Squares Curve Fitting Procedures

Let the set of data points be (xi, yi), i = 1, 2, . . . ,m, and let the curve given by Y = f(x) be fitted to this
data. At x = xi, the given ordinate is yi and the corresponding value on the fitting curve is f(xi). If ei is the
error of approximation at x = xi, then we have

ei = yi − f(xi) (2.1.1)

If we write

S = [y1 − f(x1)]
2 + [y2 − f(x2)]

2 + . . .+ [ym − f(xm)]2

= e21 + e22 + . . .+ e2m, (2.1.2)

then the method of least squares consists in minimizing S, i.e., the sum of the squares of the errors. In the
following subsection, we shall study the linear least squares fitting to given data (xi, yi), i = 1, 2, . . . ,m.

2.1.1 Fitting a Straight Line

Let Y = a0 + a1x be the straight line to be fitted to the given data, viz. (xi, yi), i = 1, 2, . . . ,m. Then,
corresponding to Eq.(2.1.2), we have

S = [y1 − (a0 + a1x)]2 + [y2 − (a0 + a1x)]2 + . . .+ [ym − (a0 + a1xm)]2 (2.1.3)

For S to be minimum, we have

∂S

∂a0
= 0 = −2[y1 − (a0 + a1x)]− 2[y2 − (a0 + a1x2)]− . . .− 2[ym − (a0 + a1xm)]

∂S

∂a1
= 0 = −2x1[y1 − (a0 + a1x)]− 2x2[y2 − (a0 + a1x2)]− . . .− 2xm[ym − (a0 + a1xm)]

9

The above equations simplify to

ma0 + a1(x1 + x2 + . . .+ xm) = y1 + y2 + . . .+ ym

and a0(x1 + x2 + . . .+ xm) + a1(x
2
1 + x22 + . . .+ x2m) = x1y1 + x2y2 + . . .+ xmym (2.1.4)

or more compactly to

ma0 + a1

m∑
i=1

xi =

m∑
i=1

yi and a0

m∑
i=1

xi + a1

m∑
i=1

x2i =

m∑
i=1

xiyi (2.1.5)

Equations (2.1.5) are called the normal equations, and can be solved for a0 and a1, since xi and yi are known
quantities. We can obtain easily

a1 =

m
m∑
i=1

xiyi −
m∑
i=1

xi ·
m∑
i=1

yi

m
∑
x2i −

(
m∑
i=1

xi

)2 (2.1.6)

and then
a0 = y − a1x. (2.1.7)

Since
∂2S

∂a20
and

∂2S

∂a21
are both positive at the points a0 and a1, it follows that these values provide a minimum

of S. In Eq.(2.1.7), x and y are the means of x and y, respectively. Form Eq.(2.1.7), we have

y = a0 + a1x,

which shows the fitted straight line passes through the centroid of the data points. Sometimes, a goodness of
fit is adopted. The correlation coefficient (cc) is defined as

cc =

√
Sy − S
Sy

, where Sy =
m∑
i=1

(yi − y)2 and S is defined by Eq.(2.1.3) (2.1.8)

If cc is close to 1, then the fit is considered to be good, although this is not always true.

Example 2.1. Find the best values of a0 and a1 if the straight line Y = a0 + a1x is fitted to the data (xi, yi):

(1 , 0.6), (2 , 2.4),(3 , 3.5), (4 , 4.8), (5 , 5.7)

Solution:

From the given table of values, we find x = 3, y = 3.4, and

a1 =
5(63.6)− (15)(17)

5(55)− 225
= 1.26 and a0 = y − a1x = −0.38

The correlation coefficient =

√
16.10− 0.2240

16.10
= 0.9930

10

Exercise 2.2. (i) Certain experimental values of x and y are given below:

(0 , -1), (2 , 5), (5 , 12), (7 , 20)

If the straight line Y = a0 + a1x is fitted to the above data, find the approximate values of a0 and a1.
Answer: a0 = −1.1381 and a1 = 2.8966

2.2 Curve Fitting by Polynomials

Let the polynomial of the n-th degree

Y = a0 + a1x+ a2x
2 + . . .+ anx

n (2.2.1)

be fitted to the data points (xi, yi), i = 1, 2, . . . ,m. We then have

S =
[
y1 − (a0 + a1x1 + a2x

2
1 + . . .+ anx

n
1)
]2

+
[
y2 − (a0 + a1x2 + a2x

2
2 + . . .+ anx

n
2)
]2

++
[
ym − (a0 + a1xm + a2x

2
m + . . .+ anx

n
m)
]2

(2.2.2)

Equating to zero the first partial derivatives and simplifying, we obtain the normal equations:

ma0 + a1
∑

xi + a2
∑

x2i + . . . an
∑

xni =
∑

yi,

a0
∑

xi + a1
∑

x2i + . . . an
∑

xn+1
i =

∑
xiyi, (2.2.3)

...
...

...
...

...

a0
∑

xni + a1
∑

xn+1
i + . . . an

∑
x2ni =

∑
xni yi,

where the summations are performed from i = 1 to i = m. The system (2.2.3) constitutes (n+ 1) equations
in (n + 1) unknowns, and hence can be solved for a0, a1, . . . , an. Equation (2.2.1) then gives the required
polynomial of the n-th degree.

For larger values of n, system (2.2.3) becomes unstable with the result that round off errors in the data may
cause large changes in the solution. Such systems occur quite often in practical problems and are called ill
conditioned system. Orthogonal polynomials are most suited to solve such systems and one particular form
of these polynomials, the Chebyshev polynomial, will be discussed later in this unit.

Example 2.3. Fit a polynomial of the second degree to the data points (x, y) given by

(0, 1), (1, 6), and (2, 17)

Solution: For n = 2, Eq.(2.2.3) requires
∑
xi,
∑
x2i ,
∑
x3i ,
∑
x4i ,
∑
yi,
∑
xiyi and

∑
x2i yi. The table

of values is as follows:

11

The normal equations are

3a0 + 3a1 + 5a2 = 24

3a0 + 5a1 + 9a2 = 40

5a0 + 9a1 + 17a2 = 74

Solving the above system, we obtain

a0 = 1, a1 = 2 and a2 = 3.

The required polynomial is given by Y = 1 + 2x + 3x2, and it can be seen that this fitting is exact.

Exercise 2.4. (i) Fit a second degree parabola y = a0 + a1x+ a2x
2 to the data (xi, yi):

(1 , 0.63), (3 , 2.05),(4 , 4.08), (6 , 10.78)

Answer: a0 = 1.24, a1 = −1.05 and a2 = 0.44

2.3 Weighted Least Square Approximation

In the previous subsection, we have minimized the sum of squares of the errors. A more general approach is
to minimize the weighted sum of the squares of the errors taken over all data points. If this sum is denoted by
S, then instead of Eq.(2.1.2), we have

S = W1

[
y1 − f(x1)

]2
+W2

[
y2 − f(x2)

]2
+ . . .+Wm

[
ym − f(xm)

]2
= W1e

2
1 +W2e

2
2 + . . .+Wme

2
m. (2.3.1)

In Eq.(2.3.1), theWi are prescribed positive numbers and are called weights. A weight is prescribed according
to the relative accuracy of a data points. If all the data points are accurate, we setWi = 1 for all i. We consider
again the linear and non-linear cases below.

2.3.1 Linear Weighted Least Squares Approximation

Let Y = a0 + a1x be the straight line to be fitted to the given data points, viz. (x1, y1), . . . , (xm, ym). Then

S(a0, a1) =
m∑
i=1

Wi

[
yi − (a0 + a1xi)

]2
. (2.3.2)

For maxima or minima, we have
∂S

∂a0
=

∂S

∂a1
= 0, which gives (2.3.3)

∂S

∂a0
= −2

m∑
i=1

Wi

[
yi − (a0 + a1xi)

]
= 0 and

∂S

∂a1
= −2

m∑
i=1

Wi

[
yi − (a0 + a1xi)

]
xi = 0.

Simplifying yields the system of equations for a0 and a1:

a0

m∑
i=1

Wi + a1

m∑
i=1

Wixi =

m∑
i=1

Wiyi and a0

m∑
i=1

Wixi + a1

m∑
i=1

Wix
2
i =

m∑
i=1

Wixiyi (2.3.4)

which are the normal equations in this case and are solved to obtain a0 and a1.

12

Example 2.5. Suppose that in the data of Exercise (2.2), the point (5, 12) is known to be more reliable than
the others. Then we prescribe a weight (say, 10) corresponding to this point only and all other weights are
taken as unity. Find the new ‘linear least squares approximation’.

Solution: Let us calculate the following table.

The normal Eqs.(2.3.4) then give

13a0 + 59a1 = 144 and 59a0 + 303a1 = 750

Solving the above equations, we obtain

a0 = −1.349345 and a1 = 2.73799

The ‘linear least squares approximation’ is, therefore, given by

y = −1.349345 + 2.73799x

Exercise 2.6. (i) Consider Example (2.5) again with an increased weight, say 100, corresponding to y(5.0)
and calculate the new ‘linear least squares approximation’ and comment the influence of increasing weight to
the approximation. Answer: y = −1.41258 + 2.69056x

2.3.2 Nonlinear Weighted Least Squares Approximation

We now consider the least squares approximation of a set of m data points (xi, yi), i = 1, 2, . . . ,m, by a
polynomial of degree n < m. Let

y = a0 + a1x+ a2x
2 + . . .+ anx

n (2.3.5)

be fitted to the given data points. We then have

S(a0, a1, . . . , an) =
m∑
i=1

Wi

[
yi − (a0 + a1xi + . . .+ anx

n
i)
]2
. (2.3.6)

If a minimum occurs at (a0, a1, . . . , an), then we have
∂S

∂a0
=

∂S

∂a1
=

∂S

∂a2
= . . . =

∂S

∂an
= 0. (2.3.7)

These conditions yield the normal equations

a0

m∑
i=1

Wi + a1

m∑
i=1

Wixi + . . .+ an

m∑
i=1

Wix
n
i =

m∑
i=1

Wiyi

a0

m∑
i=1

Wixi + a1

m∑
i=1

Wix
2
i + . . .+ an

m∑
i=1

Wix
n+1
i =

m∑
i=1

Wixiyi (2.3.8)

...
...

...
...

a0

m∑
i=1

Wix
n
i + a1

m∑
i=1

Wix
n+1
i + . . .+ an

m∑
i=1

Wix
2n
i =

m∑
i=1

Wix
n
i yi.

13

Equations (2.3.8) are (n+ 1) equations in (n+ 1) unknowns a0, a1, . . . , an. If the xi are distinct with n < m,
then the equations possess a ‘unique’ solution.

2.4 Orthogonal Polynomial approximation method

In the previous subsection, we considered the least squares approximations of discrete data. We shall, in the
present subsection, discuss the least squares approximation of a continuous function on [a, b]. In this case, the
summations in the normal equations are now replaced by definite integrals. However, this method possesses
the disadvantage of solving a large linear system of equations. Besides, such a system may exhibit a peculiar
tendency called ill-conditioning, which means that small change in any of its parameters introduces large er-
rors in the solution - the degree of ill-conditioning increasing with the order of the system. Hence, alternative
methods of solving the continuous function for least squares problem have gained importance, and of these
the method that employs ‘orthogonal polynomial’ is currently in use. This method possess the great advantage
that it does not require a linear system to be solved and is described below.

We choose the approximation in the form:

Y (x) = a0f0(x) + a1f1(x) + . . .+ anfn(x), (2.4.1)

where fj(x) is a polynomial in x of degree j. Then we write

S(a0, a1, . . . , an) =

a∫
0

W (x)
[
y(x)−

{
a0f0(x) + a1f1(x) + . . .+ anfn(x)

}]2
dx. (2.4.2)

For S to be minimum, we must have

∂S

∂a0
= 0 = −2

b∫
a

W (x)
[
y(x)−

{
a0f0(x) + a1f1(x) + . . .+ anfn(x)

}]
f0(x) dx

∂S

∂a1
= 0 = −2

b∫
a

W (x)
[
y(x)−

{
a0f0(x) + a1f1(x) + . . .+ anfn(x)

}]
f1(x) dx (2.4.3)

...

∂S

∂an
= 0 = −2

b∫
a

W (x)
[
y(x)−

{
a0f0(x) + a1f1(x) + . . .+ anfn(x)

}]
fn(x) dx

The system of normal equations can be written as

a0

b∫
a

W (x)f0(x)fj(x) dx + a1

b∫
a

W (x)f1(x)fj(x) dx +

+ an

b∫
a

W (x)fn(x)fj(x) dx =

b∫
a

W (x)y(x)fj(x) dx, j = 0, 1, 2, . . . , n. (2.4.4)

In Eq.(2.4.4), we find products of the type fp(x)fq(x) in the integrands, and if we assume that

b∫
a

W (x)fp(x)fq(x) dx =


0, p 6= q
b∫
a
W (x)f2p (x) dx, p = q,

(2.4.5)

14

Hence from Eq.(2.4.4), we obtain

aj =

[b∫
a

W (x)y(x)fj(x) dx

]/[b∫
a

W (x)f2j (x) dx

]
, j = 0, 1, 2, . . . , n. (2.4.6)

Substitution of a0, a1, . . . , an in Eq.(2.4.1) then yields the required least squares approximation, but the func-
tions f0(x), f1(x), . . . , fn(x) are still not known. The fj(x), which are polynomials in x satisfying the con-
dition (2.4.5), are called orthogonal polynomials and are said to be orthogonal with respect to the weight
function W (x). They play an important role in numerical analysis and a few of them are listed below.

A brief discussion of some important properties of the Chebyshev polynomials Tn(x) and their usefulness
in the approximation of functions will be given in a later subsection in this unit. We now return to our
discussion of the problem of determining the least squares approximation. As we noted earlier, the function
fj(x) are yet to be determined. These are obtained by using ‘Gram-Schmidt orthogonalization process’, which
has important applications in numerical analysis.

2.4.1 Gram-Schmidt Orthogonalization Process

Suppose that the orthogonal polynomial fi(x), valid on the interval [a, b], has the leading term xi. Then,
starting with

f0(x) = 1 (2.4.7)

we find that the linear polynomial f1(x), with leading term x, can be written as

f1(x) = x+ k1,0f0(x), (2.4.8)

where k1,0 is a constant to be determined. Since f1(x) and f0(x) are orthogonal, we have

b∫
a

W (x)f0(x)f1(x) dx = 0 =

b∫
a

xW (x)f0(x) dx+ k1,0

b∫
a

W (x)f20 (x) dx [using Eqs.(2.4.5) and (2.4.7)]

Now from the above, we obtain

k1,0 = −

[b∫
a

xW (x)f0(x) dx

]/[b∫
a

W (x)f20 (x) dx

]
, (2.4.9)

and Eq.(2.4.8) gives

f1(x) = x−

[[b∫
a

xW (x)f0(x) dx

]/[b∫
a

W (x)f20 (x) dx

]]
f0(x) (2.4.10)

15

Now, the polynomial f2(x), of degree 2 in x and with leading term x2, may be written as

f2(x) = x2 + k2,0f0(x) + k2,1f1(x), (2.4.11)

where the constants k0,2 and k2,1 are to be determined by using the orthogonality conditions in Eq.(2.4.5).
Since f2(x) is orthogonal to f0(x), we have

b∫
a

W (x)f0(x)
[
x2 + k2,0f0(x) + k2,1f1(x)

]
dx = 0. (2.4.12)

Since

b∫
a

W (x)f0(x)f1(x) dx = 0, the above equation gives

k2,0 = −

[b∫
a

x2W (x)f0(x) dx

]/[b∫
a

W (x)f20 (x) dx

]
= −

[b∫
a

x2W (x) dx

]/[b∫
a

W (x) dx

]
,

(2.4.13)
Again, since f2(x) is orthogonal to f1(x), we have

b∫
a

W (x)f1(x)
[
x2 + k2,0f0(x) + k2,1f1(x)

]
dx = 0. (2.4.14)

Using the condition that

b∫
a

W (x)f0(x)f1(x) dx = 0, the above yields

k2,1 = −

[b∫
a

x2W (x)f1(x) dx

]/[b∫
a

W (x)f21 (x) dx

]
, (2.4.15)

Since k2,0 and k2,1 are known, Eq.(2.4.11) determines f2(x). Proceeding in this way, the method can be
generalized and we write

fj(x) = xj + kj,0f0(x) + kj,1f1(x) + . . .+ kj,j−1fj−1(x), (2.4.16)

where the constants kj,i are so chosen that fj(x) is orthogonal to f0(x), f1(x), . . . , fj−1(x). These conditions
yield

kj,i = −

[b∫
a

xjW (x)fi(x) dx

]/[b∫
a

W (x)f2i (x) dx

]
, (2.4.17)

Since the ai and fi(x) in Eq.(2.4.1) are known, the approximation Y (x) can now be determined. The following
example illustrates the method of procedure.

Example 2.7. Obtain the first-four orthogonal polynomials fn(x) on [−1, 1] with respect to the weight func-
tion W (x) = 1.

16

Solution: Let f0(x) = 1. Then Eq.(2.4.9) gives

k1,0 = −

[1∫
−1

x dx

]/[1∫
−1

dx

]
= 0,

We then obtain from Eq.(2.4.8), f1(x) = x. Equations (2.4.13) and (2.4.15) gives respectively

k2,0 = −

[1∫
−1

x2 dx

]/[1∫
−1

dx

]
= −1

3
and k2,1 = −

[1∫
−1

x2x dx

]/[1∫
−1

x2 dx

]
= 0.

Then Eq.(2.4.11) yields f2(x) = x2 − 1/3. In a similar manner, we obtain

k3,0 = −

[1∫
−1

x3 dx

]/[1∫
−1

dx

]
= 0, k3,1 = −

[1∫
−1

x3 x dx

]/[1∫
−1

x2 dx

]
= −3

5
,

and k3,2 = −

[1∫
−1

x3(x2 − 1/3) dx

]/[1∫
−1

(x2 − 1/3)2 dx

]
= 0,

It is easily verified that

f3(x) = x3 − 3

5
x.

Thus the required orthogonal polynomials are 1, x, x2 − 1/3 and x3 − (3/5)x. These polynomials are called
Legendre polynomials and are usually denoted by Pn(x). It is easy to verify that these polynomials satisfy the
orthogonal property given in Eq.(2.4.5).

2.5 Chebyshev Polynomials

The chebyshev polynomial of degree n over the interval [−1, 1] is defined by the relation

Tn(x) = cos(n cos−1 x), (2.5.1)

from which follows immediately the relation

Tn(x) = T−n(x). (2.5.2)

Let cos−1 x = θ so that x = cos θ and Eq.(2.5.1) gives

Tn(x) = cosnθ. (2.5.3)

Hence T0(x) = 1 and T1(x) = x. Using the trigonometric identity

cos(n− 1)θ + cos(n+ 1)θ = 2 cosnθ cos θ, (2.5.4)

we obtain easily
Tn−1(x) + Tn+1(x) = 2xTn(x), (2.5.5)

which is the same as
Tn+1(x) = 2xTn(x)− Tn−1(x). (2.5.6)

17

This is the recurrence relation which can be used to successively compute all Tn(x), since we know T0(x)
and T1(x). The first seven Chebyshev polynomials are:

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 5x, T6(x) = 32x6 − 48x4 + 18x2 − 1

The graph of the first four Chebyshev polynomials are shown in Fig.2.1.

Fig.2.1 Chebyshev polynomials Tn(x), n = 1, 2, 3, 4.

It is easy to see that the coefficient of xn in Tn(x) is always 2n−1. Further, if we set y = Tn(x) = cosnθ,
then we get

dy

dx
=
n sinnθ

sin θ

and
dy

dx2
=
−n2 cosnθ + n sinnθ cot θ

sin2 θ
=
−n2y + x (dy/dx)

1− x2
(2.5.7)

so that
(1− x2) d

y

dx2
− xdy

dx
+ n2y = 0, (2.5.8)

which is the differential equation satisfied by Tn(x). It is also possible to express powers of x in terms of
Chebyshev polynomials. We find

1 = T0(x), x = T1(x), x2 =
1

2
[T0(x) + T2(x)], x3 =

1

4
[3T1(x) + T3(x)]

x4 =
1

8
[3T0(x) + 4T2(x) + T4(x)], x5 =

1

16
[10T1(x) + 5T3(x) + T5(x)], (2.5.9)

x6 =
1

32
[10T0(x) + 15T2(x) + 6T4(x) + T6(x)].

and so on. These expressions will be useful in the economization of power series which is beyond of our
syllabus. An important property of Tn(x) is given by

1∫
−1

Tm(x)Tn(x) dx√
1− x2

=


0, m 6= n
π/2, m = n 6= 0,
π, m = n = 0

(2.5.10)

that is, the polynomials Tn(x) are orthogonal with the function 1/
√

1− x2. This property is easily proved
since by putting x = cos θ, the above integral becomes

π∫
0

Tm(cos θ)Tn(cos θ) dθ =

π∫
0

cosmθ cosnθ dθ =

[
sin(m+ n)θ

2(m+ n)
+

sin(m− n)θ

2(m− n)

]π
0

,

18

from which follow the values given on the right side of Eq.(2.5.10). We have seen above that Tn(x) is a
polynomial of degree n in x and that the coefficient of xn in Tn(x) is 2n−1. In approximation theory, one use
monic polynomials, i.e., Chebyshev polynomials in which the coefficient of xn is unity. If Pn(x) is a monic
polynomial, then we can write

Pn(x) = 21−nTn(x), (n ≥ 1). (2.5.11)

A remarkable property of Chebyshev polynomials is that of all monic polynomials, Pn(x), of degree n whose
leading coefficient equals unity, the polynomials 21−nTn(x), has the smallest least upper bound for its ab-
solute value in the range (−1, 1). Since |Tn(x)| ≤ 1, the upper bound referred to above is 21−n. Thus, in
Chebyshev approximation, the maximum error is kept down to a minimum. This is often referred to as min-
imax principle and the polynomial in Eq.(2.5.11) is called the minimax polynomial. By this process we can
obtain the best lower-bound approximation, called the minimax approximation, to a given polynomial. This is
illustrated in the following example.

Example 2.8. Find the best lower-order approximation to the cubic 2x3 + 3x2.

Solution: Using the relation given in Eq.(2.5.9), we write

2x3 + 3x2 =
2

4

[
T3(x) + 3T1(x)

]2
+ 3x2

= 3x2 +
3

2
T1(x) +

1

2
T3(x)

= 3x2 +
3

2
x+

1

2
T3(x), [∵ T1(x) = x].

The polynomial 3x2 + (3/2)x is the required lower-order approximation to the given cubic with a maximum
error ±1/2 in the range (−1, 1).

Exercise 2.9. (i) If the function f1(x) = 1, f2(x) = x are orthogonal on the interval [−1, 1], find the values
of a and b so that the function f3(x) = 1 + ax+ bx2 is orthogonal to both f1 and f2 on [−1, 1].
(ii) Define an orthogonal set of functions and show that the set f(x) = sin

nπx

l
, n = 1, 2, . . . is orthogonal

on [0, l].

19

Unit 3

Course Structure

Numerical Integration : Gaussian quadrature formula and its existence, Newton’s quadrature formula,
Romberg integration, Euler- MacLaurin formula.

3 Introduction

The general problem of numerical integration may be stated as: Given a set of data points (x0, y0), (x1, y1), . . . ,
(xn, yn) of a function y = f(x), where f(x) is not known explicitly, it is required to compute the value of the
definite integral

I =

b∫
a

y dx. (3.0.1)

Different integration formulae can be obtained depending upon the type of interpolation formula used.

3.1 Gauss quadrature formula

In Newton’s cotes formula for numerical integration we used ordinate in equi-distant point. Gauss observed
that if these requirement is removed then the degree of precision can be highly increased. But here it is require
that f(x) should be explicitly known so that it can be evaluated at any desired value of x.

3.1.1 Derivation

We first consider a function y = f(t) specified on [−1, 1], we shall show that

1∫
−1

f(t) dt =

n∑
i=0

Aif(ti) +R (3.1.1)

It is possible to choose the points ti(i = 0, 1, 2, . . . , n) and the coefficients Ai, i = 0(1)n so that R = 0 for
f(t), any polynomial of degree ≤ (2n + 1). Let P (t) be the interpolating polynomial of degree ≤ (2n + 1)
which coincides with f(t) at t = t0, t1, . . . , tn, tn+1, . . . , t2n+1. Then

f(t) = P (t) + (t− t0)(t− t1) . . . (t− t2n+1)f(t, t0, t1, . . . , t2n+1) (3.1.2)

∴

1∫
−1

f(t) dt =

1∫
−1

P (t) dt+R, where R =

1∫
−1

(t− t0)(t− t1) . . . (t− t2n+1)f(t, t0, . . . , t2n+1) dt(3.1.3)

LetLn(t) be the Lagrange’s interpolation polynomial of degree nwhich coincides with f(t) at t0, t1, t2, . . . , tn
in the interval [−1, 1]. Then

Ln(t) =
n∑
i=0

w(t)

(t− ti)w′(ti)
f(ti) (3.1.4)

20

where w(t) = (t− t0)(t− t1) . . . (t− tn). Now P (tr) = Ln(tr), r = 0, 1, 2, . . . , n. Therefore,

P (t)− Ln(t) = c(t− t0)(t− t1) . . . (t− tn)N(t) (3.1.5)

where c is a constant and N(t) is a polynomial of degree n. Therefore

P (t) = Ln(t) + c w(t) N(t) (3.1.6)

Using (3.1.6) in (3.1.3), we obtain

1∫
−1

f(t) dt =

1∫
−1

Ln(t) dt+ c

∫ 1

−1
w(t) N(t) dt+R

=

n∑
i=0

Aif(ti) + c

∫ 1

−1
w(t) N(t) dt+R (3.1.7)

where

Ai =

1∫
−1

w(t)

(t− ti)w′(ti)
dt (3.1.8)

Now we see that for a proper choice of the points t0, t1, t2, . . . , tn the degree of precision in (2n+ 1) if

1∫
−1

w(t) N(t) dt = 0 (3.1.9)

This condition is both necessary and sufficient.

Proof. Sufficient Part: To prove the sufficiency we note that assuming (3.1.9), (3.1.7) becomes

1∫
−1

f(t) dt =

n∑
i=0

Aif(ti) +R

where R is given by (3.1.3). Now R = 0 if f(t) is replaced by any polynomial of degree ≤ (2n+ 1). Hence
the degree of precision is (2n+ 1).

Proof. Necessary Part: To prove the condition is necessary we assume that

1∫
−1

G2n+1(t) dt =
n∑
i=0

AiG2n+1(ti) (3.1.10)

for an arbitrary polynomialG2n+1 of maximum degree (2n+1). Hence it must be satisfied for the polynomial
G2n+1(t) = w(t) N(t) giving

1∫
−1

w(t) N(t) dt =

n∑
i=0

Ai w(ti) N(ti) = 0 [∵ w(ti) = 0, i = 0, 1, . . . , n.] (3.1.11)

21

Thus we get that formula (3.1.1) is valid if and only if (3.1.9) is satisfied.

Let the polynomial p successive indefinite integration ofw(t) bewp(t). Then after (n+1) times integration
by parts we have

1∫
−1

w(t) N(t) dt =
[
w1(t)N(t)− w2(t)N

′(t) + . . .+ (−1)nwn+1(t)N
n(t)

]1
−1

‘ + (−1)n+1

1∫
−1

w2n+1(t)N
n+1(t) dt (3.1.12)

Since N(t) is a polynomial of degree n, so Nn(t) =constant and Nn+1(t) = 0. Therefore,
1∫
−1

w(t) N(t) dt =
[
w1(t)N(t)− w2(t)N

′(t) + . . .+ (−1)nwn+1(t)N
n(t)

]1
−1

Equation (3.1.9) is satisfied if and only if

w1(±1) = w2(±1) = . . . = wn+1(t) = 0

This (2n+ 2) conditions are satisfied if we have

w(t) = c
dn+1

dtn+1
(t2 − 1)n+1

where c is a constant. Now comparing the coefficient of tn+1 from both the side, we obtain

c(2n+ 2)(2n+ 1) . . . (n+ 2) = 1⇒ c
(2n+ 2)!

(n+ 1)!
= 1⇒ c =

(n+ 1)!

(2n+ 2)!

Therefore

w(t) =
(n+ 1)!

(2n+ 2)!

dn+1

dtn+1
(t2 − 1)n+1 (3.1.13)

Now we know that the Legendre polynomial Pn+1(x) of degree (n+ 1) is given by the Rodgrique’s formula

Pn+1(t) =
1

2n+1(n+ 1)!

dn+1

dtn+1
(t2 − 1)n+1

Using this we find from (3.1.13) that

w(t) =
2n+1[(n+ 1)!]2

(2n+ 2)!
Pn+1(t) (3.1.14)

Hence ti are roots of Pn+1(t) = 0. Now the roots t0, t1, . . . , tn are all real, distinct and lie in the interval
between−1 and 1. Knowing ti for i = 0(1)n, the coefficientAi, i = 0(1)n are given by (3.1.8). Hence Gauss
quadrature formula can be written as

1∫
−1

f(t) dt =

n∑
i=0

Ai f(ti) +R (3.1.15)

The error term in Gauss quadrature formula is given by

R =
[(n+ 1)!]4

[(2n+ 2)!]3
22n+3

2n+ 3
f2n+2(ξ); − 1 < ξ < 1 (3.1.16)

Since this is proportional to (2n + 2)th derivative of f(t), the formula (3.1.15) is exact for all polynomial of
degree (2n+ 1) or less.

22

3.1.2 Modification

Let us consider
b∫
a
f(x) dx. Putting x = a+b

2 + b−a
2 t so that dx = b−a

2 dt. When x = a, t = −1 and for x = b,

t = 1. Let

f(x) = f

{
a+ b

2
+
b− a

2
t

}
≡ F (t).

Therefore
b∫
a

f(x) dx =
b− a

2

1∫
−1

F (t) dt (3.1.17)

Applying Gaussian quadrature formula, we have

1∫
−1

F (t) dt =

n∑
i=0

AiF (ti) +R′

=

n∑
i=0

Aif(xi) +R′ (3.1.18)

where xi = a+b
2 + b−a

2 ti and R′ = [(n+1)!]4

[(2n+2)!]3
22n+3

2n+3 F
2n+2(ξ′); − 1 < ξ′ < 1. Now,

dF

dt
=
df

dx
· dx
dt

=
b− a

2

df

dx

∴ R′ =
[(n+ 1)!]4

[(2n+ 2)!]3
22n+3

2n+ 3

(
b− a

2

)2n+2

f2n+2(ξ′); a < ξ < b. (3.1.19)

Hence Eq.(3.1.17) becomes

b∫
a

f(x) dx =
b− a

2

[
n∑
i=0

Aif(xi) +R′

]
=
b− a

2

n∑
i=0

Aif(xi) +R (3.1.20)

where R = b−a
2 R′

Remark 3.1. (i) The advantage of this formula lies in the fact that by use of (n + 1) points only, we are
attaining an accuracy which would ordinarily result from the use of (2n + 2) points. Hence, this formula is
twice as accurate as those base on equally spaced points.
(ii) The disadvantage is that the interpolating points in general corresponds to irrational number and their use
may lead to excessive labour in numerical computation.

Illustration: Derive the Gauss quadrature formula for the case of 3 ordinates.

We have

P3(t) =
1

233!

d3

dt3
{(t2 − 1)3}

=
1

48

d3

dt3
(t6 − 3t4 + 3t2 − 1)

=
1

48
[5t3 − 3t]

23

The points t0, t1 and t2 are given by

t0 = −
√

3/5, t1 = 0, t2 = +
√

3/5

Here

w(t) =

(
t+

√
3

5

)
t

(
t−
√

3

5

)

⇒ w′(t0) = t0

(
t0 −

√
3

5

)
=

6

5
, w′(t1) =

(
t1 +

√
3

5

)(√
3

4

)
= −3

5
,

and w′(t2) =

(
t2 +

√
3

5

)
t2 =

6

5

∴ A0 =
5

6

1∫
−1

t

(
t−
√

3

5

)
dt =

5

9
, A1 = −5

3

1∫
−1

(
t2 +

√
3

5

)
dt =

8

9

and A2 =
5

6

1∫
−1

(
t+

√
3

5

)
t dt =

5

9

For n = 2, R =
[3!]4

[6!]3
fvi(ξ)

27

7
=

fvi

15750

∴

1∫
−1

f(t) dt =
1

9

[
5f

(
−
√

3

5

)
+ 8f (0) + 5f

(√
3

5

)]
+
f iv(ξ)

15750
, − 1 < ξ < 1

3.2 Newton’s quadrature formula

We derive in this section a general formula for numerical integration using Newton’s forward difference for-
mula.
Let the interval [a, b] be divided into n equal subintervals such that a = x0 < x1 < x2 < . . . < xn = b.
Clearly, xn = x0 + nh. Hence the integral becomes

I =

xn∫
x0

y dx. (3.2.1)

Approximating y by Newton’s forward difference formula, we obtain

I =

xn∫
x0

[
y0 + p∆y0 +

p(p− 1)

2
∆2y0 +

p(p− 1)(p− 2)

6
∆3y0 + . . .

]
dx. (3.2.2)

Since x = x0 + ph, dx = h dp and hence the above integral becomes

I = h

n∫
0

[
y0 + p∆y0 +

p(p− 1)

2
∆2y0 +

p(p− 1)(p− 2)

6
∆3y0 + . . .

]
dp, (3.2.3)

24

which gives on simplification
xn∫
x0

y dx = nh

[
y0 +

n

2
∆y0 +

n(2n− 3)

12
∆2y0 +

n(n− 2)2

24
∆3y0 + . . .

]
. (3.2.4)

From this general formula, we can obtain different integration formulae by putting n = 1, 2, 3, . . . etc. We
derive a few of these formulae like Trapezoidal Rule, Simpson’s 1/3 rule, Simpson’s 3/8 rule which you have
studied earlier. A short remainder of these formula are given below.

3.3 Numerical Integration Formulae

3.3.1 Trapezoidal Rule

The integral formula for Trapezoidal rule is given by
xn∫
x0

y dx =
h

2
[y0 + 2(y1 + y2 + . . .+ yn−1) + yn] (3.3.1)

Corresponding error is given by E = −b− a
12

h2M, where M = max︸︷︷︸
a≤x≤b

|f ′′(x)| (3.3.2)

3.3.2 Simpson’s 1/3 Rule

The integral formula for Trapezoidal rule is given by
xn∫
x0

y dx =
h

3
[y0 + 4(y1 + y3 + y5 + . . .+ yn−1) + 2(y2 + y4 + y6 + . . .+ yn−2) + yn], (3.3.3)

Corresponding error is given by E = −b− a
180

h4M, where M = max︸︷︷︸
a≤x≤b

|f iv(x)| (3.3.4)

3.3.3 Simpson’s 3/8 Rule

The integral formula for Trapezoidal rule is given by
xn∫
x0

y dx =
3h

8
[y0 + 3y1 + 3y2 + 2y3 + 3y4 + 3y5 + 2y6 + . . .+ 2yn−3 + 3yn−2 + 3yn−1 + yn], (3.3.5)

Corresponding error is given by E = − 3

80
h4M, where M = max︸︷︷︸

a≤x≤b

|f iv(x)| (3.3.6)

3.4 Romberg integration

This method can often used to improve the approximate results obtained by the finite difference methods. Its
application to the numerical evaluation of definite integrals, for example in the use of trapezoidal rule, can be
described, as follows. We consider the definite integral

I =

b∫
a

y dx (3.4.1)

25

and evaluate it by the trapezoidal rule (3.3.1) with two different subintervals of widths h1 and h2 to obtain the
approximate values of I1 and I2 respectively. Then (3.3.2) gives the errors E1 and E2 as

E1 = − 1

12
(b− a)h21y

′′(ξ1) and E2 = − 1

12
(b− a)h22y

′′(ξ2) (3.4.2)

Since the term y′′(ξ2) is also the largest value of y′′(x), it is reasonable to assume that the quantities y′′(ξ1)
and y′′(ξ2) are very nearly the same. We therefore have

E1

E2
=
h21
h22

⇒ E2

E2 − E1
=

h22
h22 − h21

Since E2 − E1 = I2 − I1, this gives

E2 =
h22

h22 − h21
(I2 − I1) (3.4.3)

We therefore obtain a new approximation I3 defined by

I3 = I2 − E2 =
I1h

2
2 − I2h21
h22 − h21

, (3.4.4)

which, in general, would be closer to the actual value - provided that the errors decrease monotonically and
are of the same sign. If we now set h2 = 1

2h1 = 1
2h, Eq.(3.4.4) can be written in the more convenient form

I

(
h,

1

2
h

)
=

1

3

[
4I

(
1

2
h

)
− I(h)

]
= I

(
h

2

)
+

1

3

[
I

(
1

2
h

)
− I(h)

]
, (3.4.5)

where I(h) = I1, I

(
1

2
h

)
= I2 and I

(
h,

1

2
h

)
= I3. With this notation the following table can be formed

I(h)

I

(
h,

1

2
h

)
I

(
1

2
h

)
I

(
h,

1

2
h,

1

4
h

)
I

(
1

2
h,

1

4
h

)
I

(
h,

1

2
h,

1

4
h,

1

8
h

)
I

(
1

4
h

)
I

(
1

2
h,

1

4
h,

1

8
h

)
I

(
1

4
h,

1

8
h

)
I

(
1

8
h

)
This computations can be stopped when two successive values are sufficiently close to each other. This
method, due to L.F. Richardson, is called the deferred approach to the limit and the systematic tabulation of
this is called Romberg Integration.

Illustration: Show that the formula (3.4.5) gives the Simpson’s 1
3 rule of integration.

Proof. Let us divide the interval [a, b] into n equal subintervals by the points a = x0, x2, x4, . . . , x2n = b.
Then

I1 =
h

2

[
y0 + 2(y2 + y4 + . . .+ y2n−2) + y2n

]

26

Again dividing the interval [a, b] into 2n equal subintervals, each of length
1

2
h by the points a = x0, x1, x2,

. . . , x2n−1, x2n = b so that we have

I2 =
h

4

[
y0 + 2(y1 + y2 + y3 + . . .+ y2n−1) + y2n

]
Now

1

3

[
4I2 − I1

]
=

h

3

[{
y0 + 2(y1 + y2 + y3 + . . .+ y2n−1) + y2n

}
− 1

2

{
y0 + 2(y2 + y4 + . . .+ y2n−2) + y2n

}]
=

h

3

[1

2
y0 + 2(y1 + y3 + y5 + . . .+ y2n−1) + (y2 + y4 + y6 + . . .+ y2n−2) +

1

2
y2n

]
=

h/2

3

[
y0 + 4(y1 + y3 + y5 + . . .+ y2n−1) + 2(y2 + y4 + y6 + . . .+ y2n−2) + y2n

]
This formula gives Simpson’s 1/3 rule, and hence the error is of the order h4.

Example 3.2. Use Romberg’s method to compute I =

1∫
0

1

1 + x
dx, correct to three decimal places.

Solution: We take h = 0.5, 0.25 and 0.125 successively and obtain

I(h) =
1

4

[
1.0000 + 2(0.6667) + 0.5

]
= 0.7084

I

(
1

2
h

)
=

1

8

[
1.0 + 2(0.8000 + 0.6667 + 0.5714) + 0.5

]
= 0.6970

I

(
1

4
h

)
=

1

6

[
1.0 + 2(0.8889 + 0.8000 + 0.7273 + 0.6667) + (0.6154 + 0.5714 + 0.5333) + 0.5

]
= 0.6941

Now using the formula (3.4.5), we obtain

I

(
h,

1

2
h

)
= 0.6970 +

1

3
(0.6970− 0.7084) = 0.6932

I

(
1

2
h,

1

4
h

)
= 0.6941 +

1

3
(0.6941− 0.6970) = 0.6931

Finally, we obtain

I

(
h,

1

2
h,

1

4
h

)
= 0.6931 +

1

3
(0.6931− 0.6932) = 0.6931

The table of values are, therefore,

0.7084
0.9632

0.6970 0.6931
0.6931

0.6941

Hence, I =

1∫
0

1

1 + x
dx = 0.693 (correct to three decimal places). An obvious advantage of this method is

that the accuracy of the computed value is known at each step.

27

Exercise 3.3. (i) Use Romberg integration to compute I =

1∫
0

e−x
2
dx, correct to three decimal places.

Answer: 0.747

(ii) Use Romberg integration to compute I =

2π∫
0

sinx dx, correct to three decimal places. Answer: 1.999

(iii) Use Romberg integration to compute I =

4∫
0

x5 dx, correct to three decimal places. Answer: 682.667

3.5 Euler-MacLaurin Formula

Consider the expansion of 1/(ex − 1) in ascending power of x, obtained by writing the MacLaurin expnsion
of ex and simplifying

1

ex − 1
=

1[
x+ x2

2! + x3

3! + . . .
] =

1

x

[
1 +

(
x

2!
+
x2

3!
+ . . .

)]−1
=

1

x
− 1

2
+B1x+B3x

3 +B5x
5 + . . . , (3.5.1)

where B2r = 0, B1 = 1
12 , B3 = − 1

720 , B5 = 1
30240 , etc. In Eq.(3.5.1), if we set x = hD and use the relation

E ≡ ehD, we obtain the identity

1

E − 1
=

1

hD
− 1

2
+B1hD +B3h

3D3 +B5h
5D5 + . . .

or equivalently

En − 1

E − 1
=

1

hD
(En − 1)− 1

2
(En − 1) +B1hD(En − 1) +B3h

3D3(En − 1) + . . . (3.5.2)

Operating this identity on y0, we obtain

En − 1

E − 1
y0 =

1

hD
(En − 1)y0 −

1

2
(En − 1)y0 +B1hD(En − 1)y0 + . . .

=
1

hD
(yn − y0)−

1

2
(yn − y0) +B1h(y′n − y′0) +B3h

3(y′′′n − y′′′0) +B5h
5(yvn − yv0) + . . .

It can be easily shown that the left-hand side denotes the sum y0 + y1 + y2 + . . . + yn−1, whereas the term

1

hD
(yn − y0) on the right side can be written as

1

h

xn∫
x0

y dx, since 1/D can be interpreted as an integration

operator. Hence

xn∫
x0

y dx =
h

2
(y0 + 2y1 + 2y2 + . . .+ 2yn−1 + yn)− h2

12
(y′n − y′0)

+
h4

720
(y′′′n − y′′′0)− h6

30240
(yv − yv0) + . . . (3.5.3)

28

which is called the Euler-MacLaurin’s formula for integration. The first expression on the right-side of
Eq.(3.5.3) denotes the approximate value of the integral obtained by using trapezoidal rule and the other
expressions represent the successive corrections to this value. It should be noted that this formula may also be
used to find the sum of a series of the form y0 + y1 + y2 + . . .+ yn. The use use of this formula is illustrated
by the following example.

Example 3.4. Evaluate I =

π/2∫
0

sinx dx using the Euler-Maclaurin’s formula.

Solution: In this case, formula (3.5.3) simplifies to

π/2∫
0

sinx dx =
h

2
(y0 + 2y1 + 2y2 + . . .+ 2yn−1 + yn) +

h2

12
+

h4

720
+

h6

30240
+ . . .

To evaluate the integral, we take h = π/4. Then we obtain

π/4∫
0

sinx dx =
π

8
(0 + 2 + 0) +

π2

192
+

π4

184320
+ . . .

≈ π

4
+

π2

192
+

π4

184320
= 0.785398 + 0.051404 + 0.000528 = 0.837330

On the other hand with h = π/8, we obtain

π/4∫
0

sinx dx =
π

16

[
0 + 2(0.382683) + 0.707117 + 0.923879 + 1.000000

]
= 0.987119 + 0.012851 + 0.000033 = 1.000003

Exercise 3.5. (i) Use the Euler-Maclaurin formula to evaluate the integral I =

2∫
1

(cosx+ lnx− ex) dx

Answer: - 4.21667

(ii) Use the Euler-Maclaurin formula to prove
n∑
1

x2 =
n(n+ 1)(2n+ 1)

6

(iii) Use the Euler-Maclaurin formula to find the sum S = 13 + 23 + 33 + . . .+ n3

29

Unit 4

Course Structure

Systems of Linear Algebraic Equations: Direct methods - Factorization method, Eigen value and Eigen-
vector Problems : Direct methods, Iterative method – Power method.

4 Introduction

Many problems arising from engineering and applied sciences require the solution of systems of linear alge-
braic equations and computation of eigenvalues and eigenvectors of a matrix. We assume that the readers are
familiar with the theory of determinants and elements of matrix algebra since these provide a convenient way
to represent linear algebraic equations. For example, the system of equations

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

may be represented as the matrix equation AX = B, where

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , X =

x1x2
x3

 and B =

b1b2
b3

 .
The solution of a linear system of equations can be accomplished by a numerical method which falls in one
of two categories: (i) direct method, (ii) iterative method. In this unit, we will mainly discuss LU factoriza-
tion/decomposition method and two types of iterative methods.

4.1 Direct method - LU decomposition or factorization method

Let there be a system of equation
AX = B (4.1.1)

where A is a n×n matrix and B is a n× 1 column vector. Now this method is based on the fact that a square
matrix A of (4.1.1) can be decomposed or factorized into a product of a lower triangular matrix L and a upper
triangular matrix U if all the principal minor in the matrix A are non-singular. Let us write

A = LU (4.1.2)

where

L =


l11 0 0 . . . 0
l21 l22 0 . . . 0
...

...
...

...
...

ln1 ln2 lnn . . . lnn

 and U =


u11 u12 u13 . . . u1n
0 u22 u23 . . . u2n
...

...
...

...
...

0 0 0 . . . unn



30

Using the matrix multiplication rule to multiply the matrices L and U and comparing the corresponding
element of the resulting matrix with those of the matrix A, one obtain

li1u1j + li2u2j + li3u3j + . . .+ linunj = aij , j = 1(1)n, (4.1.3)

where lij = 0, j > i and uij = 0, j < i. The system of equation (4.1.3) involves (n2 + n) unknowns.
To find a solution, we either choose uii = 1 or lii = 1 for i = 1, 2, . . . , n. When we choose lii = 1 for all
i = 1, 2, . . . , n the method is called Do-little’s method and when we choose uii = 1 for all i = 1, 2, . . . , n is
called Crout’s method. Here we take uii = 1 for all i = 1, 2, . . . , n, the solution of the system (4.1.3) may be
written as

lij = aij −
j−1∑
k=1

likukj , i ≥ j and uij =
1

lii

[
aij −

i−1∑
k=1

likukj

]
, i < j, uii = 1 (4.1.4)

One may note that

li1 = ai1 for all i = 1(1)n

u1j = a1j/l11 for all j = 2(1)n (4.1.5)

Thus the first column of L and first row of U are determined. We now find second column of L and second
row of U as follows:

li2 = ai2 − li1ui2 for all i = 2(1)n

u2j = [a2j − l21u1j]/l22 for all j = 2(1)n (4.1.6)

Next we find the third column of L and third row of U , fourth column of L and fourth row of U and so on the
(n− 1)-th column of L and (n− 1)-th row of U and finally lnn and unn. After having obtained the matrices
L and U the system of equations of (4.1.1) becomes

LUX = B, (4.1.7)

we write the system (4.1.7) as the following two system of equations

UX = Z and LZ = B (4.1.8)

The unknown z1, z2, . . . , zn can be found by forward substitution, while the unknown x1, x2, . . . , xn can be
determined by backward substitution. Alternatively, one can obtain L−1 and U−1 in order to find Z = L−1B
and X = U−1Z. This method is applicable when the matrix A is positive definite (i.e., XTAX > 0 for all
non-zero X ∈ Rn). However this is only the sufficient condition.

Example 4.1. Solve the following system of equation by the method of LU decomposition.

2x+ 3y + z = 9

x+ 2y + 3z = 6

3x+ y + 2z = 8

Solution: Here

A =

2 3 1
1 2 3
3 1 2

 and B =

9
6
8


31

Let 2 3 1
1 2 3
3 1 2

 =

l11 0 0
l21 l22 0
l31 l32 l33

1 u12 u13
0 1 u23
0 0 1


⇒

2 3 1
1 2 3
3 1 2

 =

l11 l11u12 l11u13
l21 l21u12 + l22 l21u13 + l22u23
l31 l31u12 + l32 l31u13 + l32u23 + l33


Comparing both sides we obtain

l11 = 2 u12 = 3/2 u13 = 1/2

l21 = 1 l22 = 1/2 u23 = 5

l31 = 3 l32 = −7/2 l33 = 18

Therefore

L =

2 0 0
1 1/2 0
3 −7/2 18

 and U =

1 3/2 1/2
0 1 5
0 0 1


Now if Z = [z1 z2 z3]

T , then the equation LZ = B gives the solution:

z1 = 9/2, z2 = 3, and z3 = 5/18

Finally the matrix UX = Z where X = [x y z]T , gives the required solution

x = 35/18, y = 29/18, and z = 5/18

Check:
Proceed the same problem by Do-little method and verify that the computation proceed to the same results.

Exercise 4.2. (i) Decompose the matrix

A =

5 −2 1
7 1 −5
3 7 4


into the form LU where L is unit lower triangular and U an upper triangular matrix. Hence solve the system
AX = B where B = [4 8 10]T Answer: x1 = 1.1193, x2 = 0.8685, x3 = 0.1407
(ii) Design an algorithm to reduce a given system of equations to upper triangular form. Test your algorithm
on the system:

4x+ 3y + 2z = 16

2x+ 3y + 4z = 20

x+ 2y + z = 8

Answer: x1 = 1, x2 = 2, x3 = 3
(iii) Decompose the matrix

A =

4 3 2
2 3 4
1 2 1


into the form LU , where L is a lower triangular matrix and U is unit upper triangular matrix.

32

4.2 Eigen value and Eigenvector Problems

Let A be a square matrix of order n with elements aij . We wish to find a column vector X and a constant λ
such that

AX = λX (4.2.1)

In Eq.(4.2.1), λ is called the eigenvalue and X is called the corresponding eigenvector. The matrix Eq.(4.2.1),
when written out in full, represents a set of homogeneous linear equations:

(a11 − λ)x1 + a12x2 + . . .+ a1nxn = 0

a21x1 + (a22 − λ)x2 + . . .+ a2nxn = 0

...
...

... (4.2.2)

an1x1 + an2x2 + . . .+ (ann − λ)xn = 0.

A nontrivial solution exists only when the coefficient determinant in (4.2.2) vanishes. Hence, we have∣∣∣∣∣∣∣∣∣
a11 − λ a12 a13 . . . a1n
a21 a22 − λ a23 . . . a2n

...
...

...
...

...
an1 an2 an3 . . . ann − λ

∣∣∣∣∣∣∣∣∣ = 0. (4.2.3)

This equation, called the characteristic equation of the matrix A, is a polynomial equation of degree n in
λ, the polynomial being called the characteristic polynomial of A. If the roots of Eq.(4.2.3) be given by
λi(i = 1, 2, . . . , n), then for each value of λi, there exist a corresponding Xi such that

AXi = λiXi. (4.2.4)

The eigenvalues λi may be either distinct (i.e. all different) or repeated. The evaluation of eigenvectors in the
case of the repeated roots is a much involved process and will not be attempted here. The set of all eigenvalues,
λi, of a matrix A is called the spectrum of A and the largest of |λi| is called the spectral radius of A. The
eigen values are obtained by solving the algebraic Eq.(4.2.3). This method, which is demonstrated in Example
(4.3), is unsuitable for matrices of higher order and better methods must be applied, which is beyond of our
syllabus. Readers are suggested to go through any standard book of numerical analysis. In some practical
applications only the numerically largest eigenvalue and the corresponding eigenvector are required, and we
will describe an iterative method, namely the Power Method, to compute the largest eigenvalue. This method
is easy of application and also well-suited for machine computations.

4.2.1 Direct Method

In this subsection we will learn, how to calculate eigenvalues and eigenvector a matrix by direct method. Let
us consider the following example.

Example 4.3. Find the eigenvalues and eigenvectors of the matrix:

A =

5 0 1
0 −2 0
1 0 5


Solution: The characteristic equation of this matrix is given by∣∣∣∣∣∣

5− λ 0 1
0 −2− λ 0
1 0 5− λ

∣∣∣∣∣∣ = 0.

33

which gives λ1 = −2, λ2 = 4 and λ3 = 6. The corresponding eigenvectors are obtained thus

(i) λ1 = −2. Let the eigenvector be X1 = [x1 x2 x3]
T . Then we have

A

x1x2
x3

 = −2

x1x2
x3


which gives the equations

7x1 + x3 = 0 and x1 + 7x3 = 0

The solution is x1 = x3 = 0 with x2 arbitrary. In particular, we take x2 = 1 and the eigenvector is
X1 = [0 1 0]T .

(ii) λ2 = 4. With X2 = [x1 x2 x3]
T as the eigenvector, the equations are

x1 + x3 = 0 and − 6x2 = 0,

from which we obtain x1 = −x3 and x2 = 0. We choose, in particular, x1 = 1/
√

2 and x3 = −1/
√

2 so
that x21 + x22 + x23 = 1. The eigenvector chosen in this way is said to be normalized. We, therefore, have
X2 = [1/

√
2 0 − 1/

√
2]T .

(iii) λ3 = 6. If X3 = [x1 x2 x3]
T is the required eigenvector, then the equations are

−x1 + x3 = 0

−8x2 = 0

x1 − x3 = 0,

which give x1 = x3 and x2 = 0. Choosing x1 = x3 = 1/
√

2, the normalised eigenvector is given by
X3 = [1/

√
2 0 1/

√
2]T .

4.2.2 Iterative method - Power Method

The method for finding the largest eigenvalue in magnitude and the corresponding eigen vector of the eigen-
value problem AX = λX , is called the Power method.

We assume that λ1, λ2, . . . , λn are distinct eigenvalues such that

|λ1| > |λ2| > · · · > |λn|. (4.2.5)

Let v1, v2, . . . , vn be the eigenvectors corresponding to the eigenvalues λ1, λ2, . . . , λn, respectively. The
method is applicable if a complete system of n linearly independent eigenvectors exist, even though some of
the eigenvalues may not be distinct. The n linearly independent eigenvectors form an n-dimensional space.
Any vector v in this space of eigenvectors v1, v2, . . . , vn can be written as a linear combination of these
vectors. That is,

v = c1v1 + c2v2 + . . .+ cnvn. (4.2.6)

Premultiplying by A and substituting Av1 = λ1v1, Av2 = λ2v2, . . . , Avn = λnvn, we get

Av = c1λ1v1 + c2λ2v2 + . . .+ cnλnvn = λ1

[
c1v1 + c2

(
λ2
λ1

)
v2 + . . .+ cn

(
λn
λ1

)
vn

]
.

34

Premultiplying repeatedly by A and simplifying, we get

A2v = λ21

[
c1v1 + c2

(
λ2
λ1

)2

v2 + . . .+ cn

(
λn
λ1

)2

vn

]
.

...

Akv = λk1

[
c1v1 + c2

(
λ2
λ1

)k
v2 + . . .+ cn

(
λn
λ1

)k
vn

]
. (4.2.7)

Ak+1v = λk+1
1

[
c1v1 + c2

(
λ2
λ1

)k+1

v2 + . . .+ cn

(
λn
λ1

)k+1

vn

]
. (4.2.8)

As k → ∞, the right sides of (4.2.7) and (4.2.8) tend to λk1c1v1 and λk+1
1 c1v1, since |λi/λ1| < 1, i =

2, 3, . . . , n. Both the right hand side vectors in (4.2.7) and (4.2.8)

[c1v1 + c2(λ2/λ1)
kv2 + . . .+ cn(λn/λ1)

kvn],

and [c1v1 + c2(λ2/λ1)
k+1v2 + . . .+ cn(λn/λ1)

k+1vn],

tend to c1v1, which is the eigenvector corresponding to λ1. The eigenvalue λ1 is obtained as the ratio of the
corresponding components of Ak+1v and Akv. That is,

λ1 = lim
k→∞

(Ak+1v)r
(Akv)r

, r = 1, 2, 3, . . . , n (4.2.9)

where the suffix r denotes the r-th component of the vector. Therefore, we obtain n ratio, all of them tending
to the same value, which is the largest eigenvalue in magnitude, |λ1|. The iterations are stopped when all the
magnitudes of the differences of the ratios are less than the given error tolerance.

Remark 4.4. The choice of the initial approximation vector v0 is important. If no suitable approximation is
available, we can choose v0 with all its components as one unit, that is, v0 = [1 1 1 . . . 1]T . However, this
initial approximation to the vector should be non-orthogonal to v1.

Remark 4.5. Faster convergence is obtained when |λ2| << λ1. As k → ∞, premultiplication each time
by A, may introduce round-off errors. In order to keep the round-off errors under control, we normalize the
vector before permultiplying by A. The normalization that we use is to make the largest element in magnitude
as unity. If we use the normalization, a simple algorithm for the power method can be written as follows:

yk+1 = Avk, (4.2.10)

vk+1 = yk+1/mk+1 (4.2.11)

where mk+1 is the largest element in magnitude of yk+1. Now, the largest element in magnitude of vk+1 is
one unit. Then (4.2.9) can be written as

λ1 = lim
k→∞

(yk+1)r
(vk)r

, r = 1, 2, 3, . . . , n (4.2.12)

and vk+1 is the required eigenvector.

Remark 4.6. It may be noted that as k →∞, mk+1 also gives |λ1|.

35

Remark 4.7. Power method gives the largest eigenvalue in magnitude. If the sign of the eigenvalue is required,
then we substitute this value in the determinant |A − λ1I and find its value. If this value is approximately
zero, then the eigenvalue is of positive sign. Otherwise, it is of negative sign.

Example 4.8. Determine the numerically largest eigenvalue and the corresponding eigenvector of the follow-
ing matrix, using the power method.

A =

25 1 2
1 3 0
2 0 −4


Solution: Let the initial approximation to the eigenvector be v0. Then, the power method is given by

yk+1 = Avk,

vk+1 = yk+1/mk+1

where mk+1 is the largest element in magnitude of yk+1. The dominant eigenvalue in magnitude is given by

λ1 = lim
k→∞

(yk+1)r
(vk)r

, r = 1, 2, 3, . . . , n

and vk+1 is the required eigenvector. Let the initial approximation to the eigenvector be v0 = [1 1 1]T . We
have the following results.

y1 = Av0 =

25 1 2
1 3 0
2 0 −4

1
1
1

 =

28
4
−2

 , m1 = 28

v1 =
1

m1
y1 =

1

28

28
4
−2

 =

 1
0.14286
−0.07143



y2 = Av1 =

25 1 2
1 3 0
2 0 −4

 1
0.14286
−0.07143

 =

25.0000
1.14286
2.28572

 , m2 = 25;

v2 =
1

m2
y2 =

1

25.0

25.00000
1.14286
−2

 =

 1
0.05714
0.09143



y3 = Av2 =

25 1 2
1 3 0
2 0 −4

 1
0.05714
0.09143

 =

25.2400
1.17142
1.63428

 , m3 = 25.24;

v3 =
1

m3
y3 =

1

25.24

25.24000
1.17142
1.63428

 =

 1
0.04641
0.06475



y4 = Av3 =

25 1 2
1 3 0
2 0 −4

 1
0.04641
0.06475

 =

25.17591
1.13923
1.74100

 , m4 = 25.17591;

v4 =
1

m4
y4 =

1

25.17591

25.17591
1.13923
1.74100

 =

 1
0.04525
0.06915


36

y5 = Av4 =

25 1 2
1 3 0
2 0 −4

 1
0.04525
0.06915

 =

25.18355
1.13575
1.72340

 , m5 = 25.18355;

v5 =
1

m5
y5 =

1

25.18355

25.18355
1.13575
1.72340

 =

 1
0.04510
0.06843



y6 = Av5 =

25 1 2
1 3 0
2 0 −4

 1
0.04510
0.06843

 =

25.18196
1.13530
1.72628

 , m6 = 25.18196;

v6 =
1

m6
y6 =

1

25.18196

25.18196
1.13530
1.72628

 =

 1
0.04508
0.06855



y7 = Av6 =

25 1 2
1 3 0
2 0 −4

 1
0.04508
0.06855

 =

25.18218
1.13524
1.72580

 , m7 = 25.18218;

v7 =
1

m7
y7 =

1

25.18218

25.18218
1.13524
1.72580

 =

 1
0.04508
0.06853



y8 = Av7 =

25 1 2
1 3 0
2 0 −4

 1
0.04508
0.06853

 =

25.18214
1.13524
1.72588

 , m8 = 25.18214;

v8 =
1

m8
y8 =

1

25.18214

25.18214
1.13524
1.72588

 =

 1
0.04508
0.06854

 .
Now, we find the ratios

λ1 = lim
k→∞

(yk+1)r
(vk)r

, r = 1, 2, 3.

We obtain the ratios as

25.18214,
1.13524

0.04508
= 25.18279,

1.72588

0.06853
= 25.18430

The magnitude of the errors of the difference of these ratios are 0.00065, 0.00216, 0.00151, which are less
than 0.005. Hence, the results are correct to two decimal places. Therefore, the largest eigenvalue in magni-
tude is |λ1| = 25.18. The corresponding eigenvector is [1 0.04508 0.06854]T .

In remark (4.6), we have noted that as k → ∞, mk+1 also gives |λ1|. We find that this statement is true
since |m8 −m7| = |25.18214− 25.18220| = 0.00006.

If we require the sign of the eigenvalue, we substitute λ1 in the characteristic equation. In the present prob-
lem, we find that |A− 25.15I| = 1.4018, while A+ 25.18I| is very large. Therefore, the required eigenvalue
is 25.18.

37

Exercise 4.9. (i) Determine the dominant eigenvalue of A =

[
1 2
3 4

]
by power method. Answer: 5.3722

(ii) Determine the largest eigenvalue in magnitude and corresponding eigenvector of the following matrix
by power method.

A =

1 −3 2
4 4 −1
6 3 5

 Answer :|λ| = 6.98, v = [0.29737 0.6690 1.0]T

38

Unit 5

Course Structure

Nonlinear Equations : Fixed point iteration method, convergence and error estimation. Modified Newton-
Raphson method, Muller’s method

5 Introduction

In scientific and engineering studies, a frequently occurring problem is to find the roots of equations of the
form

f(x) = 0 (5.0.1)

If f(x) is quadratic, cubic and a biquadratic expression, then algebraic formulae are available for expressing
the roots in terms of the coefficients. On the other hand, when f(x) is a polynomial of higher degree or
an expression involving transcendental functions, algebraic methods are not available, and recourse must be
taken to find the roots by approximate methods. It is assumed that the readers are already familiar with the
bisection method, the method of false position. In these methods, we require an interval in which the root lies.
We now describe methods which require one or more approximate values to start the solution.

5.1 Fixed point iteration method

In order to describe the method, we first rewrite the Eq.(5.0.1) in the form

x = φ(x) (5.1.1)

Now, let x0 be an approximate root of Eq.(5.1.1). Then, substituting in Eq.(5.1.1), we get the first approxima-
tion as

x1 = φ(x0)

Successive substitutions give the approximations

x2 = φ(x1), x3 = φ(x2), . . . , xn = φ(xn−1).

The sequence may not converge to a definite number. But if the sequence converges to a definite number ξ,
then ξ will be a root of the equation x = φ(x). To show this, let

xn+1 = φ(xn) (5.1.2)

be the relation between the n-th and (n + 1)-th approximations. As n increases, xn+1 → ξ and if φ(x) is a
continuous function, then φ(xn)→ φ(ξ). Hence, in the limit, we obtain

ξ = φ(ξ), (5.1.3)

which shows that ξ is a root of the equation x = φ(x).

39

5.1.1 Condition of Convergence

To establish the condition of convergence of Eq.(5.1.1), we proceed in the following way:

From Eq.(5.1.2), we have
x1 = φ(x0) (5.1.4)

From Eqs.(5.1.3) and Eq.(5.1.4), we get

ξ − x1 = φ(ξ)− φ(x0) = (ξ − x0)φ′(ξ0), x0 < ξ0 < ξ, (5.1.5)

Similarly, we obtain

ξ − x2 = (ξ − x1)φ′(ξ1), x1 < ξ1 < ξ (5.1.6)

ξ − x3 = (ξ − x2)φ′(ξ2), x2 < ξ2 < ξ (5.1.7)
...

ξ − xn+1 = (ξ − xn)φ′(ξn), xn < ξn < ξ (5.1.8)

If we assume |φ′(ξi)| ≤ k for all i, then the above equation give

ξ − x1	≤ k	ξ − x0
ξ − x2	≤ k	ξ − x1
ξ − x3	≤ k	ξ − x2

...

|ξ − xn+1| ≤ k|ξ − xn|

Multiplying the corresponding sides of the above equations, we obtain

|ξ − xn+1| ≤ kn+1|ξ − x0| (5.1.9)

If k < 1, i.e., if |φ′(ξi)| < 1, then the right side of Eq.(5.1.9) tends to zero and the sequence of approximation
x0, x1, x2, . . . converges to the root ξ. Thus, when we express the equation f(x) = 0 in the form x = φ(x),
then φ(x) must be such that

|φ′(x) < 1|

in an immediate neighbourhood of the root. It follows that if the initial approximation x0 is chosen in an
interval containing the root ξ, then the sequence of approximation converges to the root ξ.

5.1.2 Error Estimation

We shall fin the error in the root obtained. We have

|ξ − xn| ≤ k|ξ − xn−1|
⇒ |ξ − xn| = k|ξ − xn + xn − xn−1|
⇒ |ξ − xn| ≤ k[|ξ − xn|+ |xn − xn−1|]

⇒ |ξ − xn| ≤
k

1− k
|xn − xn−1| =

k

1− k
kn−1|x1 − x0| =

kn

1− k
|x1 − x0|, (5.1.10)

which shows that the convergence would be faster for smaller values of k. Now, let ε be the specific accuracy
so that

|ξ − xn| ≤ ε

40

Then, Eq.(5.1.10) gives

|xn − xn−1| ≤
1− k
k

ε, (5.1.11)

which can be used to find the difference between two successive approximation (or iterations) to achieve a
prescribed accuracy. From (5.1.11), it is clear that the rate of convergence of the fixed point iteration method
is linear.

5.2 Modified Newton-Raphson method

It is known that the Newton-Raphson iterative scheme for finding a simple root x = ξ of the equation f(x) = 0
is given by

xn+1 = xn −
f(xn)

f ′(xn)
(5.2.1)

We know that the iterative method converges quadratically for a simple root. Now, if ξ is a root of f(x) =
0 with multiplicity m, then by modified Newton-Raphson method the iteration formula corresponding to
Eq.(5.2.1) is taken as

xn+1 = xn −m
f(xn)

f ′(xn)
(5.2.2)

which means that (1/m)f ′(xn) is the slope of the straight line passing through (xn, yn) and intersection the
x-axis at the point (xn+1, 0). Eq.(5.2.2) is called the modified Newton’s formula. Since ξ is a root of f(x) = 0
with multiplicity m, it follows that ξ is also a root of f ′(x) = 0 with multiplicity (p− 1), of f ′′(x) = 0 with
multiplicity (p− 2), and so on. Hence the expressions

x0 −m
f(x0)

f ′(x0)
, x0 − (m− 1)

f ′(x0)

f ′′(x0)
, x0 − (m− 2)

f ′′(x0)

f ′′′(x0

must have the same value if there is a root with multiplicity m, provided that the initial approximation x0 is
chosen sufficiently close to the root.

5.2.1 Order of convergence : Simple Root

Consider the Newton-Raphson method (5.2.1) converges to a root ξ of the equation f(x) = 0. Let εn = ξ−xn
be the error in n-th approximation, xn. Then

xn+1 = xn −
f(xn)

f ′(xn)
and ξ − εn+1 = ξ − εn −

f(ξ − εn)

f ′(ξ − εn)

Now, on using Taylor Series expansion of the function f(x) about the point x = ξ, we have

εn+1 = εn +
f(ξ)− εnf ′(ξ) + 1

2!ε
2
nf
′′(ξ)− 1

3!ε
3
nf
′′′(ξ) + · · ·

f ′(ξ)− εnf ′′(ξ) + 1
2!ε

2
nf
′′′(ξ)− 1

3!ε
3
nf

iv(ξ) + · · ·
(5.2.3)

If ξ is the simple root (i.e., multiplicity one), then f(ξ) = 0 and f ′(ξ) 6= 0. On dividing the numerator and
denominator in Eq.(5.2.3) with f ′(ξ), we get

εn+1 = εn +
−εn + 1

2!ε
2
n
f ′′(ξ)
f ′(ξ) −

1
3!ε

3
n
f ′′′(ξ)
f ′(ξ) + · · ·

1−
(
εn

f ′′(ξ)
f ′(ξ) −

1
2!ε

2
n
f ′′′(ξ)
f ′(ξ) + 1

3!ε
3
n
f iv(ξ)
f ′(ξ) − · · ·

)
⇒ εn+1 = εn +

[
−εn +

1

2!
ε2n
f ′′(ξ)

f ′(ξ)
− 1

3!
ε3n
f ′′′(ξ)

f ′(ξ)
+ · · ·

]
·
[
1−

(
εn
f ′′(ξ)

f ′(ξ)
− 1

2!
ε2n
f ′′′(ξ)

f ′(ξ)
+

1

3!
ε3n
f iv(ξ)

f ′(ξ)
− · · ·

)]−1
(5.2.4)

41

Let z = εn
f ′′(ξ)

f ′(ξ)
− 1

2!
ε2n
f ′′′(ξ)

f ′(ξ)
+

1

3!
ε3n
f iv(ξ)

f ′(ξ)
− · · · . Since εn is the error term and as lim

n→∞
εn → 0, so we

have z << 1. On using the expansion (1− z)−1 = 1 + z + z2 + · in the Eq.(5.2.4), we obtain

εn+1 = εn +

[
−εn +

ε2n
2!

f ′′(ξ)

f ′(ξ)
+O(ε3n)

] [
1 + εn

f ′′(ξ)

f ′(ξ)
+O(ε2n)

]
⇒ εn+1 = −ε

2
n

2

f ′′(ξ)

f ′(ξ)
+O(ε3n)⇒ lim

n→∞

|εn+1|
|ε|2

=

∣∣∣∣12 f ′′(ξ)f ′(ξ)

∣∣∣∣
This imply that, the order of convergence of Newton-Raphson method is 2 (quadratic convergence).

5.2.2 Order of convergence : Multiple Root

In the case of multiple roots of orderm, the Newton-Raphson method has convergence as follows. Continuing
with Eq.(5.2.3), we have

εn+1 = εn +
f(ξ)− εnf ′(ξ) + 1

2!ε
2
nf
′′(ξ)− 1

3!ε
3
nf
′′′(ξ) + · · ·

f ′(ξ)− εnf ′′(ξ) + 1
2!ε

2
nf
′′′(ξ)− 1

3!ε
3
nf

iv(ξ) + · · ·

Consider the equation f(x) = 0 has multiple root ξ of order m, then f ′(ξ) = f ′′(ξ) = · · · = fm−1(ξ) = 0
and fm(ξ) 6= 0. So the above equation reduces to the following equation

εn+1 = εn +

(−1)mεmn
m! f (m)(ξ) + (−1)m+1εm+1

n

(m+1)! f (m+1)(ξ) + (−1)m+2εm+2
n

(m+2)! f (m+2)(ξ) + · · ·
(−1)m−1εm−1

n

(m−1)! f (m)(ξ) + (−1)mεmn
m! f (m+1)(ξ) + (−1)m+1εm+1

n

(m+1)! f (m+2)(ξ) · · ·

On dividing the numerator and denominator by
(−1)m−1εm−1n

(m− 1)!
f (m)(ξ), we have

εn+1 = εn +
− εmn

m + ε2n
m(m+1)

f (m+1)(ξ)

f (m)(ξ)
− ε3n

m(m+1)(m+2)
f (m+2)(ξ)

f (m)(ξ)
+ · · ·

1−
(
εn
m
f (m+1)(ξ)

f (m)(ξ)
− ε2n

m(m+1)
f (m+2)(ξ)

f (m) + ε3n
m(m+1)(m+2)

f (m+3)(ξ)

f (m)(ξ)
− · · ·

)
On using the expansion, (1− z)−1 = 1 + z + z2 + · · · , the above expression can be rewritten as

εn+1 = εn

(
1− 1

m

)
− ε2n
m2(m+ 1)

fm+1(ξ)

f (m)(ξ)
+O(ε3n)

If m = 1 (i.e., ξ is only a simple root) then the coefficient of εn is zero and coefficient of ε2n is not equal to
zero and hence the scheme is of second order.

If m 6== 1 then the coefficient of εn itself is not equal to zero and hence the scheme is only of first order.

Example 5.1. Find a double root of the equation f(x) = x3 − x2 − x+ 1 = 0.

Solution: Choosing x0 = 0.8, we have

f ′(x) = 3x3 − 2x− 1, and f ′′(x) = 6x− 2.

With x0 = 0.8, we obtain

x0 − 2
f(x0)

f ′(x0)
= 0.8− 2

0.072

−0.68
= 1.012 and x0 −

f ′(x0)

f ′′(x0)
= 0.8− −0.68

2.8
= 1.043

42

The closeness of these values indicates that there is a double root near to unity. For the next approximation,
we choose x1 = 1.01 and obtain

x1 − 2
f(x1)

f ′(x1)
= 1.01− 0.0099 = 1.0001 and x1 −

f ′(x1)

f ′′(x1)
= 1.01− 0.0099 = 1.0001

We conclude, therefore, that there is a double root at x = 1.0001 which is sufficiently close to the actual root
unity.

5.3 Secant Method

We have seen that the Newton-Raphson method requires the evaluation of derivatives of the function and this
is not always possible, particularly in case of functions arising in practical problems. In the secant method,
the derivative at xi is approximated by the formula

f ′(xi) ≈
f(xi)− f(xi−1
xi − xi−1

,

which can be written as
f ′i =

fi − fi−1
xi − xi−1

, (5.3.1)

where fi = f(xi). Hence, the Newton-Raphson formula becomes

xi+1 = xi −
fi (xi − xi−1)
fi − fi−1

=
xi−1fi − xifi−1

fi − fi−1
. (5.3.2)

It should be noted that this formula requires two initial approximation to the root. This method converges
super-linearly. The order of converges of this method is p = 1

2(1 +
√

5) = 1.618 (!!! Prove it !!!).

Example 5.2. Using the secant method, find a real root of the equation

f(x) = xex − 1 = 0

Solution: We have f(0) = −1 and f(1) = e − 1 = 1.71828. Therefore, a root lies between 0 and 1. Let
x0 = 0 and x1 = 1. Therefore

x2 =
x0f1 − x1f0
f1 − f0

=
1

2.71828
= 0.36788

and
f2 = 0.36788 e0.36788 − 1 = −0.46854

Hence

x3 =
x1f2 − x2f1
f2 − f1

=
1(−0.46854)− 0.36788(1.71828)

−0.46854− 1.17828
= 0.50332

and
f3 = −0.16740

Hence
x4 =

x2f3 − x3f2
f3 − f2

= 0.57861 and f4 = 0.03198

Hence
x5 =

x3f4 − x4f3
f4 − f3

= 0.56653 and f5 = −0.00169

Therefore,

x6 =
x4f5 − x5f4
f5 − f4

= 0.56714 and f(x6) = −0.0001196

It follows that the required root is 0.5671, correct to four decimal places.

43

5.4 Muller’s Method

In this method, the given function f(x) is approximated by a second degree curve in the vicinity of a root.
The roots of the quadratic are then assumed to be the approximations to the roots of the equation f(x) = 0.
The method is iterative and can be used to compute complex roots. It has quadratic convergence.

Let (xi−2, yi−2), (xi−1, yi−1) and (xi, yi) b three distinct points on the curve y = f(x) where xi−2, xi−1
and xi are approximations to a root of f(x) = 0. Now, a second degree curve passing through the three points
is given by Lagrange’s formula

L(x) =
(x− xi−1)(x− xi)

(xi−2 − xi−1)(xi−2 − xi)
yi−2 +

(x− xi−2)(x− xi)
(xi−1 − xi−2)(xi−1 − xi)

yi−1 +
(x− xi−2)(x− xi−1)

(xi − xi−2)(xi − xi−1)
yi

(5.4.1)
Let hi = xi − xi−1, hi−1 = xi−1 − xi−2. Then

x− xi−1 = x− xi + xi − xi−1 = (x− xi) + hi,

x− xi−2 = x− xi + xi − xi−2 = (x− xi) + (hi+1 + hi),

xi−2 − xi−1 = −hi−1 (5.4.2)

xi−2 − xi = −(hi−1 + hi) and ∆i = yi − yi−1

Hence

L(x) =
(x− xi + hi)(x− xi)
hi−1(hi−1 + hi)

yi−2+
(x− xi + hi−1 + hi)(x− xi)

−hi−1hi
yi−1+

(x− xi + hi + hi−1)(x− xi + hi)

hi(hi−1 + hi)
yi

(5.4.3)
After simplification, the preceding equation can be written as

L(x) = A(x− xi)2 +B(x− xi) + yi,

where A =
1

hi−1 + hi

(
∆i

hi
− ∆i−1
hi−1

)
and B =

∆i

hi
+ Ahi. With these values of A and B, the quadratic

Eq.(5.4.1) gives the next approximation xi−1

xi+1 = xi +
−B ±

√
B2 − 4Ayi
2A

(5.4.4)

Since Eq.(5.4.4) leads to inaccurate results, we take the equivalent form

xi+1 = xi −
2yi

B ±
√
B2 − 4Ayi

(5.4.5)

In Eq.(5.4.5), the sign in the denominator should be chosen so that the denominator will be largest in magni-
tude. With this choice, Eq.(5.4.5) gives the next approximation to the root.

Example 5.3. Using Muller’s method, find the root of the equation

f(x) = x3 − x− 1 = 0

with the initial approximations xi−2 = 0, xi−1 = 1, xi = 2.

Solution: We have yi−2 = −1, yi−1 = −1, yi = 5. Also, hi = 1, hi−1 = 1,∆i = 6,∆i−1 = 0. Hence
we obtain

A = 3 and B = 9

44

Then
√
B2 − 4Ayi =

√
21. Therefore, Eq.(5.4.5) gives

xi+1 = 2− 2(5)

9 +
√

21
, since the sign of B is positive

= 1.26376

Error in the above result =
∣∣∣∣1.26376− 2

1.26376

∣∣∣∣× 100 = 58%.

For the second approximation, we take

xi−2 = 1, xi−1 = 2, xi = 1.26376.

The corresponding values of y are

yi−2 = −1, yi−1 = 5, yi = −0.24542

The computed values of A and B are

A = 4.26375 and B = 3.98546

Then
xi+1 = 1.32174,

and the error in the above result is equal to 4.39%.

For the third approximation, we take

xi−2 = 2, xi−1 = 1.26376, xi = 1.32174.

yi−2 = 5, yi−1 = −0.24542, yi = −0.01266.

Then A = 4.58544, B = 4.28035 and xi+1 = 1.32469. Error in the result is equal to 0.22%. For the next
approximation, we have

xi−2 = 1.26376, xi−1 = 1.32174, xi = 1.32469

These values gives
A = 3.87920, B = 4.26229, and xi+1 = 1.32472.

The error in this result is equal to 0.002%. Hence the required root is 1.3247, correct to 4 decimal places.

Exercise 5.4. (i) Find a real root of the equation x3 = 1− x2 on the interval [0, 1] with an accuracy of 10−4.

(ii) Describe briefly Muller’s method and use it to find (a) the root, between 2 and 3, of the equation
x3 − 2x− 5 = 0 and (b) the root, between 0 and 1, of the equation x = e−x cosx.
Answer: (a) 2.09462409 (b) 0.51752

45

Unit 6

Course Structure

Ordinary Differential Equations: Initial value problems – Picard’s successive approximation method, error es-
timation. Single-step methods – Euler’s method and Runge-Kutta method, error estimations and convergence
analysis.

6 Introduction

Many problems in science and engineering can be reduced to the problem of solving differential equations
satisfying certain given conditions. The analytical methods of solution, with which the reader is assumed to
be familiar, can be applied to solve only a selected class of differential equations. Those equations which
govern physical systems do not possess, in general closed-form solutions, and hence recourse must be made
to numerical methods for solving such differential equations. To describe various numerical methods for the
solution of ordinary differential equations, we consider the general first order differential equation

dy

dx
= f(x, y) with the initial condition y(x0) = y0 (6.0.1)

and illustrate the theory with respect to this equation. This methods so developed can, in general, be applied
to the solution of systems of first-order equations.

6.1 Picard’s Successive Approximation Method

Integrating the differential equation given in Eq.(6.0.1), we obtain

y = y0 +

x∫
x0

f(x, y) dx. (6.1.1)

Equation (6.1.1), in which the unknown function y appears under the integral sign, is called an integral equa-
tion. Such and equation can be solved by the method of successive approximations in which the first approxi-
mation of y is obtained by putting y0 for y on right side of Eq.(6.1.1), and we write

y(1) = y0 +

x∫
x0

f(x, x0) dx

The integral on the right can now be solved and the resulting y(1) is substituted for y in the integrand of
Eq.(6.1.1) to obtain the second approximation y(2):

y(2) = y0 +

x∫
x0

f(x, y(1)) dx

Proceeding in this way, we obtain y(3), y(4), . . . , y(n−1) and y(n), where

y(n) = y0 +

x∫
x0

f(x, y(n−1)) dx with y(0) = y0 (6.1.2)

46

Hence this method yields a sequence of approximations y(1), y(2), . . . , y(n) and it can be proved that if the
function f(x, y) is bounded in some region about the point (x0, y0) and if f(x, y) satisfies the Lipschitz
condition, viz

|f(x, y)− f(x, y)| ≤ K|y − y|, K being a constant (6.1.3)

then, the sequence y(1), y(2), . . . converges to the solution of Eq.(6.0.1).

Example 6.1. Solve the differential equation
dy

dx
= x + y2 with initial condition y = 1 when x = 0 using

Picard’s method.

Solution: We start with y(0) = 1 and obtain

y(1) = 1 +

x∫
0

(x+ 1) dx = 1 + x+
1

2
x2.

Then the second approximation is

y(2) = 1 +

x∫
0

[
x+

(
1 + x+

1

2
x2
)]

= 1 + x+
3

2
x2 +

2

3
x3 +

1

4
x4 +

1

20
x5.

Proceeding similarly, we can find the higher order approximations. But, it is obvious that the integrations
might become more and more difficult as we proceed to higher approximations.

Example 6.2. Given the differential equation
dy

dx
=

x2

y2 + 1
with initial condition y = 0 when x = 0, use

Picard’s method to obtain y for x = 0.25, 0.5 and 1.0 correct to three decimal places.

Solution: We have y =

x∫
0

x2

y2 + 1
dx. Setting y(0) = 0, we obtain

y(1) =

x∫
0

x2 dx =
1

3
x3

and y(2) =

x∫
0

x2

(1/9)x6 + 1
dx = tan−1

(
1

3
x3
)

=
1

3
x3 − 1

81
x9 + . . .

so that y(1) and y(2) agree to the first term, viz., (1/3)x3. To find the range of values of x so that the series
with the term (1/3)x3 alone will give the result correct to three decimal places, we put

1

81
x9 ≤ 0.0005 which yields x ≤ 0.7

Hence

y(0.25) =
1

3
(0.25)3 = 0.005, y(0.5) =

1

3
(0.5)3 = 0.042, y(1.0) =

1

3
− 1

81
= 0.321

47

Exercise 6.3. (i) Use Picard’s method to obtain a series solution the differential equation dy
dx = 1+xy, y(0) =

1. Answer: y(x) = 1 + x+ x2

2 + x3

3 + x4

8 + . . .
(ii) Use Picard’s method to obtain y(0.1) and y(0.2) of the problem defined by

dy

dx
= x+ yx4, y(0) = 3 Answer : 3.005, 3.0202

(iii) Using Picard’s method, find y(0.1), given that

dy

dx
=
y − x
y + x

; y(0) = 1 Answer : 1.0906

6.2 Single Step Methods

6.2.1 Euler’s Method

We have so far discussed the Picard’s method which yield solution of differential equation in the form of a
power series. We will now describe the methods which give the solution in the form of a set of tabulated values.

Suppose that we wish to solve Eq.(6.0.1) for values of y at x = xr = x0 + rh (r = 1, 2, . . .). Integrating
Eq.(6.0.1), we obtain

y1 = y0 +

x1∫
x0

f(x, y) dx. (6.2.1)

Assuming that f(x, y) = f(x0, y0) in x0 ≤ x ≤ x1, this gives Euler’s formula

y1 ≈ y0 + h f(x0, y0). (6.2.2)

Similarly for the range x1 ≤ x ≤ x2, we have

y2 = y1 +

x2∫
x1

f(x, y) dx.

Substituting f(x1, y1) for f(x, y) in x1 ≤ x ≤ x2, we obtain

y2 ≈ y1 + h f(x1, y1). (6.2.3)

Proceeding in this way, we obtain the general formula

yn+1 = yn + h f(xn, yn), n = 0, 1, 2, . . . (6.2.4)

The process is very slow and to obtain reasonable accuracy with Euler’s method, we need to take a smaller
value of h. Because of this restriction on h, the method is unsuitable for practical use and modification of it,
known as the modified Euler method, which gives more accurate results, will be described in the following
subsection.

Example 6.4. Find the value of y(x) at x = 0.04 for the differential equation y′ = −y with the condition
y(0) = 1 using Euler’s method.

48

Solution: Successive application of Eq.(6.2.4) with h = 0.01 gives

y(0.01) = 1 + 0.001(−1) = 0.99

y(0.02) = 0.99 + 0.01(−0.99) = 0.9801

y(0.03) = 0.9801 + 0.01(−0.9801) = 0.9703

y(0.04) = 0.9703 + 0.01(−0.9703) = 0.9606.

The exact solution is y = e−x and from this the value at x = 0.04 is 0.9608.

6.2.2 Error Estimation for the Euler Method

Let the true solution of the differential equation at x = xn be y(xn) and also let the approximate solution be
yn. Now, expanding y(xn+1) by Taylor’s series, we get

y(xn+1) = y(xn + h) = y(xn) + h y′(xn) +
h2

2
y′′(xn) + . . .

= y(xn) + hy′(xn) +
h2

2
y′′(τn), where xn ≤ τn ≤ xn+1. (6.2.5)

We usually encounter two type of errors in the solution of differential equations. These are (i) local errors,
and (ii) rounding errors. The local error is the result of replacing the given differential equation by means of
the equation

yn+1 = yn + hy′n.

This error is given by

Ln+1 = −1

2
h2y′′(τn) (6.2.6)

The total error is then defined by
en = yn − y(xn) (6.2.7)

Since y0 is exact, it follows that e0 = 0. Neglecting the rounding error, we write the total solution error as

en+1 = yn+1 − y(xn+1)

= yn + hy′n − [y(xn) + hy′(xn)− Ln+1]

= en + h[f(xn, yn)− y′(xn)] + Ln+1.

= en + h
[
f(xn, yn)− f(xn, y(xn))

]
+ Ln+1

By mean value theorem, we write

f(xn, yn)− f(xn, y(xn)) = [yn − y(xn)]
∂f

∂y
(xn, ξn), y(xn) ≤ ξn ≤ yn.

Hence, we have
en+1 = en

[
1 + hfy(xn, ξn)

]
+ Ln+1 (6.2.8)

Since e0 = 0, we obtain successively:

e1 = L1; e2 =
[
1 + hfy(x1, ξ1)

]
L1 + L2;

e3 =
[
1 + hfy(x2, ξ2)

][
1 + hfy(x1, ξ1)

]
(L1 + L2) + L3; etc.

49

6.3 Modified Euler’s Method

Instead of approximating f(x, y) by f(x0, y0) in Eq.(6.2.1), we now approximate the integral given in Eq.(6.2.1)
by means of trapezoidal rule to obtain

y1 = y0 +
h

2
[f(x0, y0) + f(x1, y1)] (6.3.1)

We thus obtain the iteration formula

y
(n+1)
1 = y0 +

h

2

[
f(x0, y0) + f(x1, y

(n)
1)
]
, n = 0, 1, 2, . . . (6.3.2)

where y(n)1 is the n-th approximation to y1. The iteration formula (6.3.2) can be started by choosing y(0)1 from
Euler’s formula:

y
(0)
1 = y0 + h f(x0, y0).

Example 6.5. Determine the value of y when x = 0.1 given that

y′ = x2 + y; y(0) = 1

Solution: We take h = 0.05. With x0 = 0 and y0 = 1.0, we have f(x0, y0) = 1.0. Hence Euler’s formula
gives

y
(0)
1 = 1 + 0.05(1) = 1.05

Further, x1 = 0.05 and f(x1, y
(0)
1) = 1.0525. The average of f(x0, y0) and f(x1, y

(0)
1) is 1.0262. The value

of y(1)1 can therefore be computed by using Eq.(6.3.2) and we obtain

y
(1)
1 = 1.0513

Repeating the procedure, we obtain y(2)1 = 1.0513. Hence we take y1 = 1.0513, which is correct to four
decimal places. Next, with x1 = 0.05, y1 = 1.0513 and h = 0.05, we continue the procedure to obtain y2,
i.e., the value of y when x = 0.1. The results are

y
(0)
2 = 1.1040, y

(1)
2 = 1.1055, y

(2)
2 = 1.1055.

Hence, we conclude that the value of y when x = 0.1 is 1.1055.

Exercise 6.6. (i) Given the initial value problem y′ = 2x+ cos y, y(0) = 1. Show that it is sufficient to use
Euler method with step length h = 0.2 to compute y(0.2) with an error less than 0.05.
(ii) Find an approximation to y(1.6) for the initial value problem y′ = x + y2, y(1) = 1 using the Euler
method with h = 0.1 and h = 0.2. Answer: h=0.1: 3.848948; h=0.2: 3.137805

(iii) Given the differential equation
dy

dx
= x2 + y, y(0) = 1, compute y(0.02) using Euler’s modified

method. Answer: 1.0202
(iv) Solve, by Euler’s modified method, the problem displaystyle dydx = x + y, y(0) = 0 Choose h=0.2 and
compute y(0.2) and y(0.4). Answer: 0.0222, 0.0938

50

6.3.1 Runge-Kutta Methods

As already mentioned, Euler’s method is less efficient in practical problems since it requires h to be small
for obtaining reasonable accuracy. The Runge-Kutta methods are designed to give greater accuracy and they
possess the advantage of requiring only the function values at some selected points on the subinterval.

If we substitute y1 = y0 + h f(x0, y0) on the right side of Eq.(6.3.1), we obtain

y1 = y0 +
h

2

[
f0 + f(x0 + h, y0 + hf0

]
, (6.3.3)

where f0 = f(x0, y0). If we now set

k1 = h f0 and k2 = h f(x0 + h, y0 + k1)

then the above equation becomes

y1 = y0 +
1

2
(k1 + k2), (6.3.4)

which is the second-order Runge-Kutta formula. The error in this formula can be shown to be of order h3 by
expanding both sides by Taylor’s series. Thus, the left side gives

y0 + hy′0 +
h2

2
y′′0 +

h2

6
y′′′0 + . . .

and on the right side

k2 = h f(x0 + h, y0 + hf0) = h

[
f0 + h

∂f

∂x0
+ hf0

∂f

∂y0
+O(h2)

]
.

Now, since
df(x, y)

dx
=
∂f

∂x
+ f

∂f

∂y
, we obtain k2 = h[f0 + hf ′0 +O(h2)] = hf0 + h2f ′0 +O(h3), so that the

right side of Eq.(6.3.4) gives

y0 +
1

2

[
hf0 + hf0 + h2f ′0 +O(h3)

]
= y0 + hf0 +

1

2
h2f ′0 +O(h3) = y0 + hy′0 +

h2

2
y′′0 +O(h3).

It therefore follows that the Taylor series expansions of both sides of Eq.(6.3.4) agree up to terms of order h2,
which means that the error in this formula is of order h3.

More generally, if we set
y1 = y0 +W1k1 +W2k2 (6.3.5)

where k1 = h f0, k2 = h f(x0 + α0h, y0 + β0k1), then the Taylor series expansions gives

y0 + hf0 +
h2

2

(
∂f

∂x
+ f0

∂f

∂y

)
+O(h3) = y0 + (W1 +W2)hf0

+W2h
2

(
α0
∂f

∂x
+ β0f0

∂f

∂y

)
+O(h3).

Equating the coefficient of f(x, y) and its derivatives on both the sides, we obtain the relation

W1 +W2 = 1, W2α0 =
1

2
, W2β0 =

1

2
. (6.3.6)

51

Clearly, α0 = β0 and if α0 is assigned any value arbitrarily, then the remaining parameter can be determined
uniquely. If we set, for example α0 = β0 = 1, then we immediately obtain W1 = W2 = 1/2, which gives
formula (6.3.4).

It follows, therefore, that there are several second-order Runge-Kutta formulae and that formulae (6.3.5)
and (6.3.6) constitute just one of several such formulae.

Higher-order Runge-Kutta formulae exist, of which we mention only the fourth-order formula defined by

y1 = y0 +W1k1 +W2k2 +W3k3 +W4k4 (6.3.7)

where

k1 = hf(x0, y0)

k2 = hf(x0 + α0h, y0 + β0 + k1)

k3 = hf(x0 + α1h, y0 + β1k1 + ν1k2) (6.3.8)

k4 = hf(x0 + α2h, y0 + β2k1 + ν2k2 + δ1k3),

where the parameters have to be determined by expanding both sides of the Eq.(6.3.7) by Taylor’s series and
securing agreement of terms up to and including those containing h4. The choice of the parameters is, again,
arbitrary and we have therefore several fourth-order Runge-Kutta formulae. If, for example, we set

α0 = β0 =
1

2
, α1 =

1

2
, α2 = 1,

β1 =
1

2
(
√

2− 1), β2 = 0,

ν1 = 1− 1√
2
, ν2 = − 1√

2
, δ1 = 1 +

1√
2
, (6.3.9)

W1 = W4 =
1

6
, W2 =

1

3

(
1− 1√

2

)
, W3 =

1

3

(
1 +

1√
2

)
,

we obtain the method of Gill, Whereas the choice

α0 = α1 =
1

2
, β0 = ν1 =

1

2
β1 = β2 = ν2 = 0, α2 = δ1 = 1 (6.3.10)

W1 = W4 =
1

6
, W2 = W3 =

2

6

leads to the fourth-order Runge-Kutta formula, the most commonly used one in practice:

y1 = y0 +
1

6

[
k1 + 2k2 + 2k3 + k4

]
where

k1 = hf(x0, y0),

k2 = hf

(
x0 +

1

2
h, y0 +

1

2
k1

)
,

k3 = hf

(
x0 +

1

2
h, y0 +

1

2
k2

)
,

k4 = hf(x0 + h, y0 + k3).

52

in which the error is of order h5. Complete derivation of this formula is exceedingly complicated, and the
interested reader may referred to the book by Levy and Baggot. We illustrate here the use of the fourth-order
formula by means of examples.

Example 6.7. Given
dy

dx
= y − x where y(0) = 2, find y(0.1) and y(0.2) correct to four decimal places.

Solution: (i) Runge-Kutta second order formula: With h = 0.1, we find k1 = 0.2 and k2 = 0.21. Hence

y1 = y(0.1) = 2 +
1

2
(0.41) = 2.2050.

To determine y2 = y(0.2), we note that x0 = 0.1 and y0 = 2.2050. Hence, k1 = 0.1(2.015) and k2 =
0.1(2.4155− 0.2) = 0.22155. It follows that

y2 = 2.2050 +
1

2
(0.2105 + 0.22155) = 2.4210.

Proceeding in a similar way, we obtain

y3 = y(0.3) = 2.6492 and y4 = y(0.4) = 2.8990

We next choose h = 0.2 and compute y(0.2) and y(0.4) directly. With h = 0.2, x0 = 0 and y0 = 2, we
obtain k1 = 0.4 and k2 = 0.44 and hence y(0.2) = 2.4200. Similarly, we obtain y(0.4) = 2.8880.

From the analytical solution y = x + 1 + ex, the exact value of y(0.2) and y(0.4) are respectively 2.4214
and 2.8918.

(ii) Runge-Kutta fourth-order formula: To determine y(0.1), we have x0 = 0, y0 = 2 and h = 0.1. We
then obtain

k1 = 0.2, k2 = 0.205, k3 = 0.20525, k4 = 0.21053.

Hence
y(0.1) = 2 +

1

6
(k1 + 2k2 + 2k3 + k4) = 2.2052.

Proceeding similarly, we obtain y(0.2) = 2.4214.

Example 6.8. Given
dy

dx
= 1 + y2 where y(0) = 0, find y(0.4) and y(0.6) using fourth order Runge-Kutta

method.

Solution: We take h = 0.2. With x0 = y0 = 0, we obtain

k1 = 0.2,

k2 = 0.2(1.01) = 0.202

k3 = 0.2(1 + 0.010201) = 0.20204

k4 = 0.2(1 + 0.040820) = 0.20816

and finally

y(0.2) = 0 +
1

6

[
k1 + 2k2 + 2k3 + k4

]
= 0.2027

which is correct to four decimal places.

53

To compute y(0.4), we take x0 = 0.2, y0 = 0.2027 and h = 0.2. With these values, we can evaluate

k1 = 0.2[1 + (0.2027)2] = 0.2082,

k2 = 0.2[1 + (0.3068)2] = 0.2188,

k3 = 0.2[1 + (0.3121)2] = 0.2195,

k4 = 0.2[1 + (0.4222)2] = 0.2356,

and finally
y(0.4) = 0.2027 + 0.2201 = 04228

correct to four decimal places.

Finally, taking x0 = 0.4, y0 = 0.4228 and h = 0.2, and proceeding as above, we obtain y(0.6) = 0.6841.

Exercise 6.9. (i) Given the problem
dy

dx
= f(x, y) and y(x0) = y0, an approximate solution at x = x0 + h

is given by third order Runge-Kutta formula

y(x0 + h) = y0 +
1

6

[
k1 + 4k2 + k3

]
+R4,

where k1 = hf(x0, y0), k2 = hf

(
x0 +

1

2
h, y0 +

1

2
k1

)
and k3 = hf(x0 + h, y0 + 2k2 − k1). Show that R4

is of order h4.
(ii) Use Runge-Kutta fourth order formula to find y(0.2) and y(0.4) given that

dy

dx
=
y2 − x2

y2 + x2
; y(0) = 1

Answer: 0.19598, 1.3751
(iii) Find an approximate value of y when x = 0.2 and x = 0.4 given that y′ = x + y, y(0) = 1, with
h = 0.2 Answer: 1.2428, 1.583636
(iv) Determine y(0.2) with h = 0.1, for the initial value problem y′ = x2+y2, y(0) = 1. Answer: 1.253015

54

Unit 7

Course Structure

Ordinary Differential Equations: Multi-step method – Milne’s predictor-corrector method, error estimation
and convergence analysis.

7 Introduction

Milne’s Predictor-corrector is a multi-step method, i.e., to compute yn+1 a knowledge of preceding values of
y and y′ is essentially required. These values of y to be computed by one of the self starting methods viz.
Euler’s method, Runge-Kutta Method. W.E. Milne uses two types of quadrature formulae, (i) an open-type
quadrature formula to derive the Predictor formula and (ii) a closed-type quadrature formula to derive the
corrector formula.

7.1 Milne’s Predictor-Corrector Method

Let us assume that the values of y and y′ are known (given or computed by the self-starting method) for
xn−2, xn−1, xn and the initial value xn−3. We have the Newton’s forward formula in terms of y′[=
f(x, y(x))] and phase u with starting node point xn−3 as:

y′ = y′n−3 + u ·∆y′n−3 +
u(u− 1)

2!
·∆2y′n−3 +

u(u− 1)(u− 2)

3!
·∆2y′n−2

+
u(u− 1)(u− 2)(u− 3)

4!
·∆4y′n−3 + · · · (7.1.1)

where u =
x− xn−3

h
or x = xn−3 + hu. Therefore dx = h du. Let the differential equation be

dy

dx
= f(x, y) with y(xn−3) = yn−3. (7.1.2)

Now integrating (7.1.2) over the range xn−3 to xn+1, we get

xn+1∫
xn−3

dy =

xn+1∫
xn−3

y′ dx

⇒ yn+1 − yn−3 = h

4∫
0

[
y′n−3 + u ·∆y′n−3 +

u(u− 1)

2!
·∆2y′n−3 +

u(u− 1)(u− 2)

6
·∆2y′n−2

+
u(u− 1)(u− 2)(u− 3)

24
·∆4y′n−3

]
du

⇒ yn+1 − yn−3 = h

[
4y′n−3 + 8∆y′n−3 +

20

3
∆2y′n−3 +

8

3
∆3y′n−3 +

14

45
∆4y′n−3

]
⇒ yn+1 − yn−3 = h

[
4y′n−3 + 8(E − 1)y′n−3 +

20

3
(E − 1)2y′n−3 +

8

3
(E − 1)3y′n−3

]
+

14

45
h∆4y′n−3

55

⇒ yn+1 − yn−3 = h

[
4y′n−3 + 8{y′n−2 − y′n−3}+

20

3
{y′n−1 − 2y′n−2 + y′n−3}

+
8

3
{y′n − 3y′n−1 + 3y′n−2 − y′n−3}

]
+

14

45
h∆4y′n−3

⇒ yn+1 − yn−3 =
4h

3

[
2y′n−2 − y′n−1 + 2y′n

]
+

14

45
h∆4y′n−3

⇒ yn+1 = yn−3 +
4h

3

[
2y′n−2 − y′n−1 + 2y′n

]
+ E1

where E1 =
14

45
h∆4y′n−3 =

14

45
h5yv(ξ1), (xn−3 < ξ1 < xn+1), assuming that yv(x) does not vary strongly

in the small interval (xn−3, xn+1). Then the formula

y
(p)
n+1 = yn−3 +

4h

3

[
2y′n−2 − y′n−1 + 2y′n

]
(7.1.3)

is called the Milne’s extrapolation formula or Predictor formula with the error

E1 =
14

45
h∆4y′n−3 =

14

45
h5yv(ξ1), (xn−3 < ξ1 < xn+1) (7.1.4)

To derive the corrector formula, we integrate Eq.(7.1.2) by the Newton’s forward formula with starting node
xn−1, in terms of y′ and u

y′ = y′n−1 + u ·∆y′n−1 +
u(u− 1)

2!
·∆2y′n−1 +

u(u− 1)(u− 2)

3!
·∆2y′n−1

+
u(u− 1)(u− 2)(u− 3)

4!
·∆4y′n−1 + · · · (7.1.5)

where u =
x− xn−1

h
or x = xn−1 + hu, over the range xn−1 to xn+1 as follows:

xn+1∫
xn−1

dy =

xn+1∫
xn−1

y′ dx

⇒ yn+1 − yn−1 = h

2∫
0

[
y′n−1 + u ·∆y′n−1 +

u(u− 1)

2!
·∆2y′n−1 +

u(u− 1)(u− 2)

6
·∆2y′n−1

+
u(u− 1)(u− 2)(u− 3)

24
·∆4y′n−1

]
du

⇒ yn+1 − yn−1 = h

[
2y′n−1 + 2∆y′n−1 +

1

3
∆2y′n−1 −

1

90
∆4y′n−1

]
⇒ yn+1 − yn−1 = h

[
2y′n−1 + 2(E − 1)y′n−1 +

1

3
(E − 1)2y′n−1

]
− h

90
∆4y′n−1

⇒ yn+1 − yn−1 = h

[
2y′n−1 + 2{y′n − y′n−1}+

1

3
{y′n+1 − 2y′n + y′n−1}

]
− h

90
∆4y′n−1

⇒ yn+1 − yn−1 =
h

3

[
y′n−1 + 4y′n + y′n+1

]
− h

90
∆4y′n−1

56

⇒ yn+1 = yn−1 +
h

3

[
y′n−1 + 4y′n + y′n+1

]
+ E2

where E2 = − h

90
∆4y′n−4 = −h

5

90
yv(ξ2), (xn−1 < ξ2 < xn+1), assuming that yv(x) does not vary strongly

in the small interval (xn−1, xn+1). Then the formula

y
(c)
n+1 = yn−1 +

h

3

[
y′n−1 + 4y′n + y′n+1

]
(7.1.6)

is called the Milne’s corrector formula with the error

E2 = − h

90
yvξ2 , (xn−1 < ξ2 < xn+1) (7.1.7)

The value of yn+1 computed by (7.1.3) may be called it predicted value and that computed by (7.1.6) is
called the corrected value and are respectively denoted by y(p)n+1 and y(c)n+1. If yv(x) does not vary strongly
in the small interval (xn−3, xn+1) of length 4h, in general we may take yv(ξ1) ≈ yv(ξ2). Thus we have
E1/E2 ≈ −28⇒ E1 ≈ −28E2. If Dn+1 be the estimation of error, we have

Dn+1 = Corrected value yn+1 − Predicted value yn+1 = E1 − E2 ≈ −29E2 (7.1.8)

7.2 Computational Procedure

• Step 1: Compute y′n−2, y′n−1, y′n by the given differential equation i.e., y′r = f(xr, yr).

• Step 2: Compute y(p)n+1 by the predictor formula (7.1.3).

• Step 3: Compute y′n+1 by the given differential equation, by using the predicted value y(p)n+1

obtained in Step 2.

• Step 4: Using the predicted value y′n+1 obtained in Step 3, compute y(c)n+1 by the corrector formula (7.1.6).

• Step 5: Compute Dn+1 = corrected value (y
(c)
n+1 - predicted value y(p)n+1. If Dn+1 is very small then

proceed for the next interval and Dn+1 is not sufficiently small, then reduce, the value of h by taking its half
etc.

Example 7.1. Compute y(2), if y(x) satisfies the equation
dy

dx
=

1

2
(x + y), given that y(0) = 2, y(0.5) =

2.636, y(1.0) = 3.595 and y(1.5) = 4.968, using Milne’s Method.

Solution: We take here x0 = 0, x1 = 0.5, x2 = 1.0, x3 = 1.5 and y(0) = y0 = 2, y(0.5) = y1 = 2.636,
y(1) = 3.595 and y(1.5) = y3 = 4.968. We have to compute y(2.0) = y4.

Putting n = 3 in the predictor formula (7.1.3) and in the corrector formula (7.1.6) we get, respectively,

y
(p)
4 = y0 +

4h

3
[2y′1 − y′2 + 2y′3] (7.2.1)

y
(p)
4 = y2 +

h

3
[y′2 + 4y′3 + y′4] (7.2.2)

57

From the differential equation
dy

dx
= y′ =

1

2
(x+ y), we get

y′1 =
1

2
(x1 + y1) =

1

2
(0.5 + 2.636) = 1.568

y′2 =
1

2
(x2 + y2) =

1

2
(1.0 + 3.595) = 2.2975

y′3 =
1

2
(x3 + y3) =

1

2
(1.5 + 4.968) = 3.234

Thus, from (7.2.1), the predicted value

y
(1)p
4 = 2 +

4× 0.5

2
[2× 1.569− 2.2975 + 2× 3.234] = 6.8710

Now by the given differential equation, we have first estimation

y
′(0)
4 =

1

2
[x4 + y

(1)p
4] =

1

2
[2 + 6.8710] = 4.4355

Now by (7.2.2), we get first corrected value as

y
(1)c
4 = y2 +

h

3
[y′2 + 4y′3 + y

′(0)
4]

= 3.595 +
0.5

3
[2.2975 + 4× 3.234 + 4.4355] = 6.8731667 ≈ 6.87317

Again recomputing y′4 from the differential equation we get,

y
′(1)
4 =

1

2
[x4 + y

(1)
4] =

1

2
[2 + 6.87317] = 4.436585

By (7.2.2), we get second corrected value as

y
(2)c
4 = y2 +

h

3
[y′2 + 4y′3 + y

′(1)
4]

= 3.595 +
0.5

3
[2.2975 + 4× 3.234 + 4.436585] = 6.8733475 ≈ 6.873

As y(1)c4 = y(2)c4 = 6.873, therefore y(2) = 6.873 correct to 3-decimal places.

Exercise 7.2. (i) Using Milne’s predictor-corrector method, find y(0.4) for the initial value problem

y′ = x2 + y2, y(0) = 1, with h = 0.1

Calculate all the required initial values by Euler’s method. The result is to accurate to three decimal places.
Answer: 1.63138
(ii) Compute y(0.5), by Milne’s predictor-corrector method from

dy

dx
= 2ex − y given that

y(0.1) = 2.0100, y(0.2) = 2.0401, y(0.3) = 2.0907, y(0.4) = 2.1621

Answer: 2.2553

58

 Explicit Method for Solving Parabolic PDE

 One of the simplest second order Parabolic Differential Equation in one-dimension is the
Heat Conduction Equation, written as:

0,0
2

2
2 







tLxwhere
x

u
c

t

u

which arises in many real problems.

The appropriate, but most simple conditions are:

Initial condition:    xuxu 00, 

and two Boundary Conditions namely:        tutLuandtutu 21 ,,0  .

Note that the analytical solution of equation (1.1) is usually a trigonometric series, which may
create problem in convergence.

The first Finite Difference method is the Explicit Method.

 For this, let us discuss first step, which is common to all methods i.e. discretization.

The domain of the solution is 0,0  tLx , as shown in fig(1).

 It is to be discretized by drawing vertical and horizontal lines at equal distance say tandx 
respectively. Let i , j be
defined dummy variables along x & t axis so that;

   .,,&, , tjxiutxutjtxix jijiji 

Let the domain from x = 0 to x = L be subdivided into N sub-parts so that x = 0 corresponds to i
= 0 and x = L corresponds to i = N with t = 0 corresponds to j = 0.

t

x ∆x
x=L

fig(1)

x=0

∆t

(1.2)

(1.1)

Unit 8

70
59

The initial condition then can be written as:      xiuuxuxu i  00,00,

The boundary condition will be converted to:
     
     tjuututLu

tjuututu

jN

j





2,2

1,01

,

,0

Step 2: Replacing the derivatives by corresponding Finite Difference representation in
equation (1.1) which reduces to:

2

,1,,12,1,

)(

2

x

uuu
c

t

uu jijijijiji








 

   2xoto 

Equation (1.4) thus can be rewritten as:

2
,1

2
,

2
,1

2
1,)(with,)21(xtrrucurcrucu jijijiji  

 Equation (1.5) is called the Explicit Scheme.

The computational molecule for scheme (1.5) can be shown as in fig (2)

Equation (1.5) is now solved at first time level for j = 0; for all values of i =1,2,---,(N-1).

Similarly solution at second,third time level is obtained correspondingly for j =1, 2 ---. It

is very important to note that this scheme is not unconditionally stable.

The value of r has to be < 1/2 i.e. ∆t < (1/2)(∆x)2 which makes ∆t to be sufficiently small. Thus

it requires large no. of computations at intermediate time level ;even for a small time ,as ∆x is

itself very small (Since the Finite Difference Method for approximating the derivatives is based

(1.3)

 u i‐1,j u i, j u i+1,j

u i,j+1

(1.4)

 The truncation error is:

(1.5)

1

r 1‐ r jth level

(j+1)th level

fig (2)

71
60

on Taylor’s expansion hence both ∆t and ∆x are small) .This is one of the great drawback of this

method.

Though the truncation error tends to 0 as ∆t → 0 and ∆x → 0 but the detail discussion about it

will be discussed in module 3,lecture 1.The main advantage of this scheme is that it is

computationally simple as the computations proceed pointwise, thus even manually

manageable.

Example 1:- Solve the Heat Conduction Equation 0,10
2

2









tx
t

u

t

u

subject to B.C: u = 0 at x = 0 and 0



x

u
 at x = 1 ,for all t

 and, I.C:
2

3
sin)0,(

x
xu




Using the Explicit Method ,choosing ∆x = 0.1 and ∆t = 0.0025 so that r = 1/4, obtain the solution
for one time level and compare with the exact solution.

The exact solution is  
2

3
sin, 4

9 2

x
etxu

t 



Solution-

 At a general point (i,j) the given pde is -

2

2
, ,i j i j

u u

t x

           

The Explicit Finite-Difference representation of this equation is:

  
, 1 , 1, , 1,

2

2i j i j i j i j i ju u u u u

t x

    


 

 or , 1 1, , 1.(1 2)i j i j i j i ju ru r u ru     

where,
 2

t
r

x






(2)

(1)

72
61

Initial condition is:
2

3
sin)0,(

x
xu




Boundary conditions are: 10;0and0
,

,0 









 N
x

u
u

jN
j

Replacing L.H.S of the above boundary condition by Backward Difference,

)3(0 ,910,,1
,,1

jjjNjN
jNjN uuuu

x

uu








Substituting r = 1/4 and j = 0 in equation (1)

 ,1 1,0 ,0 1,0

1
2

4i i i iu u u u   

 Substituting i =1,2------,9 in equation (4) ,we get values at the first time level .These values are
used for the solution at the second time level for j=1.These values are shown below:

 i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

 X= 0. X=0.1 X=0.2 X=0.3 X=0.4 X=0.5 X=0.6 X=0.7 X=0.8 X=0.9 X=1.0

j=0 0 .0082 .0164 .0247 .0329 .0411 .0493 .0575 .0657 .0740 .0740

j=1 0 .0082 .0164 .0247 .0329 .0411 .0493 .0574 .0656 .0739 .0739

The Exact solution is :

 
2

3
sin, 4

9 2

x
etxu

t 


 (here t=0.0025)

Comparison between Explicit and Exact solution:

 X 0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Explicit 0 .0082 .0164 .0247 .0329 .0411 .0493 .0575 .0656 .0739 .0739

Exact 0 .0078 .0156 .0233 .0311 .0389 .0467 .0543 .0622 .0699 .0777

(4)

73
62

Example 2 : Consider the PDE :
2

2
;0 1, 0 (1)

u u
x x t

t x

 
   

 

B.Cs (i) u=0 at x=0, t>0 (ii)
1

; 1, 0
2

u
u x t

x

 
  



I.C is u = x(1-x) when t=0 & 0 1x 

Solve this equation by an explicit method , employing central-difference for the boundary

conditions. Take 0.1x h   & r =0.25 and 0.7 and compare the result.

Solution:

The explicit approximation is

 

 

1, , 1,, 1 ,

2

2
, 1 1, , 1,

2

1 2 ; 1, 2,..., 1 (2) with

i j i j i ji j i j

i j i j i j i j

ih u u uu u

k h

u irhu irh u irhu i N r k h

 

  

 


       

 Now applying central difference formula to Second B.C. , we get

1, 1,
, 1, 1, ,

1

2 2
i j i j

i j i j i j i j

u u
u u u hu

h
 

 

 
    

At x=1 i .e. i=10

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x

u(
x,

t)

Explicit

Exact

74
63

11, 9, 10, 11, 9, 10, 9, 10,.1 (3)j j j j j j j ju u hu u u hu u u       

(i) r=0.25

Putting i=10 , h=0.1 in equation (2);

10, 1 9, 10, 11,

1 1 1

4 2 4j j j ju u u u   
 (4)

Eliminating u11,j from eqn.(3) & eqn.(4),we get

 (5)

The other B.C. is u=0 at x=0 & t>0

0.................... ,03,02,01,0  nuuuu

 And I.C is: u(x,0)=x(1-x); 0 1x 

0,0 1,0 2,0

3,0 4,0 5,0 6,0

7,0 8,0 9,0 10,0

(0,0) 0, (.1,0) 0.09, (.2,0) 0.16

(.3,0) 0.21, (.4,0) 0.24, (.5,0) 0.25, 0.24,

0.21, 0.16, 0.09, 0

u u u u u u

u u u u u u u

u u u u

     

      

   

Now putting r=0.25 & h=0.1 in (2)

, 1 1, , 1,0.025 (1 0.05) 0.025 (6)i j i j i j i ju iu i u iu      

Ist time level: Putting i=1,2,3…….9 ,j=0 in eqn.(6)

1,1 0,0 1,0 2,0

2,1 1,0 2,0 3,0

3,1 2,0 3,0 4,0

4,1 3,0 4,0 5,0

5,1 6,1 7,1

8,1 9,1

.025 (1 .05) .025 0.0895

.05 0.9 .05 0.1590

.075 .85 .075 0.2085

0.1 0.8 0.1 0.2380

0.2475, 0.2370, 0.2065

0.1560,

u u u u

u u u u

u u u u

u u u u

u u u

u u

    

   

   

   

  

  0.0855

Putting j=0 in equation (5)

10,1 9,0 10,0 9,0

1 19 1
0.0450

2 40 2
u u u u   

Now, Second time level: Putting i=1,2,3…….9 ,j=1 in equation (6)

10, 1 9, 10,

1 19

2 40j j ju u u  

75
64

1,2 0,1 1,1 2,1

2,2 1,1 2,1 3,1

3,2 2,1 3,1 4,1

4,2 3,1 4,1 5,1

5,2 6,2 7,2

8,2

0.025 (1 0.05) 0.025 .0890

0.05 0.9 0.05 0.1580

0.075 0.85 0.075 0.2070

0.1 0.8 0.1 0.2360

0.2450, 0.2340, 0.2030

0.152

u u u u

u u u u

u u u u

u u u u

u u u

u

    

   

   

   

  

 9,20, 0.0922u 

Putting j =1 in equation (5)

 10,1 9,1 10,1

1 19
0.0641

2 40
u u u  

(ii) r=0.7

Put i =10,r=0.7,h=0.1 in equation(2)

10, 1 9, 10, 11,0.7 0.4 0.7 (7)j j j ju u u u   

Eliminate 11, ju from equation (3) and equation (7); we get

10, 1 9, 10,1.4 .47 (8)j j ju u u  

Put r=0.7 & h=0.1 in equation (2)

, 1 1, , 1,0.07 (1 0.14) 0.07 (9)i j i j i j i ju iu i u iu     

Ist time level

Putting i=1,2,3…….9 , and j=0 in (9)

1,1 0,0 1,0 2,0

2,1 1,0 2,0 3,0

3,1 2,0 3,0 4,0

4,1 3,0 4,0 5,0

5,1 6,1 7,1

8,1 9,1

.07 (1 .14) .07 0.0886

0.14 .72 .14 0.1572

0.21 .58 .21 0.2058

0.28 .44 .28 0.2344

0.2430, 0.2316, 0.2002

0.1488, 0

u u u u

u u u u

u u u u

u u u u

u u u

u u

    

   

   

   

  

  .0774

Putting j=0 in (8)

10,1 9,0 10,01.4 .47 .126u u u  

Second time level

76
65

Putting i=1,2,3…….9 , and j=1 in (9)

1,12 0,1 1,1 2,1

2,2 1,1 2,1 3,1

3,2 2,1 3,1 4,1

4,2 3,1 4,1 5,1

5,2 6,2 7,2

8,2

0.07 (1 0.14) 0.07 0.0872

0.14 0.72 0.14 0.1544

0.21 0.58 0.21 0.2016

0.28 0.44 0.28 0.2288

0.2360, 0.2232, 0.1904

0.1

u u u u

u u u u

u u u u

u u u u

u u u

u

    

   

   

   

  

 9,2376, 0.1530u 

Putting j=1 in (8)

0491.0474.1 1,101,92,10  uuu

The results are written in Tabular Form:

 For first time level For second time level

r=.25

r=.7 Difference r=.25 r=.7 Difference

 I=1 .0895
.0886

.0009 .089 .0872 .0018

 I=2 .159
.1572

.00180 .158 .1544 .0036

 I=3 .2085 .2058 .0027 .207 .2016 .0054

 I=4

.238 .2344 .0036 .236 .2288 .0072

 I=5

.2475 .243 .0045 .245 .236 .0090

 I=6

.237 .2316 .0054 .234 .2232 .0108

 I=7

.2065 .2002 .0063 .203 .1904 .0396

 I=8

.156 .1488 .0072 .152 .1376 .0144

 I=9

.0855 .0774 .0081 .0923 .153 -.0608

 I=10

.045 .036 .009 .064 .095 -.0308

Comparison for different values of ‘r’ in Explicit Method:‐

77
66

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

x

u(
x,

t)

r=0.25

r=0.70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

x

u(
x,

t)

r=0.25

r=0.70

 First Time Level

 Second Time Level

78
67

 Elliptic Partial Differential Equations

 (Solution in Cartesian coordinate system)

 Other category of second order PDE, which are basically used to characterize steady state
systems are called as Elliptic PDE. More prevalent examples are Laplace Equation and Poisson
Equation. Every potential function satisfies Laplace Equation. Another simple example is of heat
transfer in a rectangular plate under certain boundary conditions,where the temperature is to be
determined after a large time under steady state condition.

The Laplace/Poission equation in Cartesian coordinate system is given as

)1.1(,),,(),(2
2

2

2

2

dycbxayxfuoryxf
y

u

x

u









subject to either Dirichlet conditions or Mixed conditions.

 Let the domain be subdivided by drawing horizontal and vertical lines at an equal

distance of y and x respectively. Let i and j be chosen as dummy variables along x and y
axis for i =1,2,...,N and j =1,2,...,M.

Replacing both the second order derivatives in eqn.(1.1) by central difference approximations:

)2.1(),(
)(

2

)(

2
2

1,,1,

2

,1,,1 yjxif
y

uuu

x

uuu jijijijijiji 






 

For yx  :

)3.1(),()(4 2
1,1,,1,,1 xjxifxuuuuu jijijijiji  

Equation (1.3) reduces to Laplace equation if f = 0. This equation can be solved iteratively both
explicitly as well as implicitly. The boundary conditions can be written as:

As a special case, Let ca  0 , then M1,2,.....,jandN,1,2,....,iif 

yiyxix ii  , ,

the boundary conditions can be written as 1Mi,i,0j1,Nj0, uanduandu,u  .

Explicit scheme:

 Rewritting equation (1.3) as:

)4.1(
4

)(1,1,,1,1
,

 
 jijijiji

ji

uuuu
u

79
68

The computational molecule for (1.4) can be shown as

We start with here, .,.....,2,1,1 Nij  However it involves jiu ,1 as well as 1, jiu which are

unknowns. Hence one has to start with guessed values. Thus an iterative procedure has to be
implemented. The guessed value has to be to chosen carefully in accordance with the boundary
conditions. Now R.H.S. can be handled accordingly with Jacobi’s or Gauss-Seidel approach.
The two possible iterative formulae, thus can be written as:

)6.1(
4

)(

)5.1(
4

)(

1,,1
1
1,

1
,11

,

1,1,,1,11
,

n
ji

n
ji

n
ji

n
jin

ji

n
ji

n
ji

n
ji

n
jin

ji

uuuu
u

uuuu
u
















The superscript ‘n’ denotes the number of iterations. Both the formulae have the truncation error

.)()(22 yoxo  The iteration may be carried row-wise or column-wise.

 It may be noted that yx  and are taken to be small so usually number of nodes are

quite large. But sometimes geometrical symmetry may occur depending on the boundary
conditions. In that case the computational efforts can be reduced. For example if the boundary

conditions are 1100),(,)0,(,),(,),0(ubxuuxuuyauuyu  then there is symmetry along

both x & y axis. This symmetry may be helpful in reducing the computations and one has to find

solution only in ¼ of the domain.

Example: ,5.0
2

2

2

2

x
y

u

x

u









defined over ,6.00,8.00  yx with subjected to 1u at

6.0,0,0  yyx and u
x

u





 at ,8.0x Obtain the solution correct to 2d using both

equations (1.5) and (1.6) and compare the result.

u i,j+1 (1/4)

u i,j‐1 (1/4)

(1/4)u i‐1,j
u i, j

u i+1,j (1/4)

80
69

Solution:

 

 

 

   

 

   

 

   

 

   12.1984.02
13

5

.8)equation(1byand1.7equationin1j4,iPut

11.1998.0
4

1

1.7equationin1j3,iPut

10.1992.0
4

1

1.7equationin1j2,iPut

9.1996.1
4

1

1.7equationin1j1,iPutting

and 0ui.e.0asvaluesassumedwith Starting

8.1
2.02

)7.1(
4

2.05.0

4

)(

 have we(1.5)equationsin

5.0

1,3
1

1,4

1,41,31,2
1

1,3

1,31,21,1
1

1,2

1,21,1
1

1,1

0
ji,

1,4
1,31,5

1,4
1,4

3
1,1,,1,11

,

2

2

2

2
























































nn

nnnn

nnnn

nnn

n
ji

n
ji

n
ji

n
jin

ji

uu

uuuu

uuuu

uuu

u
uu

u
x

u

iuuuu
u

gU

x
y

u

x

u

Hence finally we have four equations  9.1 ,  10.1 ,  11.1 ,  12.1 which are solved iteratively.

The values as obtained are shown below:

 u1,1 u 2,1 u 3,1 u 4,1

n = 0 0.499 0.248 0.2495 0.3785
n = 1 0.6858 0.4971 0.4685 0.5704
n = 2 0.7947 0.6609 0.6335 0.7388
n = 3 0.8629 0.7778 0.7653 0.8658

81
70

Hence solution correct to 2d is:

u1,1=1 ; u 2,1=1.01 ; u 3,1=1.06 ; u 4,1=1.19

Now using equation (1.6), we have four final equations:

 996.1
4

1
1,21,1

1
1,1  nnn uuu

 992.0
4

1
1,31,2

1
1,1

1
1,2   nnnn uuuu

 998.0
4

1
1,41,3

1
1,2

1
1,3   nnnn uuuu

 984.02
13

5 1
1,3

1
1,4   nn uu

These equations are solved iteratively, the results obtained are shown below:

 u1,1 u 2,1 u 3,1 u 4,1

n = 0 0.499 0.3728 0.3427 0.6421
n = 1 0.7169 0.6061 0.6472 0.8763
n = 2 0.8297 0.7688 0.8226 1..0112
n = 3 0.8986 0.8715 0.9258 1.0906
n = 4 0.9415 0.9327 0.9868 1.1375
n = 5 0.9676 0.9698 1.0230 1.1654
n = 6 0.9833 0.9920 1.0446 1.1820
n = 7 0.9828 1.0054 1.0575 1.1919
n = 8 1.0020 1.0134 1.0652 1.1948

Hence solution correct to 2d is:

u1,1=1 ; u 2,1=1.01 ; u 3,1=1.06 ; u 4,1=1.19

n = 4 0.9092 0.8495 0.8517 0.9672
n = 5 0.9384 0.9006 0.9166 1.0336
n = 6 0.9587 0.9369 0.9622 1.0835
n = 7 0.9729 0.9625 0.9951 1.1186
n = 8 0.9829 0.9806 1.0186 1.1439
n = 9 0.9899 0.9935 1.0353 1.1620
n = 10 0.9949 1.0027 1.0472 1.1748
n = 11 0.9984 1.0092 1.0557 1.1860
n = 12 1.0009 1.0138 1.0617 1.1905

82
71

Hence by equation (1.5),we have to work for 13 iterations where as by equation (1.6),we work
with only 9 iterations. Therefore, equation (1.6) gives faster convergence.

83
72

Core Paper
MATC 3.2
Block - II

Marks : 50 (SSE : 40; IA : 10)

Calculus of Rn

(Pure and Applied Streams)
Syllabus

• Unit 9 •

Differentiation on Rn : Directional derivatives and continuity, the total derivative and continuity, total
derivative in terms of partial derivatives, the matrix transformation of T : Rn → Rn. The Jacobian matrix.

• Unit 10 •

The chain rule and its matrix form. Mean value theorem for vector valued function. Mean value inequality.
A sufficient condition for differentiability. A sufficient condition for mixed partial derivatives.

• Unit 11 •

Functions with non-zero Jacobian determinant, the inverse function theorem, the implicit function theorem
as an application of Inverse function theorem.

• Unit 12 •

Extremum problems with side conditions – Lagrange’s necessary conditions as an application of Inverse
function theorem.

• Unit 13 •

Integration on Rn : Integrals of f : A → R where A is subset of Rn, is a closed rectangle. Conditions of
integrability.

• Unit 14 •

Integrals of f : C → R where C is subset of Rn is not a rectangle, concept of Jordan measurability of a set
in Rn.

• Unit 15 • Fubini’s theorem for integral of f : A × B → R, where A, B are subsets of Rn, are closed
rectangles. Fubini’s theorem for f : C → R, C is a subset of A×B.

• Unit 16 • Formula for change of variables in an integral in Rn.

73

Unit 9

Course Structure

• Directional derivatives and continuity, the total derivative and continuity.

• Total derivative in terms of partial derivatives, the matrix transformation of T : Rn → Rn.

• The Jacobian matrix.

8 Introduction

Multivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to
calculus with functions of several variables: the differentiation and integration of functions involving multiple
variables, rather than just one. In this unit, we will introduce the basic notions in multivariable calculus.

Objectives

After reading this unit, you will be able to

• define a multivariable function and give some examples of them

• define continuity of a multivariable function and learn certain characteristics in this direction

• learn certain related definitions

• get an introduction to the partial derivatives of a multivariable function

• define the directional derivative of a multivariable function and its relationship with derivatives

• define the Jacobian matrix of a function and its relationship with differentiability

• find the Jacobian matrices of multivariable functions

8.1 Multivarable functions

A function from Rn to Rm (which is also sometimes called vector-valued function or, a function of n variables)
is a rule which associates to each point in Rn, some point in Rm. The point associated to a point x ∈ Rn
is denoted by f(x). We write f : Rn → Rm to indicate f(x)Rm is defined for x ∈ Rn. The notation
f : A → Rm indicates that f(x) means that f(x) is defined only for x ∈ A, and A is the domain of
f . If B ⊂ A, the we define f(B) as the set {f(x) : x ∈ B} and also, for any C ⊂ Rm, we define
f−1(C) = {x ∈ A : f(x) ∈ C}. The notation f : A→ B indicates that f(A) ⊂ B.

If f, g : Rn → R, the functions f+g, f−g, f.g and f/g are defined precisely as in the one-variable case. If
f : A→ Rm and g : B → Rp, where B ⊂ Rm, then the composition g ◦ f is defined by g ◦ f(x) = g(f(x));
the domain of g ◦f is A∩f−1(B). If f : A→ Rm is one-one, that is, if f(x) 6= g(x), when x 6= y, we define
f−1 : f(A)→ Rn by the requirement that f−1(z) is the unique x ∈ A with f(x) = z.

74

A function f : A → Rm determines m component functions f1, f2, . . . , fm : A → R by f(x) =
(f1(x), f2(x), . . . , fm(x)). If conversely, m functions g1, g2, . . . , gm : A → R are given, there is a unique
function f : A → Rm such that f i = gi, namely f(x) = (g1(x), g2(x), . . . , gm(x)). This function f will
be denoted by f = (g1, g2, . . . , gm), so that, we always have f = (f1, f2, . . . , fm). If π : Rn → Rn is the
identity function, π(x) = x, then πi(x) = xi, the function πi is called the ith projection function.

The notation lim
x→a

f(x) = b means that we can get f(x) as close to b as desired, by choosing x sufficiently
close to, but not equal to, a. In mathematical terms this means that for every number ε > 0, there is a number
δ > 0 such that |f(x) − b| < ε for all x in the domain of f which satisfy the relation 0 < |x − a| < δ. A
function f : A→ Rm is continuous at the point a ∈ A if the limiting value of f at a is equal to the functional
value of f at a, that is, lim

x→a
f(x) = f(x), and f is simply continuous if f is continuous at each a ∈ A. The

concept of continuity is that it can be defined without using limits.

Theorem 8.1. If A ⊂ Rm, a function f : A → Rm is continuous if and only if for every open set U ⊂ Rm
there is some open set V ⊂ Rn such that f−1(U) = V ∩A.

Proof. Suppose f is continuous. If a ∈ f−1(U), then f(a) ∈ U . Since U is open, there is an open rectangle
B with f(a) ∈ B ⊂ U . Since f is continuous at a, we can ensure that f(x) ∈ B, provided we choose x in
some sufficiently small rectangle C containing a. Do this for each a ∈ f−1(U) and let V be the union of all
such C. Clearly f−1(U) = V ∩A. The converse is similar.

Theorem 8.2. If f : A→ Rm is continuous, where A ⊂ Rn, and A is compact, then f(A) ⊂ Rm is compact.

If f : AR is bounded, the extent to which f fails to be continuous at a ∈ A can be measured in a precise
way. For δ > 0

M(a, f, δ) = sup{f(x) : x ∈ A & |x− a| < δ}
m(a, f, δ) = inf{f(x) : x ∈ A & |x− a| < δ}.

Definition 8.3. The oscillation o(f, a) of f at a is defined by o(f, a) = lim
δ→0

[M(a, f, δ) −m(a, f, δ)]. This

limit always exists, since M(a, f, δ)−m(a, f, δ) decreases as δ decreases.

Theorem 8.4. A bounded function f is continuous at a if and only if o(f, a) = 0.

Proof. Let f be continuous at a. For every number ε > 0, we can choose a number δ > 0 such that |f(x) −
f(a)| < ε for all x ∈ A with |x− a| < δ. Thus, M(a, f, δ)−m(a, f, δ) ≤ 2ε. Since ε > 0 is arbitrary, so we
have, o(f, a) = 0. The converse is similar.

Theorem 8.5. Let A ⊂ Rn be closed. If f : A → R is any bounded function, and ε > 0, then {x ∈
A : o(f, x) ≥ ε} is closed.

Exercise 8.6. 1. If f : A → Rm and a ∈ A, then show that lim
x→a

f(x) = b if and only if lim
x→a

f i(x) = bi,
for i = 1, . . . ,m.

2. Prove that f : A→ Rm is continuous at a if and only if each f i is so.

75

8.2 Directional Derivatives

In order to define the derivative of a multivalued function f mapping a subset A ⊂ Rn into Rm, we come to
the notion of directional derivatives which have the following

Definition 8.7. Let A ⊂ Rn and let f : A → Rm and let A contains a neighbourhood of a. Given u ∈ Rn
with u 6= 0, we define

f ′(a;u) = lim
h→0

f(a+ hu)− f(a)

h
,

provided the limit exists. This limit depends both on a and on u and is called the directional derivative of f at
a with respect to u.

Example 8.8. Let f : R2 → R be given by f(x, y) = xy. Then the directional derivative of f at a = (a1, a2)
with respect to u = (1, 0) is

f ′(a;u) = lim
h→0

(a1 + h)a2 − a1a2

h
= a2.

With respect to v = (1, 2), the directional derivative is

f ′(a; v) = lim
h→0

(a1 + h)(a2 + 2h)− a1a2

h
= a2 + 2a1.

It is tempting to believe that the ”directional derivative” is the appropriate generalization of the notion of
”derivative,” and to say that f is differentiable at a if f ′(a;u) exists for every u 6= 0. But this is usually
not the case. We want to generalize the derivative in such a way that differentiability implies continuity. But
this fails in case of the directional derivatives. Also, the composites of differentiable functions are not always
differentiable in this case. So, we seek something stronger.

8.3 Differentiation

We know that a function f : R→ R is differentiable at a ∈ R if the limit

lim
h→0

f(a+ h)− f(a)

h

exists in which case, the limit is called the derivative of f at a and denoted by f ′(a). We want to generalize it
for multivalued case. For this, we first look into the following case. Let c : R→ R be a linear transformation
defined by c(h) = f ′(a).h. Then the above equation becomes

lim
h→0

f(a+ h)− f(a)− c(h)

h
= 0.

The above equation is often interpreted as saying that c + f(a) is a good approximation to f at a. Thus, we
can define the univariable differentiation as follows.

Definition 8.9. A function f : R → R is differentiable at a ∈ R if there exists a linear transformation
c : R→ R such that

lim
h→0

f(a+ h)− f(a)− c(h)

h
= 0.

We can similarly generalize the derivative for multivariable function as

Definition 8.10. A function f : Rn → Rm, where A ⊂ Rn is differentiable at a ∈ Rn if there exists a linear
transformation c : Rn → Rm such that

lim
h→0

f(a+ h)− f(a)− c(h)

h
= 0.

76

This is equivalent to saying that there exists a matrix m× n B such that

lim
h→0

f(a+ h)− f(a)−B.h
|h|

= 0.

Example 8.11. Let f : Rn → Rm be defined by the equation

f(x) = Bx+ b,

where, B is an m× n matrix and b ∈ Rm. Then f is differentiable and Df(x) = B. Indeed, since

f(a+ h)− f(h) = Bh,

the quotient used in defining the derivative vanishes identically.

Theorem 8.12. Let A ⊂ Rn and f : A → Rm. If f is differentiable at a, then all the directional derivatives
of f at a exist, and

f ′(a;u) = Df(a).u.

Proof. Let c = Df(a). Set h = tu in the definition of differentiability, where t 6= 0. Then by hypothesis

lim
t→0

f(a+ tu)− f(a)− c.tu
|tu|

= 0.

If t→ 0 through positive values, we multiply the above equation by |u| to conclude that

lim
t→0

f(a+ tu)− f(a)

t
− c.u = 0.

If t approaches 0 through negative values, then we multiply the first equation by −|u| to reach the same
conclusion. Thus, f ′(a;u) = c.u = Df(a).

But the converse is not true in general.

Example 8.13. Define f : R2 → R by setting f(0) = 0 and

f(x, y) =
x2y

x4 + x2
; (x, y) 6= (0, 0)

= 0; (x, y) = (0, 0).

We show all directional derivatives of f exist at 0, but that f is not differentiable at 0. Let u 6= 0. Then for
u = (h, k) we have

f(0 + tu)− f(0)

t
=

(th)2(tk)

(th)4 + (tk)2
1

t
=

h2k

(t2h4 + k2
,

so that

f ′(0;u) =
h2

k
; k 6= 0,

= 0; k = 0.

Thus f ′(0;u) exists for all u 6= 0. However, the function f is not differentiable at 0. For if g : R2 → R is a
function that is differentiable at 0, then Dg(0) is a 1× 2 matrix of the form [a b], and

g′(0;u) = ah+ bk,

which is a linear function of u. But f ′(0;u) is not a linear function of u.

77

In this form the definition has a simple generalization to higher dimensions.

Definition 8.14. A function f : Rn → Rm is differentiable at a ∈ Rn if there is a linear transformation
c : Rn → Rm such that

lim
h→0

|f(a+ h)− f(a)− c(h)|
|h|

= 0.

Since h is a point of Rn and f(a+ h)− f(a)− c(h) is a point of Rm, so the norm sign is necessary. If the
above limit exists , then the linear transformation c is called the derivative of f at a and is denoted by Df(a).

We have shown that at least one linear transformation exists for the differentiable function f . But one might
get curious about the existence of more than one such functions. This is answered by the following theorem.

Theorem 8.15. If f : Rn → Rm is differentiable at a ∈ Rn, then there is a unique linear transformation
c : Rn → Rm such that

lim
h→0

|f(a+ h)− f(a)− c(h)|
|h|

= 0

holds.

Proof. Let d : Rn → Rm be a linear transformation that satisfies

lim
h→0

|f(a+ h)− f(a)− d(h)|
|h|

= 0.

If m(h) = f(a+ h)− f(a), then

lim
h→0

|c(h)− d(h)|
|h|

= lim
h→0

|c(h)−m(h) +m(h)− d(h)|
|h|

≤ lim
h→0

|c(h)−m(h)|
|h|

+ lim
h→0

|m(h)− d(h)|
|h|

= 0.

If x ∈ Rn, then tx→ 0 as t→ 0. Hence for x 6= 0, we have

0 = lim
h→0

|c(tx)− d(tx)|
|tx|

=
|c(x)− d(x)|

|x|
.

Hence, c(x) = d(x).

Example 8.16. Define f : R2 → R as f(x, y) = sinx. Thus, Df(a, b) = c satisfies c(x, y) = (cos a).x. We
will prove this.

lim
(h,k)→(0,0)

|f(a+ h, b+ k)− f(a, b)− c(h, k)|
|(h, k)|

= lim
(h,k)→(0,0)

| sin(a+ h)− sin a− (cos a).h|
|h|

.

Since sin′(a) = cos a, we have

lim
h→0

| sin(a+ h)− sin a− (cos a).h|
|h|

= 0.

Since |(h, k)| ≥ |h|, it is also true that

lim
h→0

| sin(a+ h)− sin a− (cos a).h|
|(h, k)|

= 0.

78

8.4 Jacobian Matrix

It is often convenient to consider the matrix of Df(a) : Rn → Rm with respect to the usual bases of Rn
and Rm. This m × n matrix is called the Jacobian matrix of f at a, and denoted by f ′(a). For the previous
example, we have, f ′(a, b) = (cos a, 0). If f : R→ R, then f ′(a) is a 1× 1 matrix matrix whose single entry
is the number which is denoted by f ′(a) in single variable calculus.

The definition of Df(a) could be made iff were defined only in some open set containing a. Considering
only functions defined on Rn streamlines the statement of theorems and produces no real loss of generality.
It is convenient to define a function f : Rn → Rm to be differentiable on A iff is differentiable at a for each
a ∈ A. If f : A → Rm, then f is called differentiable if it can be extended to a differentiable function on
some open set containing A.

Theorem 8.17. 1. If f : Rn → Rm is a constant function, then we have Df(a) = 0.

2. If f : Rn → Rm is a linear transformation, then Df(a) = f .

3. If f : Rn → Rm, then f is differentiable at a ∈ Rn if and only if each f i is differentiable, and

Df(a) = (Df1(a), . . . , Dfm(a)).

Thus, f
′
(a) is the m× n matrix whose ith row is (f i)

′
(a).

4. If s : R2 → R is defined by s(x, y) = x+ y, then Ds(a, b) = s.

5. If p : R2 → R is defined by p(x, y) = x.y, then Dp(a, b)(x, y) = bx+ ay. Thus p′(a, b) = (b, a).

Proof. 1. Left as exercise.

2. Left as exercise.

3. If each f i is differentiable at a and c = (Df1(a), . . . , Dfm(a)), then

f(a+ h)− f(a)− c(h) = (f1(a+ h)− f1(a)−Df1(a)(h), . . . , fm(a+ h)−
fm(a)−Dfm(a)(h)).

Hence

lim
h→0

|f(a+ h)− f(a)− c(h)|
|h|

≤ lim
h→0

m∑
i=1

|f i(a+ h)− f i(a)−Df i(a)(h)|
|h|

= 0.

Also, if f is differentiable at a, then f i = πi ◦ f is differentiable at a by 2.

4. Follows from 2.

5. Let c(x, y) = bx+ ay. Then

lim
(h,k)→0

|p(a+ h, b+ k)− p(a, b)− c(h, k)|
|(h, k)|

= lim
(h,k)→0

|hk|
|(h, k)|

.

Now,

|hk| ≤ |h|2, |k| ≤ |h|,
≤ |k|2, |h| ≤ |k|.

79

Hence |hk| ≤ |h|2 + |k|2. Thus,

|hk|
|(h, k)|

≤ h2 + k2√
h2 + k2

=
√
h2 + k2,

so

lim
(h,k)→0

|hk|
|(h, k)|

= 0.

We can immediately get the following

Corollary 8.18. If f, g : Rn → R are differentiable at a, then

D(f + g)(a) = Df(a) +Dg(a),

D(f.g)(a) = g(a)Df(a) + f(a)Dg(a).

Also, if g(a) 6= 0, then

D(f/g)(a) =
g(a)Df(a) + f(a)Dg(a)

[g(a)]2
.

Exercise 8.19. 1. Find f ′ for each of the following functions:

(a) f(x, y, z) = xy.
(b) f(x, y, z) = (xy, z).
(c) f(x, y, z) = (x+ y)z .

2. Let f : R2 → R defined by

f(x, y) =
x|y|√
x2 + y2

, (x, y) 6= 0,

= (0, 0), (x, y) = 0.

Show that f is not differentiable at (0, 0).

3. Let f : R2 → R defined by f(x, y) =
√
|xy|. Show that f is not differentiable at (0, 0).

8.5 Partial Derivatives

We are somewhat familiar with the idea of partial derivatives when we learnt the two-variable calculus. When
we keep a variable constant and change the other variable, then the rate of change of the second variable with
respect to the latter is called the partial derivative or simply, derivative with respect to the latter variable. When
we generalize this, for any function f : Rn → R and a = (a1, . . . , an) ∈ Rn, then the ith partial derivative of
f at a is defined as

Dif(a) = lim
h→0

f(a1, . . . , ai + h, . . . , an)− f(a1, . . . , an)

h
,

provided the above limit exists. We can also consider Dif(a) as the ordinary derivative of a certain function;
in fact, if g(x) = f(a1, . . . , x, . . . , an), then Dif(a) = g′(ai). This means that Dif(a) is the slope of the
tangent line at (a, f(a)) to the curve obtained by intersecting the graph of f with the plane xj = aj , j 6= i.

If Dif(x) exists for all x ∈ Rn, we obtain a function Dif : Rn → R. The jth partial derivative of Dif at
x, that is, Dj(Dif)(x), often written as Di,jf(x). The order of writing i and j can not be always reversed.
We thus come to the following

80

Theorem 8.20. If Di,jf and Dj,if are continuous in an open set containing a, then Di,jf(a) = Dj,if(a).

We will come back to this proof in the next unit.

Theorem 8.21. If f : Rn → Rm, then Df(a) exists if all Djf
i(x) exist in an open set containing a and if

each function Djf
i is continuous at a.

Proof. It suffices to consider the case m = 1, so that f : Rn → R. Then

f(a+ h)− f(a) = f(a1 + h1, a2, . . . , an)− f(a1, . . . , an) + f(a1 + h1, a2 + h2, a3, . . . , an)

−f(a1 + h1, . . . , an) + · · ·+
f(a1 + h1, a2 + h2, a3 + h3, . . . , an + hn)− f(a1 + h1, a2 + h2, a3 + h3, . . . , an−1 + hn−1, an).

Recall that D1f is the derivative of the function g defined by g(x) = f(x, a2, . . . , an). Applying the mean-
value theorem to g we obtain

f(a1 + h1, a2, . . . , an)− f(a1, . . . , an) = h1.D1(b1, a
2, . . . , an),

for some b1 between a1 and a1 + h1. Similarly, the ith term in the sum equals

hi.Di(a
1 + h1, . . . , ai−1 + hi−1, bi, . . . , a

n) = hiDif(ci),

for some ci. Then

lim
h→0

∣∣∣∣f(a+ h)− f(a)−
n∑
i=1

Dif(a).hi
∣∣∣∣

|h|
= lim

h→0

∣∣∣∣ n∑
i=1

[Dif(ci)−Dif(a)].hi
∣∣∣∣

|h|

≤ lim
h→0

n∑
i=1

|Dif(ci)−Dif(a)|. |h
i|
|h|

≤ lim
h→0

n∑
i=1

|Dif(ci)−Dif(a)| = 0,

since Dif is continuous at a.

Exercise 8.22. 1. Find the partial derivatives of the following functions:

(a) f(x, y, z) = xy.

(b) f(x, y, z) = z.

(c) f(x, y, z) = (x+ y)z .

2. Let f : R2 → R be defined by setting f(0) = 0 and

f(x, y) =
xy

x2 + y2
, (x, y) = 0.

(a) For which vectors u 6= 0 does f ′(0;u) exist? Evaluate it when it exists.

(b) Do D1f and D2f exist at 0?

(c) Is f differentiable at 0?

(d) Is f is continuous at 0?

81

3. Let f be defined as

f(x, y) =
x2y2

x2y2 + (y − x)2
; (x, y) 6= 0

= 0; (x, y) = 0.

Repeat exercise 2 for this function.

4. Let f be defined as

f(x, y) =
x3

x2 + y2
; (x, y) 6= 0

= 0; (x, y) = 0.

Repeat exercise 2 for this function.

5. Let f : R2 → R be defined by

f(x, y) = xy
x2 − y2

x2 + y2
; (x, y) 6= 0

= 0; (x, y) = 0.

(a) Show that D2f(x, 0) = x for all x and D1f(0, y) = −y for all y.

(b) Show that D1,2f(0, 0) 6= D2,1f(0, 0).

8.6 Jacobian Matrix Continued

We have already mentioned the Jacobian matrix for a differentiable function f : Rn → Rm. If A ⊂ Rn, then
the derivative of the function f : A→ Rm at a point a ∈ A, also called the total derivative of f at a is defined
as

Df(a) =


D1f

1(a) D2f
1(a) · · · Dnf

1(a)
D1f

2(a) D2f
2(a) · · · Dnf

2(a)
...

...
. . .

...
D1f

m(a) D2f
m(a) · · · Dnf

m(a)


We will check certain examples regarding the Jacobian matrix of a function.

Illustration 8.23. Let a function f : R3 → R2 be given by f(x, y, z) = (xy + 2yz, 2xy2z). Then we have,

f1 = xy + 2yz

f2 = 2xy2z.

In order to find the Jacobian of f , we determine each of the following.

Dxf
1(x, y) = y, Dyf

1(x, y) = x+ 2z, Dzf
1(x, y) = 2y,

Dxf
2(x, y) = 2y2z, Dyf

2(x, y) = 4xyz, Dzf
2(x, y) = 2xy2.

Thus, the Jacobian matrix function at any point (x, y, z) ∈ R3 is given by

Df(x, y, z) =

[
y x+ 2z 2y

2y2 4xyz 2xy2

]
.

82

The determinant of the matrix Df(x), provided m = n, is called the Jacobian determinant. The Jacobian
determinant at a given point gives important information about the behaviour of f near a point. For instance,
the continuously differentiable function f is invertible near a point a ∈ Rn if the Jacobian determinant at a is
non-zero. Further, if it is positive, then f preserves the orientation near a and if it is negative, then f reverses
the orientation near a. Also, the absolute value of the determinant gives us the factor by which f expands or
shrinks near a.

Exercise 8.24. 1. Find the Jacobian matrix of the function f(x, y) = (xy, x + y). Also calculate the
determinant. Hence find the total derivative of f at (2, 1).

2. Find the Jacobian matrix and determinant of the function f(x, y) = (x2y, 5x+ sin y).

3. Find the Jacobian matrix and determinant(if possible) of the function f(x, y, z) = (x, 5z, 4y2−2z, z sinx).

4. Find the Jacobian determinant of the function f(x, y, z) = (5y, 4x2 − 2 sin(yz), yz).

8.7 Few Probable Questions

1. Define continuity of a multivariable function f : A → Rm where A ⊂ Rn. Show that f is continuous
at a point a ∈ A if and only if each of the components f i is so.

2. Define the directional derivative of a function f : A → Rm where A ⊂ Rn. Find the directional
derivative of f where f is defined as

f(x, y) = cos

(
x

y

)
in the direction (3,−4).

3. Show that if a function f : A → Rm where A ⊂ Rn is differentiable at a ∈ A, then all the directional
derivatives of f at a exist, and f ′(a;u) = Df(a).u. Is the converse true? Justify.

4. Let f : R2 → R be defined by setting f(0) = 0 and

f(x, y) =
xy

x2 + y2
, (x, y) = 0.

(a) For which vectors u 6= 0 does f ′(0;u) exist? Evaluate it when it exists.

(b) Do D1f and D2f exist at 0?

(c) Is f differentiable at 0?

(d) Is f is continuous at 0?

5. Show that if f : A → Rm, where A ⊂ Rn is differentiable at a ∈ A, then f is continuous there. Is the
converse true? Justify.

6. Define the ith partial derivative of a function f : A→ Rm, where A ⊂ Rn at a point a ∈ A. Show that
if all Djf

i(x) exist in an open set containing a and if each function Djf
i is continuous at a.

83

Unit 10

Course Structure

• The chain rule and its matrix form.

• Mean value theorem for vector valued function. Mean value inequality.

• A sufficient condition for differentiability. A sufficient condition for mixed partial derivatives

9 Introduction

We are already familiar with the basic ideas of derivatives. This unit is an extension of the previous one. In
single-variable calculus, we found that one of the most useful differentiation rules is the chain rule, which
allows us to find the derivative of the composition of two functions. The same thing is true for multivariable
calculus, but this time we have to deal with more than one form of the chain rule. In this section, we study
extensions of the chain rule and learn how to take derivatives of compositions of functions of more than one
variable.

Objectives

After reading this unit, you will be able to

• learn the chain rule for multivariable functions and do certain related problems

• learn a sufficient condition for differentiability

• learn a sufficient condition for mixed partial derivatives

9.1 Chain Rule and its Matrix form

For the univariable functions f, g : R→ R, then the chain rule gives the derivative for two composite functions
f ◦ g given as

d

dx
(f ◦ g(x)) =

d

dx
(f(g(x))) =

df

dg

dg

dx
.

We generalize this for multivariable function in the following

Theorem 9.1. (Chain Rule). If f : Rn → Rm is differentiable at a, and f : Rm → Rp is differentiable at
f(a), then the composition g ◦ f : Rn → Rp is differentiable at a, and

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a).

For m = n = p = 1, then we get our old chain rule.

Proof. Let b = f(a) and let c = Df(a) and let d = Dg(f(a)). Let us define

1. φ(x) = f(x)− f(a)− c(x− a),

84

2. ψ(x) = g(y)− g(b)− d(y − b),

3. ρ(x) = g ◦ f(x)− g ◦ f(a)− d ◦ c(x− a),

then

lim
x→a

|φ(x)|
|x− a|

= 0, (9.1.1)

lim
y→b

|ψ(y)|
|y − b|

= 0, (9.1.2)

and we must show that

lim
x→a

|ρ(x)|
|x− a|

= 0.

Now,

ρ(x) = g(f(x))− g(b)− d(c(x− a))

= g(f(x))− g(b)− d(f(x)− f(a)− ψ(x))

= [g(f(x))− g(b)− d(f(x)− f(a))] + d(ψ(x))

= ψ(f(x)) + d(ψ(x)).

Thus, we must prove

lim
x→a

|ψ(f(x))|
|x− a|

= 0, (9.1.3)

lim
x→a

|d(φ(x))|
|x− a|

= 0. (9.1.4)

Equation (9.1.4) follows easily from (9.1.1). If ε > 0, it follows from (9.1.2) that for some δ > 0, we have

|ψ(f(x))| < ε|f(x)− b| if |f(x)− b| < δ,

which is true if |x− a| < δ1 for some suitable δ1. Then

|ψ(f(x))| < ε|f(x)− b|
= ε|φ(x) + c(x− a)|
≤ ε|φ(x)|+ εM |x− a|

for some M . Equation (9.1.3) now follows.

Exercise 9.2. 1. Find f ′ for the following functions using Chain Rule

(a) f(x, y) = sin(xy)

(b) f(x, y) = (sin(xy), sin(x sin y), xy).

85

9.2 Mean Value Theorems for Vector-Valued Functions

In this section, we obtain a useful criterion for differentiability. We know that mere existence of the par-
tial derivatives does not imply differentiability. If, however, we impose the (comparatively mild) additional
condition that these partial derivatives be continuous, then differentiability is assured.

We begin by recalling the mean-value theorem of single-variable analysis.

Theorem 9.3. If f : [a, b] → R is continuous at each point of the closed interval [a, b] , and differentiable at
each point of the open interval (a, b) , then there exists a point c of (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

In practice, we most often apply this theorem when f is differentiable on an open interval containing [a, b]
. In this case, of course , f is continuous on [a, b] .

We know that, if f : A→ Rm, where A ⊂ Rn, is differentiable at a ∈ A, then

Df(a) =


D1f

1(a) D2f
1(a) · · · Dnf

1(a)
D1f

2(a) D2f
2(a) · · · Dnf

2(a)
...

...
. . .

...
D1f

m(a) D2f
m(a) · · · Dnf

m(a)

 .
Theorem 9.4. Let A be an open subset of Rn. Suppose that the partial derivatives Djf

i(x) of the component
functions of f exist at each point x of A and are continuous on A . Then f is differentiable at each point of A.

Such a function f is called continuously differentiable function, or of class C1, on A.

Proof. It is sufficient to prove that each component function of f is differentiable. Hence, we may restrict
ourselves to the case of a real-valued function f : A→ R.

Let a be a point of A. We are given that, for some ε, the partial derivatives Djf(x) exist and are continuous
for |x− a| < ε. We wish to show that f is differentiable at a.

Let h ∈ Rn with 0 < |h| < ε; let h1, . . . , hn be the components of h. Consider the following sequence of
points of Rn:

p0 = a,

p1 = a+ h1e1,

p2 = a+ h1e1 + h2e2,

· · ·
pn = a+ h1e1 + · · ·+ hnen = a+ h.

86

The points pi all belong to the closed cube C of radius |h| centered at a. The figure illustrates the case when
n = 3 and all hi are positive.

Since we are concerned with the differentiability of f , we shall need to deal with the difference f(a+h)−
f(a) . We begin by writing it in the form

f(a+ h)− f(a) =
n∑
j=1

[f(pj)− f(pj−1)]. (9.2.1)

Consider the general term of this summation. Let j be fixed, and define

φ(t) = f(pj−1 + tej).

Assume hj 6= 0 for the moment. As t ranges over the closed interval I with end points 0 and hj , the point
pj−1 + tej ranges over the line segment from pj−1 to pj ; this line segment lies in C, and hence in A. Thus, φ
is defined for t in an open interval about I .

As t varies, only the jth component of the point pj−1 + tej varies. Hence because Djf exists at each point
of A , the function φ is differentiable on an open interval containing I . Applying the mean-value theorem to
φ, we conclude that

φ(hj)− φ(0) = φ
′
(cj)hj

for some point cj between 0 and hj . (This argument applies whether hj is positive or negative.) We can
rewrite this equation in the form

f(pj)− f(pj−1) = Djf(qj)hj , (9.2.2)

where qj is the point pj−1 + cjej of the line segment from pj−1 to pj , which lies in C.
We derived (9.2.2) under the assumption that hj 6= 0. If hj = 0, then (9.2.2) holds automatically, for any

point qj of C.
Using (9.2.2), we rewrite (9.2.1) in the form

f(a+ h)− f(a) =
n∑
j=1

Djf(qj)hj , (9.2.3)

where each point qj lies in the cube C of radius |h| centered at a.
We now prove the theorem. Let

B = [D1f(a) . . . Dnf(a)].

Then

B.h =

n∑
j=1

Djf(a)hj .

Using (9.2.3), we have

f(a+ h)− f(a)−B.h
|h|

=
n∑
j=1

[Djf(qj)−Djf(a)]hj
|h|

;

then we let h→ 0. Since qj lies in the cube C of radius |h| centered at a, we have qj → a. Since the partials
of f are continuous at a, the factors in brackets all go to zero. The factors hj/|h| are of course bounded in
absolute value by 1. Hence the entire expression goes to zero, as desired.

87

One effect of this theorem is to reassure us that the functions familiar to us from calculus are in fact
differentiable. We know how to compute the partial derivatives of such functions as sin(xy) and xy2 + z exy,
and we know that these partials are continuous. Therefore these functions are differentiable.

In practice, we usually deal only with functions that are of class C1. While it is interesting to know there
are functions that are differentiable but not of class C1, such functions occur rarely enough that we need not
be concerned with them.

Suppose f is a function mapping an open set A of Rn into Rn, and suppose the partial derivatives Djf
i

of the component functions of f exist on A. These then are functions from A to R, and we may consider
their partial derivatives, which have the form Dk(Djfi) and are called the second-order partial derivatives of
f . Similarly, one defines the third-order partial derivatives of the functions fi or more generally the partial
derivatives of order r for arbitrary r.

If the partial derivatives of the functions f i of order less than or equal to r are continuous on A, we say f
is of class Cr on A. Then the function f is of class Cr on A, if and only if each of the functions Djf

i is of
class Cr−1 on A. We say f is of class C∞ on A, if the partials of the functions f i of all orders are continuous
on A.

As you may recall, for most functions the ”mixed” partial derivatives

DkDjf
i & DjDkf

i

are equal. This result in fact holds under the hypothesis that the function f is of class C2, as we now show.

Theorem 9.5. Let A be open in Rn; let f : A→ R be a function of class C2. Then for each a ∈ A, we have

DkDjf(a) = DjDkf(a).

Proof. Since one calculates the partial derivatives in question by letting all variables other than xk and xj
remain constant, it suffices to consider the case where f is a function merely of two variables. So we assume
that A is open in R2, and that f : A→ R2 is of class C2.

Let
Q = [a, a+ h]× [b, b+ k]

be a rectangle contained in A. Define

λ(h, k) = f(a, b)− f(a+ h, b)− f(a, b+ k) + f(a+ h, b+ k).

Then λ is the sum, with appropriate signs, of the values of f at the four vertices of Q. We show that there
are points p and q of Q such that

λ(h, k) = D2D1f(p).hk, & λ(h, k) = D1D2f(q).hk.

By symmetry, it suffices to prove the first of these equations. To begin, we define

φ(s) = f(s, b+ k)− f(s, b).

Then φ(a+h)−φ(a) = λ(h, k). Because D1f exists in A, the function φ is differentiable in an open interval
containing [a, a+ h]. The mean-value theorem implies that

φ(a+ h)− φ(a) = φ′(s0).h

for some s0 between a and a+ h. This equation can be rewritten in the form

λ(h, k) = [D1f(s0, b+ k)−D1f(s0, b)].h. (9.2.4)

88

Now, s0 is fixed, and we consider the function D1f(s0, t). Because D2D1f exists in A, this function is
differentiable for t in an open interval about [b, b + k]. We apply the mean-value theorem once more to
conclude that

D1f(s0, b+ k)−D1f(s0, b) = D2D1f(s0, t0).k (9.2.5)

for some t0 between b and b+ k. Combining (9.2.4) and (9.2.5), we get,

λ(h, k) = D2D1f(s0, t0).hk. (9.2.6)

Now, we prove the theorem. Given the point a = (a, b) of A and given t > 0, let Qt be the rectangle

Qt = [a, a+ t]× [b, b+ t].

If t is sufficiently small, Qt is contained in A. Then by (9.2.6), we get

λ(t, t) = D2D1f(pt).t
2

for some point pt in Qt. If we let t→ 0, then pt → a. Because D2D1f is continuous, it follows that

λ(t, t)/t2 → D2D1f(a) as t→ 0.

A similar argument, using symmetry, gives

λ(t, t)/t2 → D1D2f(a) as t→ 0.

Hence the theorem.

As another application of the chain rule, we generalize the mean-value theorem of single-variable analysis
to real-valued functions defined in Rn.

Theorem 9.6. (Mean Value Theorem:) Let A be open in Rn; let f : A → R be differentiable on A . If A
contains the line segment with end points a and a+ h, then there exists a point c = a+ t0h with 0 < t0 < 1
of this line segment such that

f(a+ h)− f(a) = Df(c).h.

89

Proof. Set φ(t) = f(a + th); then φ is defined for t in an open interval about [0, 1]. Being the composite of
differentiable functions, φ is differentiable; its derivative is given by the formula

φ′(t) = Df(a+ th).h.

The ordinary mean-value theorem implies that

φ(1)− φ(0) = φ′(t0).1

for some t0 with 0 < t0 < 1. This equation can be rewritten in the form

f(a+ h)− f(a) = Df(a+ t0h).h.

Exercise 9.7. 1. Let f : R3 → R2 satisfy the conditions f(0) = (1, 2) and

Df(0) =

[
1 2 3
0 0 1

]
.

Let f : R2 → R2 be defined by the equation

g(x, y) = (x+ 2y + 1, 3xy).

Find D(g ◦ f)(0).

2. Let f : R2 → R2 be defined by the equation

f(r, θ) = (r cos θ, r sin θ).

(a) Calculate Df and detDf

(b) Sketch the image under f of the set S = [1, 2]× [0, π].

3. Let f : R2 → R2 be defined by the equation

f(x, y) = (ex cos y, ex sin y).

Then

(a) Calculate Df and detDf

(b) Sketch the image under f of the set S = [0, 1]× [0, π].

90

9.3 Few Probable Questions

1. Show that the function f(x, y) = |xy| is differentiable at 0, but is not of class C1 in any neighborhood
of 0.

2. Define f : R→ R by setting f(0) = 0 and

f(t) = t2 sin

(
1

t

)
if t 6= 0.

(a) Show f is differentiable at 0, and calculate f ′(0).

(b) Calculate f ′(t) if t 6= 0.

(c) Show f ′ is not continuous at 0.

(d) Conclude that f is differentiable on R but not of class C1 on R.

3. Show that if A ⊂ Rn and f : A→ R, and if the partials Djf exist and are bounded in a neighborhood
of a, then f is continuous at a.

91

Unit 11

Course Structure

• Functions with non-zero Jacobian determinant, the inverse function theorem

• The implicit function theorem as an application of Inverse function theorem.

10 Introduction

In mathematics, specifically differential calculus, the inverse function theorem gives a sufficient condition
for a function to be invertible in a neighbourhood of a point in its domain: namely, that its derivative is
continuous and non-zero at the point. The theorem also gives a formula for the derivative of the inverse
function. In multivariable calculus, this theorem can be generalized to any continuously differentiable, vector-
valued function whose Jacobian determinant is nonzero at a point in its domain, giving a formula for the
Jacobian matrix of the inverse which we will explore here.

We will explore the implicit function theorem as an application of the inverse function theorem in this
unit. In multivariable calculus, the implicit function theorem is a tool that allows relations to be converted to
functions of several real variables. It does so by representing the relation as the graph of a function. There
may not be a single function whose graph can represent the entire relation, but there may be such a function
on a restriction of the domain of the relation. The implicit function theorem gives a sufficient condition to
ensure that there is such a function.

Objectives

After reading this unit, you will be able to

• learn about the consequences of non-zero Jacobian determinant of vector valued functions

• learn the inverse function theorem and related theorems and lemmas

• apply the inverse function theorem in various examples

• learn the implicit function theorem as an application of the inverse function theorem

• apply the implicit function theorem in various problems

10.1 Functions with non-zero Jacobian determinant

We have read about the chain rule in the previous unit and the mean value theorem as an application of it. As
yet another application of the chain rule, we consider the problem of differentiating an inverse function.

Recall the situation that occurs in single-variable analysis. Suppose φ(x) is differentiable on an open
interval, with φ

′′
(x) > 0 on that interval. Then φ is strictly increasing and has an inverse function ψ, which is

defined by letting ψ(y) be that unique number x such that φ(x) = y. The function ψ is in fact differentiable,
and its derivative satisfies the equation

ψ′(y) =
1

φ′(x)
,

92

where y = φ(x).
There is a similar formula for differentiating the inverse of a function f of several variables. In the present

section, we do not consider the question whether the function f has an inverse, or whether that inverse is
differentiable. We consider only the problem of finding the derivative of the inverse function.

Theorem 10.1. Let A be open in Rn and let f : A → Rn such that f(a) = b. Suppose that g maps a
neighbourhood of b into Rn, such that g(b) = a and g(f(x)) = x for all x in a neighbourhood of a. If f is
differentiable at a and if g is differentiable at b, then Dg(b) = [Df(a)]−1.

Proof. Let i : Rn → Rn be the identity function; its derivative is the identity matrix In. We are given that
g(f(x)) = i(x) for all x in a neighbourhood of a. Then the chain rule implies that

Dg(b).Df(a) = In.

Thus, Dg(b) is the inverse matrix to Df(a).

The preceding theorem implies that if a differentiable function f is to have a differentiable inverse, it is
necessary that the matrix Df be non-singular. It is a somewhat surprising fact that this condition is also
sufficient for a function f of class C1 to have an inverse , at least locally.

Let us make a comment on notation. The usefulness of well-chosen notation can hardly be overemphasized.
Arguments that are obscure, and formulas that are complicated, sometimes become beautifully simple once
the proper notation is chosen. Our use of matrix notation for the derivative is a case in point . The formulas
for the derivatives of a composite function and an inverse function could hardly be simpler. Nevertheless, a
word may be in order for those who remember the notation used in calculus for partial derivatives, and the
version of the chain rule proved there.

In advanced mathematics, it is usual to use either the functional notation φ′ or the operator Dφ for for the
derivative of a real-valued function of a real variable. (Dφ denotes a 1 × 1 matrix in this case!) In calculus,
however, another notation is common. One often denotes the derivative φ′(x) by the symbol dφ/dx.

10.2 The Inverse Function Theorem

LetA be open in Rn and let f : A→ Rn be of class C1. We know that for f to have a differentiable inverse, it
is necessary that the derivativeDf(x) of f be non-singular. We now prove that this condition is also sufficient
for f to have a differentiable inverse, at least locally. This result is called the inverse function theorem.

We begin by showing that non-singularity of Df implies that f is locally one-to-one.

Lemma 10.2. Let A be open in Rn and let f : A → Rn be of class C1. If Df(a) is non-singular, then there
exists an a > 0 such that the inequality

|f(x0)− f(x1)| ≥ a|x0 − x1|

holds for all x0, x1 in some open cube C(a; ε) centered at a. It follows that f is one-to-one on this open cube.

Proof. Let E = Df(a). Then E is non-singular. We first consider the linear transformation that maps x to
Ex. We compute

|x0 − x1| = |E−1.(E.x0 − E.x1)| ≤ |E−1||E.x0 − E.x1|.

If we set 2a = 1/n|E−1|, then for all x0, x1 ∈ Rn,

|E.x0 − E.x1| ≥ 2a|x0 − x1|.

Now consider the function H(x) = f(x) − E.x. Then DH(x) = Df(x) − E, so that DH(a) = 0. Since
H is of class C1, we can choose ε > 0 such that |DH(x)| < a/n for x in the open cube C = C(a; ε). The

93

Figure 1: f in example 10.5

mean-value theorem, applied to the ith component function of H , tells us that, given x0, x1 ∈ C, there is a
c ∈ C such that

|Hi(x0)−Hi(x1)| = |DHi(c).(x0 − x1)| 6= n(a/n)|x0 − x1|.

Thus for x0, x1 ∈ C, we have

a|x0 − x1| ≥ |H(x0)−H(x1)|
= |f(x0)− E.x0 − f(x1) + E.x1|
≥ |E.x1 − E.x0| − |f(x1)− f(x0)|
≥ 2a|x1 − x0| − |f(x1)− f(x0)|.

Hence the result.

We will now state a theorem which says that the non-singularity of Df , in the case where f is one-to-one,
implies that the inverse function is differentiable.

Theorem 10.3. Let A be open in Rn and let f : A→ Rn be of class Cr. Let B = f(A). If f is one-to-one on
A and if Df(x) is non-singular for x ∈ A, then the set B is open in Rn and the inverse function g : B → A
is of class Cr.

We leave the proof of this theorem. We will finally prove the inverse function theorem.

94

Theorem 10.4. (Inverse Function Theorem) Let A be open in Rn and let f : A → Rn be of class Cr. If
Df(x) is non-singular at the point a ∈ A, there is a neighbourhood U of the point a such that f carries U in
a one-to-one fashion onto an open set V of Rn and the inverse function is of class Cr.

Proof. By lamma 10.2, there is a neighborhood U0 of a on which f is one-to-one. Because detDf(x) is a
continuous function of x, and detDf(a) 6= 0, there is a neighbourhood U1 of a such that detDf(x) 6= 0 on
U1. If U = U0∩U1, then the hypotheses of the preceding theorem are satisfied for f : U → Rn. The theorem
follows.

This theorem is the strongest one that can be proved in general . While the non-singularity of Df on A
implies that f is locally one-to-one at each point of A, it does not imply that f is one-to-one on all of A.
Consider the following example:

Example 10.5. Let f : R2 → R2 be defined by the equation

f(r, θ) = (r cos θ, r sin θ).

Then

Df(r, θ) =

[
cos θ −r sin θ
sin θ r cos θ

]
,

so that detDf(r, θ) = r.
LetA be the open set (0, 1)× (0, b) in the r-θ plane. ThenDf is non-singular at each point ofA. However,

f is one-to-one on A only if b ≤ 2π.

Exercise 10.6. 1. Let f : R2 → R2 be defined by the equation

f(x, y) = (x2 − y2, 2xy).

(a) Show that f is one-to-one on the set A consisting of all (x, y) with x > 0.

(b) What is the set B = f(A)?

(c) If g is the inverse function, find Dg(0, 1).

2. Let f : R2 → R2 be defined by the equation

f(x, y) = (ex cos y, ex sin y).

(a) Show that f is one-to-one on the set A consisting of all (x, y) with 0 < y < 2π.

(b) What is the set B = f(A)?

(c) If g is the inverse function, find Dg(0, 1).

10.3 Implicit Function Theorem

The topic of implicit differentiation is one that is probably familiar to you from calculus. Here is a typical
problem:

Assume that the equation x3y + 2 exy = 0 determines y as a differentiable function of x. Find dy/dx.

95

One solves this calculus problem by ”looking at y as a function of x, ” and differentiating with respect to
x. One obtains the equation

3x2y + x3
dy

dx
+ 2 exy

(
y + x

dy

dx

)
= 0,

which one solves for dy/dx. The derivative dy/dx is of course expressed in terms of x and the unknown
function y.

The case of an arbitrary function f is handled similarly. Supposing that the equation f(x, y) = 0 determines
y as a differentiable function of x , say y = g(x), the equation f(x, g(x)) = 0 is an identity. One applies the
chain rule to calculate

∂f

∂x
+
∂f

∂y
g′(x) = 0,

which gives

g′(x) = −
∂f
∂x
∂f
∂y

,

where the partial derivatives are evaluated at the point (x, g(x)). Note that the solution involves a hypothesis
not given in the statement of the problem. In order to find g′(x), it is necessary to assume that ∂f/∂y is
non-zero at the point in question.

It in fact turns out that the non-vanishing of ∂f/∂y is also sufficient to justify the assumptions we made in
solving the problem. That is, if the function f(x, y) has the property that ∂f/∂y 6= 0 at a point (a, b) that is
a solution of the equation f(x, y) = 0, then this equation does determine y as a function of x , for x near a ,
and this function of x is differentiable.

This result is a special case of a theorem called the implicit function theorem, which we prove in this
section. The general case of the implicit function theorem involves a system of equations rather than a single
equation. One seeks to solve this system for some of the unknowns in terms of the others. Specifically,
suppose that f : Rn+1 → Rn is a function of class C1. Then the vector equation

f(x1, . . . , xk+n) = 0

is equivalent to a system of n scalar equations in k + n unknowns. One would expect to be able to assign
arbitrary values to k of the unknowns and to solve for the remaining unknowns in terms of these. One would
also expect that the resulting functions would be differentiable, and that one could by implicit differentiation
find their derivatives.

There are two separate problems here. The first is the problem of finding the derivatives of these implicitly
defined functions, assuming they exist; the solution to this problem generalizes the computation of g′(x) just
given. The second involves showing that (under suitable conditions) the implicitly defined functions exist and
are differentiable.

In order to state our results in a convenient form, we introduce a new notation for the matrix D f and its
submatrices:

Definition 10.7. Let A be open in Rm; let f : A → Rn be differentiable and f1, . . . , fn be the component
functions of f . We sometimes use the notation

Df =
∂(f1, . . . , fn)

∂(x1, . . . , xm)

for the derivative of f . On occasion we shorten this to the notation

Df =
∂f

∂x
.

96

More generally, we shall use the notation

∂(fi1 , . . . , fik)

∂(xj1 , . . . , xjl)

to denote the k × l matrix that consists of the entries of Df lying in rows i1, . . . , ik and columns j1, . . . , jl.
The general entry of this matrix, in row p and column q, is the partial derivative ∂fip/∂xjq .

Now we deal with the problem of fin ding the derivative of an implicitly defined function, assuming it exists
and is differentiable. For simplicity, we shall assume that we have solved a system of n equations in k + n
unknowns for the last n unknowns in terms of the first k unknowns.

Theorem 10.8. Let A be open in Rk+n; let f : A → Rn be differentiable. Write f in the form f(x, y), for
x ∈ Rk and y ∈ Rn; then Df has the form

Df =

[
∂f

∂x

∂f

∂y

]
.

Suppose there is a differentiable function g : B → Rn defined on an open set B in Rk, such that

f(x, g(x)) = 0

for all x ∈ B. Then for x ∈ B,

∂f

∂x
(x, g(x)) +

∂f

∂y
(x, g(x)).Dg(x) = 0.

This equation implies that if the n× n matrix ∂f/∂y is non-singular at the point (x, g(x)), then

Dg(x) = −
[
∂f

∂y
(x, g(x))

]−1
.
∂f

∂x
(x, g(x)).

Note that in the case n = k = 1, this is the same formula for the derivative that was derived earlier; the
matrices involved are 1× 1 matrices in that case.

Proof. Given g, let us define h : B → Rk+n by the equation

h(x) = (x, g(x)).

The hypotheses of the theorem imply that the composite function

H(x) = f(h(x)) = f(x, g(x))

is defined and equals zero for all x ∈ B. The chain rule then implies that

0 = DH(x) = Df(h(x)).Dh(x)

=

[
∂f

∂x
(h(x))

∂f

∂y
(h(x))

]
.

[
Ik

Dg(x)

]
=

∂f

∂x
(h(x)) +

∂f

∂y
(h(x)).Dg(x),

as desired.

The preceding theorem tells us that in order to compute Dg, we must assume that the matrix ∂f/∂y is
non-singular. Now we prove that the non-singularity of ∂f/∂y suffices to guarantee that the function g exists
and is differentiable.

97

Figure 2: Implicit Function Theorem

Theorem 10.9. (Implicit function theorem). Let A be open in Rk+n; let f : A→ Rn be of class Cr. Write
f in the form f(x, y), for x ∈ Rk and y ∈ Rn. Suppose that (a, b) is a point of A such that f(a, b) = 0 and

det
∂f

∂y
(a, b) 6= 0.

Then there is a neighbourhood B of a in Rk and a unique continuous function g : B → Rn such that g(a) = b
and

f(x, g(x)) = 0, ∀x ∈ B.

The function g is in fact of class Cr.

Proof. We construct a function F to which we can apply the inverse function theorem. Define F : A→ Rk+n
by the equation

F (x, y) = (x, f(x, y)).

Then F maps the open set A of Rk+n into Rk × Rn = Rk+n. Furthermore,

DF =

[
Ik 0
∂f
∂x

∂f
∂y

]
.

Computing detDF , we have

detDF = det
∂f

∂y
.

Thus DF is non-singular at the point (a, b). Now F (a, b) = (a, 0). Applying the inverse function theorem to
the map F , we conclude that there exists an open set U × V of Rk+n about (a, b) (where U is open in Rk and
V is open in Rn) such that

1. F maps U × V in a one-to-one fashion onto an open set W in Rk+n containing (a, 0).

2. The inverse function G : W → U × V is of class Cr.

Note that since F (x, y) = (x, f(x, y)), we have

(x, y) = G(x, f(x, y)).

98

Thus G preserves the first k coordinates, as F does . Then we can write G in the form

G(x, z) = (x, h(x, z)), for x ∈ Rk and x ∈ Rn.

Here h is a function of class Cr mapping W into Rn.
Let B be a connected neighbourhood of a in Rk, chosen small enough that B × 0 is contained in W . We

prove existence of the function g : B → Rn. If x ∈ B, then (x, 0) ∈W , so that we have

G(x, 0) = (x, h(x, 0)),

(x, 0) = F (x, h(x, 0)) = (x, f(x, h(x, 0))),

0 = f(x, h(x, 0)).

We set g(x) = h(x, 0), for x ∈ B; then g satisfies the equation f(x, g(x)) = 0, as desired. Further

(a, b) = G(a, 0) = (a, h(a, 0));

then b = g(a), as desired.
Now we prove the uniqueness of g. Let g0 : B → Rn be a continuous function satisfying the conditions in

the conclusion of our theorem. Then in particular, g0 agrees with g at the point a. We show that if g0 agrees
with g at the point a0 ∈ B, then g0 agrees with g in a neighbourhoodB0 of a0. This is easy. The map g carries
a0 into V . Since g0 is continuous, there is a neighbourhood B0 of a0 contained in B such that g0 also maps
B0 into V . The fact that f(x, g0(x)) = 0 for x ∈ B0 implies that

F (x, g0(x)) = (x, 0), so

(x, g0(x)) = G(x, 0) = (x, h(x, 0)).

Thus, g0 and g agrees on B0. It follows that g0 and g agrees on all of B: The set of points of B for which
|g(x)− g0(x)| = 0 is open in B and so is the set of points of B for which |g(x)− g0(x)| > 0 (by continuity
of g and g0). Since B is connected, the latter set must be empty.

In our proof of the implicit function theorem, there was of course nothing special about solving for the last
n coordinates ; that choice was made simply for convenience. The same argument applies to the problem of
solving for any n coordinates in terms of the others.

For example, suppose A is open in R5 and f : A → R2 is a function of class Cr. Suppose one wishes to
”solve” the equation f(x, y, z, u, v) = 0 for the two unknowns y and u in terms of the other three. In this
case, the implicit function theorem tells us that if a is a point of A such that f(a) = 0 and

det
∂f

∂(y, u)
(a) 6= 0,

then one can solve for y and u locally near that point, say y = φ(x, z, v) and u = ψ(x, z, v). Furthermore,
the derivatives of φ and ψ satisfy the formula

∂(φ, ψ)

∂(x, z, v)
= −

[
∂f

∂(y, u)

]−1
.

[
∂f

∂(x, z, v)

]
.

Example 10.10. Let f : R2 → R be given by the equation f(x, y) = x2 + y2 − 5. Then the point (x, y) =
(1, 2) satisfies the equation f(x, y) = 0. Both ∂f/∂x and ∂f/∂y are non-zero at (1, 2), so we can solve
this equation locally for either variable in terms of the other. In particular, we can solve for y in terms of x,
obtaining the function

y = g(x) = [5− x2]1/2.

99

Figure 3: Example 10.10

Figure 4: Example 10.11

Note that this solution is not unique in a neighbourhood of x = 1 unless we specify that g is continuous. For
instance, the function

h(x) = [5− x2]1/2, for x ≥ 1,

= −[5− x2]1/2, for x < 1.

satisfies the same conditions, but is not continuous.

Example 10.11. The point (x, y) = (
√

5, 0) also satisfies the equation f(x, y) = 0 for the function in example
10.10. The derivative ∂f/∂y vanishes at (

√
5, 0), so we do not expect to be able to solve for y in terms of x

near this point. And, in fact, there is no neighbourhood B of
√

5 on which we can solve for y in terms of x.

Example 10.12. Let f : R2 → R be given by the equation f(x, y) = x2− y3. Then (0, 0) is a solution of the
equation f(x, y) = 0. Because ∂f/∂y vanishes at (0, 0), we do not expect to be able to solve this equation
for y in terms of x near (0, 0). But in fact, we can; and furthermore, the solution is unique! However, the
function we obtain is not differentiable at x = 0.

Example 10.13. Let f : R2 → R be given by the equation f(x, y) = y2 − x4. Then (0, 0) is a solution of
the equation f(x, y) = 0. Because ∂f/∂y vanishes at (0, 0), we do not expect to be able to solve for y in
terms of x near (0, 0). In fact , however, we can do so, and we can do so in such a way that the resulting
function is differentiable. However, the solution is not unique. Now the point (1, 2) also satisfies the equation

100

Figure 5: Example 10.12

Figure 6: Example 10.13

f(x, y) = 0. Because ∂f/∂y is non-zero at (1, 2), one can solve this equation for y as a continuous function
of x in a neighbourhood of x = 1. One can in fact express y as a continuous function of x on a larger
neighbourhood than the one pictured, but if the neighbourhood is large enough that it contains 0, then the
solution is not unique on that larger neighbourhood.

10.4 Few Probable Questions

1. State and prove the inverse function theorem.

2. State and prove the implicit function theorem.

3. Let f : R3 → R2 be of class C1; write f in the form f(x, y1, y2). Assume that f(3,−1, 2) = 0 and

Df(3,−1, 2) =

[
1 2 1
1 −1 1

]
.

(a) Show that there exists a function g : B → R2 of class C1 defined on an open set B in R such that

f(x, g1(x), g2(x)) = 0, for x ∈ B, and g(3) = (−1, 2).

(b) Find Dg(3).

(c) Discuss the problem of solving the equation f(x, y1, y2) = 0 for an arbitrary pair of the unknowns
in terms of the third, near the point (3,−1, 2).

101

4. Let f : R5 → R2 be of class C1. Let a = (1, 2,−1, 3, 0). Suppose that f(a) = 0 and

Df(a) =

[
1 3 1 −1 2
0 0 1 2 −4

]
.

(a) Show that there exists a function g : B → R2 of class C1 defined on an open setB in R3 such that

f(x1, g1(x), g2(x), x2, x3) = 0, for x = (x1, x2, x3) ∈ B, and g(1, 3, 0) = (2,−1).

(b) Find Dg(1, 3, 0).

(c) Discuss the problem of solving the equation f(x) = 0 for an arbitrary pair of the unknowns in
terms of the others, near the point a.

102

UNIT 7 MAXIMA AND MINIMA

Structure Page No.

7.1 Introduction 5 1
Objectives

7.2 Local Maxima and Local Minima - 52
7.3 Lagrange Multiplier 59
7.4 Summary 62
7.5 Hints/Solutions 63
7.6 Appendix 65

7.1 INTRODUCTION

In this unit, we discuss maxima and minima for real-valued functions of vector
variables. You are already familiar with this concept from your undergraduate
Real Analysis and Calculus courses. There you have seen that these concepts
are studied locally also and they are called local maxima or local minima;
together they are called local extrema. The extension of these concepts to the
vector variable case helps to solve many real-life - problems arising in
economics, finance and other fields.

In Sec. 7.2, we shall discuss a necessary condition for a function to have local
extrema in terms its partial derivatives. Then we shall discuss a sufficient
condition for the existence of local extrema by using Taylor's theorem for real
valued functions of vector variables.

One of the main applications of the concept of maxima and minima is to solve
optimization problems arising in economics such as expenditure minimization
problem, profit maximization problem, utility maximization problem. Most of
these problems are concerned with maximizing and minimizing real-valued
n-variable function called objective function and there are some constraints also
attached with the problem which are again represented as a functional
relationship. Such problems can be solved by a method called Lagrange
Multiplier method. In Sec. 7.3, we discuss this method. We shall briefly explain
the utility of this method by giving a practical problem in optimization. The
understanding of the method requires some techniques in linear algebra such as
quadratic forms and the related matrix theory. You are advised to look into any
standard book on Linear algebra that are available at your programme study
centre or the Block 4 of IGNOU course on Linear Algebra with the Code
MTE-02 titled Inner Products and Quadrics which is also available at your
programme centre.

Objectives
After studying this unit, you should be able to

define critical points, stationary points, saddle points, local maxima and local
miniina;

state a necessary condition for functions to have local extrema and apply it;

state and prove the theorem known as "second derivative test" which gives a
sufficient condition for finding local maxima and minima;

 Unit 12

114
103

Calculus in Rn use Hessian for classifying local maxima and local minima; and

apply Lagrange's multiplier method for finding the stationary points when the
variables are subject to some cowtramts.

7.2 LOCAL MAXIMA AND LOCAL MINIMA

This section deals with the concept of maxima and minima (or extrema) for
real-valued functions of vector variables. You are already f@liar with this
concept for the one-variable case. In the case of one-variable you might have
studied that there are functions which do not have an extrema at a point with
repsect to the whole domain whereas the functions have extrema at that point
locally. These points are called local extrema. In this section we shall take up
the study of local extrema for functions from Rn to R.

Definition 1: Let f : E Rn + R be a function. A point a E E is called a
maximum point w.r.t. E, if f(x) 5 f(a) 'dx E E. A point a E E is called a
minimum point w.r.t. E if f(x) 2 f(a) 'dx E E.

If a point a E E is either maximum or minimum point w.r.t. E, then that point is
called an extreme point or point of extrema.

Now we define local extrema.

Definition 2: Let f : E 2 Rn + R be a function where E i s an open subset of
Rn. A point a E E is said to be a local maximum for f if there exists a
neighbourhood E, of a such that f(x) 5 f(a) for all x E E,.

A local minima is similarly defined.

Example 1: Let us consider the function given by

f(x,y) = (x + (y-3)2 -9. ,

We first note that f(-l,3) = -1.

This show that the function has a minimum at (- 1,3) and the minimum value is
f(-1,3) = -1. (See Fig. 1)

Fig. 1

* * * 115 104

Example 2: Let us consider the function Maxima and Minima

1
f(x, y) = - - sin(x2 + y2)

2
1 -

Here f('0,O) = -. Let us consider the neighbourhood U of (0,O) given by
2

7r
U = {(x, y) E R~ : x2 + y2 < -)

6

Then for any (x, y) E U, we have

and therefore
1 1

f(x, y) = - - sin(x2 + y2) < - = f(0,O).
2 2

Thus f(x, y) < f(0,O) for all (x, y) E U in the disc. Note that f(x, y) can be
1

greater than 5 for (x, y) @ U. Hence f has a local minimum at (0,O).
2

* * *
Example 3: Let us consider another function given by

f(x,y) = 1 + d m
If we look at the graph of the function given below, then we can see that f has a
ininimum at (0,O).

Fig. 2
* * *

If you closely look at the above examples, then you can notice that in the case
of Examples 1 and 2 we have

where (xo, yo) is a point of extrema. Whereas we notice that in the case of
Example 3, this is not the case as function does not have any first order partial
derivatives at (0,O).

Now we state a result which shows that if all the first order partial derivatives of
f : E c Rn -, R exists at a point a E E where E is an open set, then they
necessarily vanish at the points of extrema.

Theorem 1: Let f : E C_ Rn -, R be a function where E is an open subset of
Rn. Suppose that all the first order partial derivatives of the function f exists at a
point a E E. Then a necessary condition for the function to have a local

df
extremum at the point a is that -(a) = 0 for i = 1, . . . , n.

3x1 116 105

Calculus in R" Proof: Suppose that f has a local extrema at the point a = (al, a2, . . . , a,).

Let us consider the real-valued function 4 defined by

4(t) = f(t, a27 . . . , an).

Since a an extreme point off, we get that al is extreme point for 4. Then from
the one-variable case you know that

d f
bl(al) = -(al,a2, . . . , a,) = 0

8x1

d f
In this way we can show that -(al, . . . , a,) = 0 for each i = 1, . . . , n.

dxi

Hence the result.

Now we make the following definition:

Definition 3: Let f : E c Rn t R be a function. A point a E E is called a
critical point of f if either

i) the partial derivatives off do not exist at a, or

a f
ii) -(a) = O f o r i = 1, . . . , n.

dxi
The points for which the condition (ii) is satisfied are called stationary points.

You may recall that all stationary points of a function need not be its point of
local extrema. Such points are called saddle points. Note that a point a E E is
called a saddle point if every neighbourhood Ea of a contains points x E E such
that f(x) > a and other points y E Ea such that y < f(a).

Let us consider an example.
i

Example 4: Let us consider the function f : R2 t R given by

a f a f
Here we have - (0,O) = - (0,O) = 0. Thus, (0,O) is a stationary point. Now

dx 3~
the graph of the function f Sven below shows that (0,O) is not a point of local
extrema. Note that the function f assumes both positive and negative values in
every neighbourhood of (0,O). Therefore (0,O) is a saddle point for the function
f.

Fig. 3

117 106

Next we discuss a sufficient condition in terms of second order partial Maxima and Minima
derivatives to check whether a point is an local extremum point.

Theorem 2: (Second-derivative test for extrema): Let f : E -+ R be a
function define on an open set E c Rn. Assume that the second-order partial
derivatives Dijf exist in an n-ball B(a) and are continuous at a E Rn, where a is
a stationary point off. Let

where x = (xl, . . . , x,). Then

a) If Q(x) > 0 for all x # 0, f has a relative minimum at a .

b) If Q(x) < 0 for all x # 0, f has a relative maximum at a.

c) If Q(x) takes both positive and negative values, then f has a saddle point at
a.

Proof: We first apply Taylor's theorem to the function f. Taking m = 2 and
b = a + x in Taylor's theorem (see Sec. 5.4, Unit 5), we get that there exists a z
which lies on the line segment joining a and a + x such that

and

Since a is a stationary point, we have fl(a) = 0. Therefore Equation (2)
becomes

Therefore as a + x ranges over B(a), the algebraic sign of f (a + x) - f(a) is
determined by that of fll(z; x). We can write Equation (2) in the form

4

where

Substituting for fl1(z, x) and f1I(a; x), we get that

Since the second order partial derivatives off are continuous at a we get that
E(x) -+ 0 as x -, 0.

Now we rewrite Equation (3) in the form

118 107

Calculus in Rn where Q(x) is as given in Equation(1).

The function Q is continuous at each point x in Rn. Let S = {x : Jlxll = 1)
denotes thle boundary of the n-ballB(0; 1). (Recall that we defined the norm
function 1) (1 in Unit 5). If Q(x) > 0 for all x # 0, then Q(t) is positive on S.
Since S is compact, Q has a minimum on S. Let us call it m. Then m > 0.

Now Q(cx) = c2Q(x) for every real number c. Taking c = l/l(xlI where x # 0
we see that cx E S and hence c 2 ~ (x) L: m, so Q(x) > mJ(xJ1 2. Using this in
(Ao) we find

1
Since E(x) -t 0 as x -+ 0, there is a positive number r such that JE(x) 1 < -m

1
2

whenever 0 < IlxlJ < r. For such x we have 0 < (IxJJ21~(x)J < -m1)~11~, so
2

Therefore f has a relative minimum at a , which proves (a).

To prove (b) we use a similar argument, or apply part (a) to the function -f.

Finally, we prove (c). For each X > 0 we have, from (Ao).

Suppose Q(x) # 0 for some x. Since E(y) --t 0 as y --t 0, there is a positive r
such that

Therefore, for each such X the quantity X2 {Q(x) + 1 1 X I 1 2 ~ (X ~)) has the same
sign as Q(x). Therefore, if 0 < X < r, the 'difference f(a + Ax) - f(a) has the
same sign as Q(x). Hence, if Q(x) takes both positive and negative values, it
follows that f has a saddle point at a.

Note: A real-valued function Q defined on Rn by an equation of the type

where x = (xl, . . . , x,) and the ai, are real is called a quadratic form. The form
is called symmetric if aij = aji for all i and j and is called positive definite if
x # 0 implies Q(x) > 0, and negative definite if x # 0 implies Q(x) < 0.

You might be already familiar with quadratic forms from your undergraduate
Linear algebra course. (You can refer to IGNOU course MTE-02, Block 4)

In general, it is not easy to determine whether a quadratic form is positive or
negative definite. One criterion, involving determinants, can be described as
follows. Let A = determinant of the matrix [aij] and let Ak denote the
determinant of the k x k matrix obtained by deleting the last (n - k) rows and
columns of the matrix [aij]. 119 108

Maxima and Minima

Also, put A. = 1. From the theory of quadratic forms it is known that a
necessary and sufficient condition for a symmetric form to be positive definite is
that' the n + 1 numbers A,, A,, . . . , A, be positive. The form is negative definite
if and only if, the same n + 1 numbers are alternately positive and negative. The
quadratic form which appears in ~ ~ u a t i o n (1) is symmetric because the mixed
partials Dijf(a) and Dj,,f(a) are equal. Therefore, under the conditions of
Theorem 2, we see that f has a local minimum at a if the (n + 1) numbers
A,, A,, . . . , A, of the corresponding Jacobian matrix for f are all positive, and a
local maximum if these numbers are alternately positive and negative.

I We have the following result:

Theorem 3: Iff : E c Rn -+ R, E open in Rn, has continuous first and
second-order partial derivatives at a where a is a critical point of f, and Hf is the
Hessian off at a (refer Unit 5 where we have defined the Hessian of a function)
and Ak denote the determinant of k x k matrix obtained by deleting the last
(n - k) rows and column of the matrix. Then the following hold:

a) if AZk < 0 for some k then a is a saddle point off,

I b) if A, # 0 then

(bl) f has a local minimum at a if and only if Ak > 0 for all k,
(b2) f has a local maximum at a if and only if (-l)kAk > 0 for all k,

i c) if An = 0 we call it a degenerate case and the test cannot be applied.

The case n = 2 can be handled directly and gives the following criterion.

Theorem 4: Let f be a real-valued function with continuous second-order
partial derivatives at a stationary point a in R2. Let

I and let

Then we have:

a) If A > 0 and A > 0, f has a local minimum at a.

b) If A > 0 and A < 0, f has a local maximum at a.

c) If A < 0, f has a saddle point at a.
120 109

?
a Calculus in Rn

121 110

Maxima and Minima

7.3 LAGRANGE MULTIPLIER

Here we start with a practical situation.

Suppose a person consumes n commodities in nonnegative quantities. Then her
utility from consuming xi 2 0 units of commodity i (i = 1,. . . , n) is given by
u(xl, . . . , x,), where u : R; + R. Suppose she has an income of I 2 0, and
faces the price vector p = (pll . . . , p,), where pi 2 0 denotes the unit price of
the i-th commodity. Her budget set (i.e., the set of feasibk or affordable
consumption bundles, given her income I and the prices p) is denoted B(p, I),
and is given by

Then her objective is to maximize the level of her utility over the set of
affordable commodity bundles, i.e., to solve:

Maximize u(x) subject to x E B (p, I).

There are many situations like this where the values of a given function '
f : Rn + R are to be maximized or minimized over a given set E 5 Rn. Here
we shall discuss a method for solving such problems that is developed by the
mathematician Lagrange.

Let us consider another problem.

Suppose that f(xl y, z) represents the temperature at the point (x, y7 z) in space
and we ask for the maximum or minimum value of the temperature on a certain
surface. If the equation of the surface is given explicitly in the form z = h(x, y),
then in the expression for f(x, y, z) we can replace z by h(x, y) to obtain the
temperature on the surface as a function of x and y alone, say F(x, y) = f[x, y,
h(x, y)]. The problem is then reduced to finding the extreme value of E
However, in practice, certain difficulties arise. The equation of the surface
might be given in an implicit form, say g(x, y, z) = 0 and it may be impossible,
in practice, to solve this equation explicitly for z in terms of x and y, or even for
x or y in terms of the remaining variables. The problem might be further
complicated by asking for the extreme values of the temperature at those points
which lie on a given curve in space. Such a curve can be the intersection of two
surfaces, say gl (x, y, z) = 0 and g2(x, y, z) = 0. If we could solve these two
equations simultaneously, say for x and y in terms of z, then we could introduce
these expressions into f and obtain a new function of z alone, whose extrema we
would then seek. In general, however, this procedure cannot be carried out and
a more practicable method need to be sought. An elegant and useful method for
attacking such problems was developed by Lagrange. The validity of the
method is established by the Implicit Function Theorem which we described in
Unit 6.

Lagrange's method provides a necessary condition for a point to be an extreme
point which we shall explain now.

Let f : E C Rn + R, E 2 Rn an open set, be a function whose extreme values
are sought when the variables are restricted by a certain number of side
conditions, say gl(xl, . . . , x,) = 0, . . . , g,(xl, . . . , x,) = 0.

122 111

k Calculus in Rn We first form the linear combination

where XI , . . . , Am are m constants. We then differentiate # with respect to each
coordinate and consider the following system of n + m equations:

Lagrange, by his method, proved that if the point (xl, x2, . . . , x,) is a point of
extrema for f, then it will also satisfy this system of (n + m) equations. In
practice we solve the "n + m" unknowns XI, A2, . . . ', A, and xl! x2, . . . , x,. The
point (xl, x2, . . . , xn) so obtained is a stationary point. According to the
Lagrange's theorem this point can then be tested for maximum or minimum
point by the already known methods.

The numbers XI, X2, . . . , Am are introduced only to help to solve the system for
xl, x2, . . . , xn7 and they are called Lagrange's multipliers. One multiplier is
introduced for each side condition. The function L in Equation (6) is called the
Lagrangian function. Equations (7) and (8) are called Lagrangian Equations.

Now we state the Lagrange's theorem, the proof of which involves implicit
function theorem. We omit the proof here.

Theorem 5: Let f : E c Rn -, R, E an open set in Rn7 be such that the
partial derivatives of f exists and are continuous on E. Let gl , . . . , g, be m
real-valued functions defined on E such that partial derivatives of gi exists and
are continuous on E for i = 1, . . . , m. Let us assume that m < n. Let Xo be that
subset of E on which each gi vanishes for i = 1, . . . , m, that is,

XO = {x E E,gi(x) = Ofori = 1, . .. ,m).

Assume that xo E Xo and assume that there exists a ball B(xo) in Rn such that
f(x) _< f(xo) for all x in & n B(xo) or such that f(x) 2 f(xo) for all x in
Xo n B(xo). Assume also that the m-rowed determinant det[D,gi(xo)] # 0.
Then there exist m real numbers XI, . . . , A, such that they satisfy following n
equations:

af m
agk - (~ , ,) - ~ h ~ - (x ~) = O (i=112 , . . . , n).

axi axi k=l

So.the solution of an extremum problem by Lagrange's method involves the
following step:

Step 1: Form the Lagrangian function given in Equation (6)

Step 2: Form the Lagrangian equations given in Equations (7) and (8). The
solution thus obtained is a stationary point.

Step 3: Check the stationary point for extrema by the methods already
discussed in Sec. 7.2.

123 112

r

I

I Here we state a sufficient condition for checking extrema when we have a single
constraint. In this case the Equation 6 reduces to

L(xl,. . . ,xn) =f(xl , . . ,xn) - Ag(x1,. a . ,xn). (10)

To check that the stationary point obtained by Lagrange method is local
b

maximum or local minimum, we need to compute the value of n - 1 principal
minors of the following determinant

If the signs of minors A3, A4, A5 are alternatively positive and negative, then
extreme point is a local maximum. But if sign of all minors A3, A4, A5 are
negative, the extreme point is a local minimum.

Let us see an example.

Example 6: Suppose we want to find the extreme values of the function

Z = 2 ~ : + X: + 3 ~ ; + 10x1 + 8x2 + 6x3 - 100

subject to the constraint

x1+x2+x3=20, Xl,X2,X320

Solution: Here n = 3 and m = 1. Let g(xl, x2, x3) = XI + x2 + x3 - 20.
Lagrangian function can be formulated as:

L(x, A) = 2 ~ : + X; + 3 ~ : + 10x1 + 8x2 + 6x3 - 100 - A(xl + ~2 + xg - 20)

To obtain the stationary points, we solve the following system of equations.

dL dL
-=4x1+1O- l = O ; - = 2 x 2 + 8 - A = O
hl 3x2

dL
-- - 6x3 + 6 - A = 0; g(x1,x2,x3) = X I +x2 +xg - 20 = 0
&3

Putting the value of xl , x2 and x3 in the last equation g(xl , xg, x3) = 0, and
solving for A, we get A = 30. Substituting the value of A in the other three
equations, we get the stationary point: (xl, x2, x3) = 5,11,4.

To prove the sufficient condition whether the stationary point gives maximum
or minimum value of the function we evaluate 2 principal minors as illustrated

wima and Minima

124 113

Calculus in Rn in Sec. 7.2.

a2f a2g -- X-
ax; ax;

Since sign of A3 and A4 are alternative, the stationary point:
(XI, XZ, x3) = (5,11,4) is a local maximum. At this point the value of the
function is, Z = 281.

In the appendix we have given an illustrative example where we have explained
how Lagrange Multiplier method can be used for modelling problem in
economics.

You can try this exercise now.

E2) Find and clarify the extreme values of the following functions subject to
the constraints given along side.

i) f(xl, x2, x3) = X: + X; + xi subject to the constraint
4x1 f xi 2x3 = 14, X i , X2, X3 2 0.

ii) f(xl, x2) = 4x1 + 6x2 - 2x: - 2 ~ ~ x 2 - 2x; subject to the constraint
X1 +2x2 = 2,x1,x2 2 0.

- - - - - - - - - - -

With this we come to an end of this unit and to this block.

7.4 SUMMARY

In this unit, we have covered the following points for real-valued functions of
vector-variable:

1. We have defined
i) critical points and stationary points

Let f : E c Rn -+ R , E an open set in Rn, be a function. A point
a E E is called a critical point off if either .

i) the partial derivatives of f do not exist at a , or

af
ii) -(a) = O for all i such that 1 < i < n.

axi
The points for which the condition (ii) is satisfied are called
stationary points.

125 114

ii) saddle point:
A point a E E is called a saddle point if every neighbourhood E, of a
contains points x E E such that f(x) > a and other points y E E, such
that y < f(a).

iii) local maxima and local minima
Let f : E 2 Rn + R be a function where E is an open subset of Rn. A
pqint a E E is said to be a local maximum for f if there exists a
neighbourhood E, of a such that f(x) 5 f(a) for all x E E.
A local minima is similarly defined.

2. We have established that a necessary condition for a function to have local
extrema is Vf = 0 provide Vf exists.

3. We have derived a test called second derivative test for finding local
extrema.
(Second-derivative test for extrema). Let f : E -+ R be a function define
on an open set E c Rn. Assume that the second-order partial derivatives
Dijf exist in an n-ball B(a) and are continuous at a E Rn, where a is a
stationary point off. Let

where x = (xl , . . . , x,). Then
a) If Q(x) > 0 for all x # 0, f has a relative minimum at a .

b) If Q(x) < 0 for all x # 0, f has a relative maximum at a .

c) If Q(x) takes both positive and negative values, then f has a saddle
point at a.

4. We have explained a method for classifying local maxima and local
minima using the Hessian.

5 . We have explained Lagrange's Multiplier Method.

7.5 HINTSISOLUTIONS

El) Vf(x,y,z) = (2xy - 2,x2 + 2yz,y2 + 22)

and the critical points satisfy the equations

2xy - 2 = 0, x2 + 2yz = 0 and y2 + 22 = 0.

Substituting z = -y2/2 into the second equation implies y3 = x2. Hence,
the first equation shows y5/2 = 1 and we have y = 1 and z = -112. From
xy = - 1 we get x = 1 and (1, 1, - 112) is the only critical point of f. We
have

and

M d a and Minima

63
126 115

Calculus in Rn Since det(2) > 0 and I

the point (1,1, - 112) is a saddle point of f. 1
i) Hint: The extreme point is (zo, - - 270, - 275). It is a minimum and the

857
minimum value is -.

100

ii) Hint: The extreme point is (i, :) . It is a maximum point and the

value is 4.166. I

127 116

Unit 13

Course Structure

• Integration on Rn: Integrals of f : A→ R, where A is a closed rectangle in Rn

• Conditions of integrability

11 Introduction

The multiple integral is a definite integral of a function of more than one real variable, for example, f(x, y) or
f(x, y, z). Integrals of a function of two variables over a region in R2 are called double integrals, and integrals
of a function of three variables over a region of R3 are called triple integrals.

Just as the definite integral of a positive function of one variable represents the area of the region between
the graph of the function and the x-axis, the double integral of a positive function of two variables represents
the volume of the region between the surface defined by the function (on the three-dimensional Cartesian
plane where z = f(x, y) and the plane which contains its domain. If there are more variables, a multiple
integral will yield hypervolumes of multidimensional functions.

Objectives

After reading this unit, you will be able to

• define the partition of a rectangle in Rn

• define the upper and lower sums of a bounded function defined on a closed rectangle and their relation-
ships with respect to refinements

• define the integral of a bounded function defined on a closed rectangle, if it exists

• learn a necessary and sufficient condition for the existence of the integral of a bounded function over a
closed rectangle

• apply the theorems in various problems

11.1 Integral Over a Closed Rectangle

We begin by defining the volume of a rectangle. Let

Q = [a1, b1]× [a2, b2]× · · · × [an, bn]

be a rectangle in Rn. Each of the intervals [ai, bi] is called the component interval of Q. The maximum of the
numbers b1 − a1, . . . , bn − an is called the width of Q . Their product

v(Q) = (b1 − a1)(b2 − a2) . . . (bn − an)

is called the volume of Q.
In the case n = 1 , the volume and the width of the (1-dimensional) rectangle [a, b] are the same, namely,

the number b− a. This number is also called the length of [a, b].

117

Definition 11.1. Given a closed interval [a, b] of R, a partition of [a, b] is a finite collection P of points of
[a, b] that includes the points a and b. We usually index the elements of P in increasing order, for notational
convenience, as

a = t0 < t1 < · · · < tk = b;

each of the intervals [ti−1, ti], for i = 1, . . . , k, is called a subinterval determined by P , of the interval [a, b].
More generally, given a rectangle

Q = [a1, b1]× [a2, b2]× · · · × [an, bn]

in Rn, a partition P of Q is an n-tuple (P1, . . . , Pn) such that Pj is a partition of [aj , bj] for each j. If for each
j, Ij is one of the subintervals determined by Pj of the interval [aj , bj], then the rectangle

R = I1 × · · · × In

is called a subrectangle determined by P , of the rectangle Q. The maximum width of these subrectangles is
called the mesh of P .

Definition 11.2. Let Q be a rectangle in Rn and let f : Q → R be a bounded function. Let P be a partition
of Q. For each subrectangle R determined by P , let

mR(f) = inf{f(x) : x ∈ R}, MR(f) = sup{f(x) : x ∈ R}.

We define the lower sum and the upper sum, respectively, of f , determined by P , by the equations

L(f, P) =
∑
R

mR(f).v(R),

U(f, P) =
∑
R

MR(f).v(R).

where the summations extend over all subrectangles R determined by P .

Let P = (P1, . . . , Pn) be a partition of the rectangle Q. If P ′′ partition of Q obtained from P by adjoining
additional points to some or all of the partitions P1, . . . , Pn, then P” is called a refinement of P . Given two
partitions P and P ′ = (P

′
1, . . . , P

′
n) of Q, the partition

P ′′ = (P1 ∪ P
′
1, . . . , Pn ∪ P

′
n)

is a refinement of both P and P ′; it is called their common refinement.
Passing from P to a refinement of P of course affects lower sums and upper sums; in fact, it tends to

increase the lower sums and decrease the upper sums as we have seen in the case of one-dimensional upper
and lower sums. That is the substance of the following lemma:

Lemma 11.3. Let P be a partition of the rectangle Q and let f : Q → R be a bounded function. If P ′′ is a
refinement of P , then

L(f, P) ≤ L(f, P ′′) and U(f, P ′′) ≤ U(f, P).

Proof. Let Q be the rectangle
Q = [a1, b1]× [a2, b2]× · · · × [an, bn]

It suffices to prove the lemma when P ′′ is obtained by adjoining a single additional point to the partition of
one of the component intervals of Q. Suppose, to be definite, that P is the partition (P1, . . . , Pn) and that P ′′

is obtained by adjoining the point q to the partition P1. Further, suppose that P1 consists of the points

a1 = t0 < t1 < · · · < tk = b1

118

and that q lies interior to the subinterval [ti−1, ti]. We first compare the lower sums L(f, P) and L(f, P ′′).
Most of the subrectangles determined by P are also subrectangles determined by P ′′. An exception occurs for
a subrectangle determined by P of the form

RS = [ti−1, ti]× S

where S is one of the subrectangles of [a2, b2] × · · · × [an, bn] determined by (P2, . . . , Pn). The term in-
volving the subrectangle RS disappears from the lower sum and is replaced by the terms involving the two
subrectangles

R
′
S = [ti−1, q]× S and R

′′
S = [q, ti]× S,

which are determined by P ′′.
Now since mRS

(f) ≤ f(x) for each x ∈ R′S and for each x ∈ R′′S , it follows that

mRS
(f) ≤ m

R
′
S
(f) and mRS

(f) ≤ m
R
′′
S
(f).

Because v(RS) = v(R
′
S) + v(R

′′
S) by direct computation , we have

mRS
(f)v(RS) ≤ m

R
′
S
(f)v(R

′
S) +m

R
′′
S
(f)v(R

′′
S).

Since this inequality holds for each subrectangle of the form RS , it follows that

L(f, P) ≤ L(f, P ′′).

A similar argument applies to show that U(f, P ′′) ≤ U(f, P).

Now we explore the relation between upper sums and lower sums. We have the following result:

Lemma 11.4. Let Q be a rectangle and f : Q→ R be a bounded function. If P and P ′ are any two partitions
of Q, then

L(f, P) ≤ U(f, P ′).

Proof. In the case where P = P ′ , the result is obvious: For any subrectangle R determined by P , we have
mR(f) ≤MR(f). Multiplying by v(R) and summing gives the desired inequality.

119

Figure 7: For one-dimensional f in example 11.6

In general, given partitions P and P ′ of Q , let P ′′ be their common refinement. Using the preceding
lemma, we conclude that

L(f, P) ≤ L(f, P ′′) ≤ U(f, P ′′) ≤ U(f, P ′).

We are now in a position to define the integral.

Definition 11.5. Let Q be a rectangle and f : Q→ R be a bounded function. As P ranges over all partitions
of Q, define ∫

Q
f = sup

P
{L(f, P)} and

∫
Q
f = inf

P
{U(f, P)}.

These numbers are called the lower integral and upper integral, respectively, of f over Q. They exist because
the numbers L(f, P) are bounded above by U(f, P ′) where P ′ is any fixed partition of Q; and the numbers
U(f, P) are bounded below by L(f, P ′). If the upper and lower integrals of f over Q are equal, we say that
f is integrable over Q , and we define the integral of f over Q as the common value of the upper and lower
integrals. We denote the integral of f over Q by either of the symbols∫

Q
f or

∫
x∈Q

f(x).

Example 11.6. Let f : [a, b] → R be a non-negative bounded function. If P is a partition of I = [a, b], then
L(f, P) equals the total area of a bunch of rectangles inscribed in the region between the graph of I and the
x-axis, and U(f, P) equals the total area of a bunch of rectangles circumscribed about this region as shown in
the figure.

The lower integral represents the so-called ”inner area” of this region, computed by approximating the
region by inscribed rectangles, while the upper integral represents the so-called ”outer area,” computed by
approximating the region by circumscribed rectangles. If the ”inner” and ”outer” areas are equal, then f is
integrable.

Similarly, if Q is a rectangle in R2 and f : Q → R is non-negative and bounded, one can picture L(f, P)
as the total volume of a bunch of boxes inscribed in the region between the graph of f and the xy-plane, and
U(f, P) as the total volume of a bunch of boxes circumscribed about this region.

120

Figure 8: For two-dimensional f in example 11.6

Example 11.7. Let I = [0, 1]. Let f : I → R be defined by setting

f(x) = 0; if x is rational

= 1; if x is irrational.

We show that f is not integrable over I .
Let P be a partition of f . If R is any subinterval determined by P , then mR(f) = 0 and MR(f) = 1, since

R contains both rational and irrational numbers. Then

L(f, P) =
∑
R

0.v(R) = 0, and U(f, P) =
∑
R

1.v(R) = 1.

Since P is arbitrary, it follows that the lower integral of f over I equals 0, and the upper integral equals 1 .
Thus f is not integrable over I .

Theorem 11.8. (The Riemann condition) . Let Q be a rectangle and f : Q → R is a bounded function.
Then ∫

Q
f ≤

∫
Q
f ;

equality holds if and only if given ε > 0, there exists a partition P of Q for which

U(f, P)− L(f, P) < ε.

Proof. Let P ′ be a fixed partition of Q. It follows from the fact that L(f, P) ≤ U(f, P) for every partition P
of Q, that ∫

Q
f ≤ U(f, P ′).

Now we use the fact that P ′ is arbitrary to conclude that∫
Q
f ≤

∫
Q
f.

121

Suppose now that the upper and lower integrals are equal and let ε > 0 be arbitrary. So, there exist a partitions
P and P ′ so that ∫

Q
f − ε

2
< L(f, P) ≤

∫
Q
f =

∫
Q
f.

and ∫
Q
f =

∫
Q
f ≤ U(f, P ′) <

∫
Q
f +

ε

2
.

Let P ′′ = P ∪ P ′. Then both the above inequalities simultaneously hold for P ′′. Thus, we get∫
Q
f − ε

2
< L(f, P) ≤ L(f, P ′′) ≤

∫
Q
f ≤ U(f, P ′′) ≤ U(f, P) <

∫
Q
f +

ε

2
,

since P ′′ is the common refinement of P and P ′. Thus, we get

U(f, P ′′)− L(f, P ′′) < ε.

Conversely, suppose the upper and lower integrals are not equal. Let

ε =

∫
Q
f −

∫
Q
f > 0.

Let P be any partition of Q. Then

L(f, P) ≤
∫
Q
f <

∫
Q
f ≤ U(f, P);

which implies that

U(f, P)− L(f, P) ≤
∫
Q
f −

∫
Q
f = ε

and the Riemann condition does not hold.

Here is an easy application of this theorem.

Theorem 11.9. Every constant function f(x) = c is integrable. Indeed, if Q is a rectangle and if P is a
partition of Q, then ∫

Q
c = c.v(Q) = c

∑
R

v(R),

where the summation extends over all subrectangles determined by P .

Proof. If R is a subrectangle determined by P , then mR(f) = c = MR(f). It follows that

L(f, P) = c
∑
R

v(R) = U(f, P),

so the Riemann condition holds trivially. Thus
∫
Q c exists; since it lies between L(f, P) and U(f, P), it must

be equal to c
∑
R

v(R).

This result holds for any partition P . In particular, if P is the trivial partition whose only subrectangle is Q
itself, then ∫

Q
c = c.v(Q).

122

Corollary 11.10. LetQ be a rectangle in Rn. Let {Q1, . . . , Qk} be a finite collection of rectangles that covers
Q. Then

v(Q) ≤
k∑
i=1

v(Qi).

Proof. Choose a rectangle Q′ containing all the rectangles Q1, . . . , Qk. Use the end points of the compo-
nent intervals of the rectangles Q,Q1, . . . , Qk to define a partition P of Q′. Then each of the rectangles
Q,Q1, . . . , Qk is a union of sub rectangles determined by P .

From the preceding theorem, we conclude that

v(Q) =
∑
R⊂Q

v(R),

where the summation extends over all sub rectangles contained in Q. Because each such subrectangle R is
contained in at least one of the rectangles Q1, . . . , Qk, we have

∑
R⊂Q

v(R) ≤
k∑
i=1

∑
R⊂Qi

v(R).

By the preceding theorem, we get ∑
R⊂Qi

v(R) = v(Qi),

and the corollary follows.

In the case of n = 1, Q is a closed interval [a, b] in R and we denote the integral of f over [a, b] by one of
the symbols ∫ b

a
f or

∫ x=b

x=a
f(x)

instead of
∫
[a,b] f .

Theorem 11.11. Let Q be a rectangle and f, g : Q → R be bounded functions such that f(x) ≤ g(x) for
x ∈ Q. Then ∫

Q
f ≤

∫
Q
g and

∫
Q
f ≤

∫
Q
g.

123

Proof. Left as exercise.

11.2 Few Probable Questions

1. Suppose f : Q→ R is continuous. Show that f is integrable over Q. Is the converse true? Justify.

2. State and prove the necessary and sufficient condition for integrability of a bounded function f , defined
on a closed rectangle Q.

3. Show that any constant function f defined on a closed rectangle Q is always integrable.

4. Show that the function f : [a, b]→ R is not integrable over [a, b] where

f(x) = 0; if x is rational

= 1; if x is irrational

5. Let I = [0, 1]2 = [0, 1]× [0, 1] and f : I → R be defined by

f(x) = 0; if y 6= x

= 1; if y = x.

Show that f is integrable over I .

6. Let f : R→ R be defined as

f(x) =
1

q
; if x =

p

q
, where p & q are positive integers having no common factor

= 0; otherwise

Show that f is integrable over [0, 1].

124

Unit 14

Course Structure

• Concept of Jordan measurability of a set in Rn

• Some more conditions of integrability of a bounded function on a closed rectangle

• Integrals of type f : C → R, where C ⊂ Rn is not a rectangle

12 Introduction

Integration and measure zero sets are related in a very crucial way. We know that, in the one-dimensional
case, a function f defined on a closed interval [a, b] is integrable (due to Riemann) if and only if the set of
discontinuities of f is of measure zero. We will try to find an analogous theorem for the multivariable case.
First, we will define measure zero sets in Rn and then will move on to derive the necessary and sufficient
condition of integrability of a bounded function f defined on a closed rectangle in connection to the measure
zero sets.

Also, we so far have dealt with the integration of a bounded function f defined on a closed rectangle. We
will see that, with the help of the closed rectangles we can define integrability of a bounded function, on any
set, say C in Rn. Let’s explore!

Objectives

After reading this unit, you will be able to

• define measure zero sets in Rn

• learn the characteristics of measure zero sets and see certain examples

• learn some more conditions of integrability of a bounded function f , defined on a closed rectangle Q in
Rn

• apply them in problems

• define the integration of a bounded function on any set C in Rn, other than a closed rectangle

• learn certain related properties

12.1 Measure zero sets in Rn

Definition 12.1. Let A be a subset of Rn. We say that A has measure zero in Rn if for every ε > 0, there is a
cover Q1, Q2, . . . of A by countably many closed rectangles such that

∞∑
i=1

v(Qi) < ε.

If this inequality holds, we often say that the total volume of the rectangles Q1, Q2, . . . is less than ε.

125

A set with only finitely many points clearly has measure 0. If A has infinitely many points which can be
arranged in a sequence a1, a2, . . ., thenA also has measure 0, since for ε > 0, we can chooseQi to be a closed
rectangle containing ai with

v(Qi) <
ε

2i
.

Then,
∞∑
i=1

v(Qi) <
∞∑
i=1

ε

2i
= ε.

We derive some properties of sets of measure zero.

Theorem 12.2. 1. If B ⊂ A and A has measure zero in Rn, then so does B.

2. Let A be the union of the countable collection of sets A1, A2, . . . If each Ai has measure zero in Rn,
then so does A.

3. A set A has measure zero in Rn if and only if for every ε > 0, there is a countable covering of A by
open rectangles IntQ1, IntQ2, . . . such that

∞∑
i=1

v(Qi) < ε.

4. If Q is a rectangle in Rn, then BdQ has measure zero in Rn but Q does not (BdQ is the boundary of Q).

Proof. 1. Let ε > 0. Since A is measure zero set, so for the given ε, there is a cover Q1, Q2, . . . of A by
countably many closed rectangles such that

∞∑
i=1

v(Qi) < ε.

Since B ⊂ A, so B satisfies the definition of zero measure in Rn.

2. To prove 2,we cover the set Aj , for each j, by countably many rectangles

Q1j , Q2j , . . .

of total volume less than ε/2j . Then the collection of rectangles {Qij} is countable, that covers A,
having total volume

∞∑
j=1

∞∑
i=1

v(Qij) <
∞∑
j=1

ε

2j
= ε.

Hence A is of measure zero.

3. If the open rectangles IntQ1, IntQ2, . . . cover A, then so do the rectangles Q1, Q2, . . . Thus the given
condition implies that A has measure zero. Conversely, suppose A has measure zero. Cover A by
rectangles Q

′
1, Q

′
2, . . . of total volume less than ε/2. For each i, choose a rectangle Qi such that

Q
′
i ⊂ Int Qi and v(Qi) ≤ 2v(Q

′
i).

This is possible because v(Q) is a continuous function of the end points of the component intervals of
Q. Then the open rectangles IntQ1, IntQ2, . . . cover A, and

∑
v(Qi) < ε.

126

4. Let
Q = [a1, b1]× · · · × [an, bn].

The subset of Q consisting of those points x of Q for which xi = ai is called one of the ith faces of Q.
The other ith face consists of those x for which xi = bi. Each face of Q has measure zero in Rn; for
instance, the face for which xi = ai can be covered by the single rectangle

[a1, b1]× · · · × [ai, ai + δ]× · · · × [an, bn],

whose volume may be made as small as desired by taking δ small. Now BdQ is the union of the faces
of Q, which are finite in number. Therefore BdQ has measure zero in Rn.

Now we suppose Q has measure zero in Rn, and derive a contradiction . Set ε = v(Q). By 3, we can
cover Q by open rectangles IntQ1, IntQ2, . . . with

∑
v(Qi) < ε. Because Q is compact, we can cover

Q by finitely many of these open sets, say IntQ1, IntQ2, . . . IntQk. But

k∑
i=1

v(Qi) < ε,

which is a contradiction to a previous corollary we read in the previous unit.

By the third point of the above theorem, we can easily say that open rectangles may be used instead of
closed rectangles in the definition of measure zero sets.

Definition 12.3. Let A be a subset of Rn. We say that A has measure zero in Rn if for every ε > 0, there is a
cover Q1, Q2, . . . Qn of A by finitely many closed rectangles such that

n∑
i=1

v(Qi) < ε.

If A has content 0, then A clearly has measure 0. Again, open rectangles could be used instead of closed
rectangles in the definition.

Theorem 12.4. If a < b, then [a, b] ⊂ R does not have content 0. In fact, if Q1, Q2, . . . Qn is a finite cover of
[a, b] by closed intervals, then

n∑
i=1

v(Qi) ≥ b− a.

Proof. Clearly we can assume that each Qi ⊂ [a, b]. Let a = t0 < t1 < t2 < · · · < tk = b be all endpoints
of all Qi. Then, each v(Qi) is the sum of certain tj − tj−1. Moreover, each [tj−1, tj] lies in at least one Qi
(namely, any one which contains an interior point of [tj−1, tj]), so that

n∑
i=1

v(Qi) ≥
k∑
j=1

(tj − tj−1) = b− a.

If a < b, it is also true that [a, b] does not have measure 0. This follows from

Theorem 12.5. If A is compact and has measure 0, then A has content 0.

127

Proof. Let ε > 0. Since A has measure 0, there is a cover {Q1, Q2, . . .} of A by open rectangles such that

∞∑
i=1

v(Qi) < ε.

Since A is compact, a finite subcover {Q1, Q2, . . . Qn} of A for which

n∑
i=1

v(Qi) < ε.

The conclusion of the above theorem is false if A is not compact. For example, let A be the set of rational
numbers between 0 and 1; then A has measure 0. Suppose, however, that {[a1, b1], . . . , [an, bn]} covers A.
Then A is contained in the closed set [a1, b1]∪· · ·∪ [an, bn] , and hence [0, 1] ⊂ [a1, b1]∪· · ·∪ [an, bn]. Thus,
we get

n∑
i=1

(bi − ai) ≥ 1

for any such cover, and consequently A does not have content 0.
Recall that o(f, x) denotes the oscillation of f at x.

Lemma 12.6. Let Q be a closed rectangle and let f : Q→ R be a bounded function such that o(f, x) < ε for
all x ∈ Q. Then there is a partition P of Q such that U(f, P)− L(f, P) < ε.v(Q).

Proof. For each x ∈ A, there is a closed rectangle Qx containing x in its interior, such that MQx(f) −
mQx(f) < ε. Since Q is compact, there exists a finite number Qx1 , . . . , Qxn of the sets Qx that cover Q. Let
P be a partition forQ such that each subrectangle S of P is contained in someQxi . ThenMS(f)−mS(f) < ε
for each subrectangle S of P , so that

U(f, P)− L(f, P) =
∑
S

[MS(f)−mS(f)].v(S) < ε.v(A).

Theorem 12.7. Let Q be a closed rectangle and let f : Q→ R be a bounded function. Let B = {x : f
is not continuous at x}. Then f is integrable if and only if B is a set of measure 0.

Proof. Suppose first that B has measure 0. Let ε > 0 and let Bε = {x : o(f, x) ≥ ε}. Then Bε ⊂ B, so that
Bε has measure zero. SinceBε is compact, it has content zero. Thus, there exist a finite collectionQ1, . . . , Qn

of closed rectangles, whose interiors cover Bε, such that
n∑
i=1

v(Qi) < ε. Let P be a partition of Q such that

every subrectangle S of P is in one of two groups

1. S1, which consists of subrectangles S, such that S ⊂ Qi for some i.

2. S2, which consists of subrectangles S with S ∩Bε = ∅.

Let |f(x)| < M for x ∈ Q. Then MS(f)−mS(f) < 2M for every S. Hence

∑
S⊂S

[MS(f)−mS(f)].v(S) < 2M
n∑
i=1

v(Qi) < 2Mε.

128

Now, if S ∈ S2, then o(f, x) < ε for x ∈ S. The previous lemma implies that there is a refinement P ′ of P
such that ∑

S′⊂S
[MS′(f)−mS′(f)].v(S′) < ε.v(S)

for S ∈ S2. Then

U(f, P ′)− L(f, P ′) =
∑

S′⊂S∈S1

[MS′(f)−mS′(f)].v(S′) +
∑

S′⊂S∈S2

[MS′(f)−mS′(f)].v(S′)

< 2Mε+
∑
S∈S2

ε.v(S)

≤ 2Mε+ ε.v(Q).

Since M and v(Q) are fixed, this shows that we can find a partition P ′ with U(f, P ′)− L(f, P ′) as small as
desired. Thus f is integrable.

Suppose, conversely, that f is integrable. Since B = B1 ∪B1/2 ∪B1/3 ∪ · · · , it suffices to prove that each
B1/n has measure 0. In fact we will show that each B1/n has content zero (since B1/n is compact, this is
actually equivalent).

Let ε > 0, and let P be a partition of Q such that

U(f, P)− L(f, P) < ε/n.

Let S be the collection of subrectangles S of P which intersect B1/n. Then S is a cover of B1/n. Now, if
S ∈ S, then MS(f)−mS(f) ≥ 1/n. Thus

1

n

∑
S∈S

v(S) ≤
∑
S∈S

[MS(f)−mS(f)].v(S)

≤
∑
S

[MS(f)−mS(f)].v(S)

<
ε

n
,

and so ∑
S∈S

v(S) < ε.

Exercise 12.8. 1. Show that any finite set in Rn has measure zero.

12.2 Integrals of functions on sets other than rectangles

We have thus far dealt only with the integrals of functions over rectangles. Integrals over other sets are easily
reduced to this type. If C ∈ Rn, the characteristic function χC of C is defined by

χC(x) = 0, c 6∈ C,
= 1, x ∈ C.

If C ⊂ Q for some closed rectangle Q and f : A→ R bounded, then
∫
C f is defined as

∫
A f.χC is integrable.

This certainly occurs if f and χC are integrable.

129

Theorem 12.9. The function χC : Q → R i8 integrable if and only if the boundary of C has measure zero
(and hence content zero).

Proof. If x is in the interior of C, then there is an open rectangle U with x ∈ U ⊂ C. Thus, χC = 1 on U
and χC is clearly continuous at x. Similarly, if x is in the exterior of C, there is an open rectangle U with
x ∈ U ⊂ Rn\C. Hence χC = 0 on U and χC is continuous at x. Finally, if x is in the boundary ofC, then for
every open rectangle U containing x, there is y1 ∈ U ∩C, so that χC(y1) = 1 and there is y2 ∈ U ∩ (Rn \C),
so that χC(y2) = 0. Hence χC is not continuous at x. Thus, {x : χC is not continuous at x} =boundary of
C and the result follows by the previous theorem.

A bounded set C whose boundary has measure 0 is called Jordan-measurable. The integral
∫
C 1 is called

the n-dimensional content of C, or the n-dimensional volume of C. Naturally one-dimensional volume is
often called length, and two-dimensional volume, area.

12.3 Few Probable Questions

1. Define measure zero set in Rn. Show that a countable set in Rn has measure zero.

2. Deduce a necessary and sufficient condition for a bounded function defined on a closed rectangle to be
integrable.

3. Define content zero sets. Show that a content zero set is of measure zero.

4. Deduce a necessary and sufficient condition for a bounded function defined on a bounded set C of Rn
to be integrable.

130

56 Calculus on M anijolds

A bounded set C whose boundary has measure 0 is called
Jordan-measurable. The integral J c1 is called the
(n-dimensional) couteut of C, or the (n-dimensional) volume
of C. Naturally one-dimensional volume is often called
length, and two-dimensional volume, area.

Problem 3-11 shows that even an open set C may not be
Jordan-measurable, so that J cf is not necessarily defined even
if C is open and f is continuous. This unhappy state of affairs
will be rectified soon.

Problems. 3-14. Show that if _'.g: A --> R are integrable, so is
!·g.

3-15. Show that if C has content 0, then C C A for some closed rectangle
A and Cis Jordan-measurable and J A xc = 0.

3-16. Give an example of a bounded set C of measure 0 such that J A xc
does not exist.

3-17. If C is a bounded set of measure 0 and J A xc exists, show that
J A xc = 0. Hint: Show that L(f,P) = 0 for all partitions P.
Use Problem 3-8.

3-18. Iff: A --> R is non-negative and J A! = 0, show that I x: f(x) ¢ 0 l
has measure 0. Hint: Prove that {x: f(x) > 1/nl has content 0.

3-19. Let U be the open set of Problem 3-11. Show 'that iff= xu
except on a set of measure 0, then f is not integrable on [0,1).

3-20. Show that an increasing function f: [a,b) --> R is integrable on
[a,bJ.

3-21. If A is a closed rectangle, show that C C A is Jordan-measurable
if and only if for every e > 0 there is a partition P of A such that
~seg,v(S) - ~seg,v(S) < e, where S1 consists of all subrectan-
gles intersecting C and S2 all subrectangles contained in C.

3-22. * If A is a Jordan-measurable set and e > 0, show that there is a
compact Jordan-measurable set C C A such that J A-C 1 < e.

FUBINI'S THEOREM

The problem of calculating integrals is solved, in some sense,
by Theorem 3-10, which reduces the computation of integrals
over a closed rectangle in Rn, n > 1, to the computation of
integrals over closed intervals in R. Of sufficient importance
to deserve a special designation, this theorem is usually
referred to as Fubini's theorem, although it is more or less a

Units 15, 16

Units 15, 16
Units 15, 16

142

131

Integration 57

special case of a theorem proved by Fubini long after Theorem
3-10 was known.

The idea behind the theorem is best illustrated (Figure 3-2)
for a positive continuous function f: [a,b] X [c,d] ~ R. Let
t0 , ••• ,tn be a partition of [a,b] and divide [a,b] X [c,d]
into n strips by means of the line segments {ti} X [c,d].
If g, is defined by g,(y) = f(x,y), then the area of the region
under the graph off and above { x} X [c,d] is

d d J g, = J f(x,y)dy.
c c

The volume of the region under the graph of f and
above [ti_1,ti] X [c,d] is therefore approximately equal to
(ti - li-1) · f~f(x,y)dy, for any x E [li-ltti]. Thus

n.

J !=I J 1
[a, b) X [c,d] i = 1 (t;_,,t;] X [c,d]

is approximately ~f=1 (ti - ti-l) · f~f(xi,y)dy, with Xi m

graph off

FIGURE 3-2

/
/

143

132

58 Calculus on Manifolds

[ti-t,ti]. On the other hand, sums similar to these appear in
the definition of f~<f~f(x,y)dy)dx. Thus, if h is defined by
h(x) = f~g, = f~f(x,y)dy, it is reasonable to hope that h is
integrable on [a,b] and that

b b d

J f = J h = J (J f(x,y)dy) dx.
[a, b) X [c,d] a a c

This will indeed turn out to be true when f is continuous, but
in the general case difficulties arise. Suppose, for example,
that the set of discontinuities of f is {x0 } X [c,d] for some
Xo E [a,b]. Then f is integrable on [a,b] X [c,dJ but h(x0) =
f~f(xo,y)dy may not even be defined. The statement of
Fubini's theorem therefore looks a little strange, and will be
followed by remarks about various special cases where simpler
statements are possible.

We will need one bit of terminology. Iff: A--+ R is a
bounded function on a closed rectangle, then, whether or not
f is integrable, the least upper bound of all lower sums, and
the greatest lower bound of all upper sums, both exist. They
are called the lower and upper integrals of f on A, and
denoted

and u J !,
A

respectively.

3-10 Theorem (Fubini's Theorem). Let A C R"' and
B C Rm be closed rectangles, and letf: A X B--+ R be integrable.
For x E A let g,: B--+ R be defined by g,(y) = f(x,y) and let

.C(x) = L J g, = L J f(x,y)dy,
B B

'U(x) = U J g, = U J f(x,y)dy.
B B

Then £ and 'U are integrable on A and

J f = J £ = J (L J f(x,y)dy) dx,
AXB A A B

J f = J 'U = J (ujf(x,y)dy)dx.
AXB A A

144

133

Integration 59

(The integrals on the right side are called iterated integrals
for f.)

Proof. Let P A be a partition of A and Ps a partition of B.
Together they give a partition P of A X B for which any
subrectangle S is of the form SA X Ss, where SA is a sub-
rectangle of the partition P A, and Ss is a subrectangle of the
partition Ps. Thus

L(f,P) = I ms(f) · v(S) = I msAxsnU) · v(SA X Ss)
s SA,SB

= I (I msAxsnU) · v(Ss)) · v(SA).
SA SB

Now, if x E SA, then clearly msAxs8 (f) :::; msn(gx). Conse-
quently, for x E SA we have

I msAxsnU) · v(SJ)) :::; I ms8 (gx) · v(Ss) :::; L J gx = £(x).
SB SB B

Therefore

I (I msAxsnU) · v(Ss)) · v(SA) :::; L(£,P A).
SA SB

We thus obtain

L(f,P) :::; L(£,P A) :::; U(£,P A) :::; U('U,P A) :::; U(f,P),

where the proof of the last inequality is entirely analogous
to the proof of the first. Since f is integrable, sup {L(f,P)}
inf{ U(f,P)} = J Axsf. Hence

sup{L(£,P'A)} = inf{ U(£,P A)} = J AXB f.

In other words,£ is integrable on A and J Axsf = J A£. The
assertion for 'U follows similarly from the inequalities

L(f,P) :::; L(£,P A) :::; L('U,P A) :::; U('U,P A) :::; U(f,P). I

Remarks. 1. A similar proof shows that

J f = j (L J f(x,y)dx) dy = J (U J f(x,y)dx) dy.
AXB A B A

145

134

60 Calculus on Manifolds

These integrals are called iterated integrals for f in the reverse
order from those of the theorem. As several problems show,
the possibility of interchanging the orders of iterated integrals
has many consequences.

2. In practice it is often the case that each Yz is integrable,
so that J Axaf = J A(J af(x,y)dy)dx. This certainly occurs
iff is continuous.

3. The worst irregularity commonly encountered is that Yz
is not integrable for a finite number of x E A. In this case
.C(x) = J af(x,y)dy for all but these finitely many x. Since
J A£ remains unchanged if .C is redefined at a finite number of
points, we can still write J Axaf = J A(J Bf(x,y)dy)dx, pro-
vided that J af(x,y)dy is defined arbitrarily, say as 0, when it
does not exist.

4. There are cases when this will not work and Theorem 3-10
must be used as stated. Let f: [0,1] X [0,1]--+ R be defined
by

f(•,Y) = f: -1/q

if xis irrational,
if x is rational and y is irrational,
if x = pI q in lowest terms and y is
rational.

Then! is integrable and J ro.1Jxro.1d = 1. Now J'AJ(x,y)dy = 1
if x is irrational, and does not exist if x is rational. There-
fore h is not integrable if h(x) = nJ(x,y)dy is set equal to 0
when the integral does not exist.

5. If A = [a1,b1] X · · · X [a..,b,.] and f: A --+ R is suf-
ficiently nice, we can apply Fubini's theorem repeatedly to
obtain

6. If C C A X B, Fubini's theorem can be used to evaluate
J cf, since this is by definition J AXB x.cf. Suppose, for exam-
ple, that

C = [-1,1) X [-1,1]- {(x,y): j(x,y)j < 1}.
Then

Jc! = J ~1 (/ ~1 f(x,y) • x.c(x,y)dy) dx.

14146

135

Integration

Now

xc(x,y)

Therefore

{ ~ if y > Vl - x2 or y < - Vl - x2,

otherwise.

61

!1 J -vr=zo /1 -1 f(x,y) . xc(x,y)dy = -1 f(x,y)dy + v1-x.J(x,y)dy.

In general, if C C A X B, the main difficulty in deriving
expressions for J cf will be determining C 1\ ({ x} X B)
for x EA. If C 1\ (A X {y}) for y E B is easier to deter-
mine, one should use the iterated integral

/cf = JB (JA f(x,y) · xc(x,y)dx) dy.

Problems. 3-23. Let C C A X B be a set of content 0. Let
A' C A be the set of all x E A such that {y E B: (x,y) E C} is
not of content 0. Show that A' is a set of measure 0. Hint: xo is
integrable and f AXB XO = f A'U = fA£, SO f A'U - £ = 0.

3-24. Let C C [0,1] X [0,1] be the union of all lp/q} X [0, 1/q], where
p/q is a rational number in [0,1] written in lowest terms. Use C
to show that the word "measure" in Problem 3-23 cannot be
replaced by "content."

3-25. Use induction on n to show that [a1,b1l X • • • X [an,bnl is not a
set of measure 0 (or content 0) if ai < bi for each i.

3-26. Let f: [a,b]--> R be integrable and non-negative and let A1 =
l(x,y): a~ x ~band 0 ~ y ~f(x)}. Show that A, is Jordan-
measurable and has area f~f.

3-27. Iff: [a,b] X [a,b]--> R is continuous, show that

!a b i 11 f(x,y)dx dy = } a } x f(x,y)dy dx.

Hint: Compute f of in two different ways for a suitable set
C C [a,b] X [a,b].

3-28. * Use Fubini's theorem to give an easy proof that D1.d = D2,1f
if these are continuous. Hint: If D1,d(a) - D2,1!(a) > 0,
there is a rectangle A containing a such that D1.2f- D2,1! >
0 on A.

3-29. Use Fubini's theorem to derive an expression for the volume of
a set of R3 obtained by revolving a Jordan-measurable set in the
yz-plane about the z-axis.

147

136

62 Calculus on Manifolds

3-30. Let C be the set in Problem 1-17. Show that

ho.IJ (ho.I] xa(x,y)dx) dy = ho.l] (ho.IJ xa(y,x)dy) dx = 0

but that f [O,lJX[O,lJ xa does not exist.
3-31. If A = [a1,b1] X · · X {an,bn] and f: A -> R is continuous,

define F: A-> R by

F(x) = (f.
l!at,z1] X · • • X [a.,x•]

What is D;F(x), for x in the interior of A?
3-32.* Let f: [a,b] X [c,d]-> R be continuous and suppose D 2f is con-

tinuous. Define F(y) = nf(x,y)dx. Prove Leibnitz's rule: F'(y)
= J~D2!(x,y)dx. Hint: F(y) = f~f(x,y)dx = f~<HD2f(x,y)dy +

/(x,c))dx. (The proof will show that continuity of Dd may be
replaced by considerably weaker hypotheses.)

3-33. Iff: [a,b] X [c,d]-> R is continuous and D2! is continuous, define
F(x,y) = f!f(t,y)dt.

(a) Find D1F and D~.
(b) If G(x) = Jg<x>f(t,x)dt, find G'(x).

3-34. * Let g1,g2: R2 -> R be continuously differentiable and suppose
D1g2 = D2g1. As in Problem 2-21, let

f(x,y) = /o"' g1(t,O)dt + / 0 " g2(x,t)dt.

Show that Dtf(x,y) = g1(x,y).
3-3~. * (a) Let g: Rn-> Rn be a linear transformation of one of the fol-

lowing types:

3-36.

{ g(e;) = ei
g(ej) = aej

I g(ek) = ek
g(e;) = ej
g(ei) = e;.

k ~ i,j

If U is a rectangle, show that the volume of g(U) is ldet Yl · v(U).
(b) Prove that ldet g! · v(U) is the volume of g(U) for any linear

transformation g: Rn-> Rn. Hint: If det g ~ 0, then g is the
composition of linear transformations of the type considered in (a).
(Cavalieri's principle). Let A and B be Jordan-measurable sub-
sets of R 3. Let Ae = { (x,y): (x,y,c) E A} and define Be similarly.
Suppose each Ae and Be are Jordan-measurable and have the same
area. Show that A and B have the same volume.

148

137

Integration 63

PARTITIONS OF UNITY

In this section we introduce a tool of extreme importance in
the theory of integration.

3-11 Theorem. Let A C Rn and let 0 be an open cover of A.
Then there is a collection <I> of C"' functions <P defined in an open
set containing A, with the following properties:

(1) For each x E A we have 0 ~ rp(x) ~ 1.
(2) For each x E A there is an open set V containing x such that

all but finitely many cp E <I> are 0 on V.
(3) For each x E A we have ~<PE<~><P(x) = 1 (by (2) for each x

this sum is finite in some open set containing x).
(4) For each <P E <I> there is an open set U in e such that <P = 0

outside of some closed set contained in U.

(A collection <I> satisfying (1) to (3) is called a C"' partition of
unity for A. If <I> also satisfies (4), it is said to be sub-
ordinate to the cover e. In this chapter we will only use
continuity of the functions rp.)

Proof. Case 1. A is compact.
Then a finite number U 1, . . . , U n of open sets in e cover A.

It clearly suffices to construct a partition of unity subordinate
to the cover { U 1, . • • , U n}. We will first find compact
sets Di C Ui whose interiors cover A. The sets Di are con-
structed inductively as follows. Suppose that D1, ... ,Dk
have been chosen so that {interior D1, ... , interior Dk,
Uk+l, ... ,Un) covers A. Let

Ck+l = A - (int D1 U · · · U int Dk U Uk+2 U · · · U Un).

Then Ck+l C Uk+l is compact. Hence (Problem 1-22) we can
find a compact set Dk+l such that

Ck+l C interior Dk+l and Dk+l C Uk+l·

Having constructed the sets D 1, ••• ,Dn, let l/li be a non-
negative C"' function which is positive on Di and 0 outside of
some closed set contained in Ui (Problem 2-26). Since

149

138

64 Calculus on Manifolds

{D~, ... ,Dn} coversA,wehave~1 (x) + · · · + ~n(x) > 0
for all x in some open set U containing A. On U we can define

Iff: U--* [0,1] is a C<YJ function which is 1 on A and 0 outside
of some closed set in U, then <I> = {f · cp1, • • • ,! · 'Pn} is the
desired partition of unity.

Case 2. A = A1 U A2 U A3 U · · · , where each Ai is
compact and Ai C interior Ai+l·

For each i let 0i consist of all U (\ (interior Ai+l - Ai_2)

for U in 0. Then 0i is an open cover of the compact set
Bi = Ai - interior Ai-l· By case 1 there is a partition of unity
<I>i for Bi, subordinate to 0i. For each x E A the sum

u(x) = l cp(x)
II'Eil>;, all i

is a finite sum in some open set containing x, since if x E Ai we
have cp(x) = 0 for cp E <I>j with j ;-::: i + 2. For each cp in
each <I>i, define cp'(x) = cp(x)/u(x). The collection of all cp' is
the desired partition of unity.

Case 3. A is open.
Let Ai =

lx E A: Jxl ~ i and distance from x to boundary A 2:: 1/i},

and apply case 2.
Case 4. A is arbitmry.
Let B be the union of all U in 0. By case 3 there is a par-

tition of unity forB; this is also a partition of unity for A. I

An important consequence of condition (2) of the theorem
should be noted. Let C C A be compact. ' For each x E C
there is an open set V., containing x such that only finitely
many cp E <I> are not 0 on V.,. Since C is compact, finitely
many such V., cover C. Thus only finitely many cp E <I> are
not 0 on C.

One important application of partitions of unity will illus-
trate their main role-piecing together results obtained locally.

150

139

Integratwn 65

An open cover 0 of an open set A C Rn is admissible if
each U E e is contained in A. If .:I> is subordinate to e,
f: A ~ R is bounded in some open set around each point of A,
and {x: f is discontinuous at x} has measure 0, then each
I A ifJ ·Iii exists. We definejto be integrable (in the extended
sense) if ~<PE«>I A ifJ ·IJI converges (the proof of Theorem 3-11
shows that the ~p's may be arranged in a sequence). This
implies convergence of ~<PE«>II A 1p • Jl, and hence absolute con-
vergence of ~<PE«>I A 1p • j, which we define to be I Af· These
definitions do not depend on 0 or .:I> (but see Problem 3-38).

3-12 Theorem.

(1) If 'It is another partition of unity, subordinate to an admis-
sible cover O' of A, then ~.PE~I A 1/1 ·IJI also converges, and

(2) If A and f are bounded, then f is integrable in the extended
sense.

(3) If A is Jordan-measurable and f is bounded, then this defini-
tion of I A! agrees with the old one.

Proof

(1) Since 1p • f = 0 except on some compact set C, and there
are only finitely many ift which are non-zero on C, we can
write

This result, applied to Iii, shows the convergence of ~<PE«>
~.pe~I A 1/1 • lfJ ·IJI, and hence of ~<PE~.PE~II A 1/1 • 1p ·il.
This absolute convergence justifies interchanging the order
of summation in the above equation; the resulting double
sum clearly equals ~.Pe~I A 1/1 ·f. Finally, this result
applied to IJI proves convergence of ~.pe~I A 1/1 ·IJI.

151

140

66 Calculus on Manifolds

(2) If A is contained in the closed rectangle Band if(x)l ~ M
for x E A, and F C cf> is finite, then

L J IP ·ifi ~ L M J cp = M J L cp ~ Mv(B),
<PEF A <PEF A A <PEF

since ~,EF cp ~ 1 on A.
(3) If e > 0 there is (Problem 3-22) a compact Jordan-meas-

urable C C A such that I A-c1 <e. There are only
finitely many cp E cf> which are non-zero on C. IfF C cf>
is any finite collection which includes these, and I A! has
its old meaning, then

If!- I J cp·fi~JI'- I cp·fl
A <PEF A A <PEF

~M/(1- L cp)
A <PEF

= M J L cp ~ M J 1 ~ Me. I
A <PE~ -F A-C

Problems. 3-37. (a) Suppose that f: (0,1)-> R is a non-negative
continuous function. Show that f (O,l)/ exists if and only if
lim n-s, exists.
e-+0

(b) Let An= [1-1/2n, 1-1/2n+1]. Supposethat/:(0,1)->R
satisfies fA./ = (-1)n /n and f(x) = 0 for X e any An. Show that
f (O,l)/ does not exist, but lim f (e,l-e) f = log 2.

e-+0
3-38. Let An be a closed set contained in (n, n + 1). Suppose that

f: R--> R satisfies fA./ = (-l)n /n and f = 0 for X e any An.
Find two partitions of unity <I> and 'lf such that ~"' E ~J R <P • f and
~.y E '~' f R .Y • f converge absolutely to different values.

CHANGE OF VARIABLE

If g: [a,b]--+ R is continuously differentiable and f: R--+ R
is continuous, then, as is well known,

g(b) b J f = J (f 0 g) . g'.
g(a) a

152

141

Integration 67

The proof is very simple: ifF' = j, then (Fog)' = (fog)· g';
thus the left side is F(g(b)) - F(g(a)), while the right side is
F o g(b) - F o g(a) = F(g(b)) - F(g(a)).

We leave it to the reader to show that if g is 1-1, then the
above formula can be written

f f = f fog ·lu'l·
a((a,b)) (a,b)

(Consider separately the cases where g is increasing and where
g is decreasing.) The generalization of this formula to higher
dimensions is by no means so trivial.

3-13 Theorem. Let A C Rn be an open set and g: A__. Rn
a 1-1, continuously differentiable junction such that det g'(x)
~ 0 for all x E A. Iff: g(A) __. R is integrable, then

J f = j (fo u)ldet g'l.
a(A)

Proof. We begin with some important reductions.

1. Suppose there is an admissible cover 6 for A such that
for each U E 6 and any integrable f we have

r f = l (fo u)ldet u'l. iu>
Then the theorem is true for all of A. (Since g is auto-
matically 1-1 in an open set around each point, it is not sur-
prising that this is the only part of the proof using the fact
that g is 1-1 on all of A.)

Proof of (1). The collection of all g(U) is an open cover of
g(A). Let«<> be a partition of unity subordinate to this cover.
If tfl = 0 outside of g(U), then, since g is 1-1, we have (tfl ·f) o g

153

142

_Calculua, on M anifolda

= 0 outside of U. Therefore the equation

J If'· J = £ [(If'· f) o g]jdet u'l.
g(U)

can be written
r If'. f = J [(If'. f) 0 g]jdet u'l.

uCA> A
Hence

J , = I r If' • , = I J r<l{' . n o ulldet u'l
g(A) .,e•uCA> .,e• A

= l J (If' o g)(f o g)jdet u'l
.. e• A

= J (fo g)jdet u'l.
A

Remark. The theorem also follows from the assumption
that

I, f = J (fo g)jdet u'l
g-•(V)

for V in some admissible cover of g(A). This follows from (1)
applied to g-1•

2. It suffices to prove the theorem for the function f = 1.
Proof of (2). If the theorem holds for f = 1, it holds for

constant functions. Let V be a rectangle in g(A) and P a par-
tition of V. For each subrectangle S of P let fs be the con-
stant function ms(J). Then

L(f,P) = L ms(J) · v(S) = L J is
8 8 int 8

= L J Us o g)jdet g' ~ l J (f o g)jdet u'l
S g-• (int 8) 8 g-l(int 8)

~ J (fo g)jdet u'l·
g-•(V)

Since I vf is the least upper bound of all L(f,P), this proves
that I vi~ I 11-•cv>(fo g)jdet g'j. A similar argument, letting
fs = Ms(J), shows that Ivf?::_ I 11-•cv>(fog)jdetg'j. The
result now follows from the above Remark.

154

143

Integration 69

3. If the theorem is true for g: A --4 Rn and for h: B --4 Rn,
where g(A) C B, then it is true for hog: A --4 Rn.

Proof of (3).

J f =
h o g(A)

J f = r (fo h)!det h'l
h(g(A)) iA)

= J [(f o h) o g] · [!det h'l o g] ·!det g'l
A

= J f o (h o g)!det (hog)'!.
A

4. The theorem is true if g is a linear transformation.
Proof of (4). By (1) and (2) it suffices to show for any open

rectangle U that

J 1 = J !det g'l.
D(U) U

This is Problem 3-35.

Observations (3) and (4) together show that we may assume
for any particular a E A that g'(a) is the identity matrix: in
fact, if Tis the linear transformation Dg(a), then (T-1 o g)'(a)
= I; since the theorem is true for T, if it is true for T- 1 o g it
will be true for g.

We are now prepared to give the proof, which preceeds by
induction on n. The remarks before the statement of the
theorem, together with (1) and (2), prove the case n = 1.
Assuming the theorem in dimension n - 1, we prove it in
dimension n. For each a E A we need only find an open set
U with a E U C A for which the theorem is true. Moreover
we may assume that g'(a) =I.

Define h: A --4 Rn by h(x) = (g 1(x), ... ,gn-1(x),xn).
Then h'(a) = I. Hence in some open U' with a E U' C A,
the function h is 1-1 and det h'(x) ~ 0. We can thus
define k: h(U') --4 Rn by k(x) = (x\ ... ,xn-1,gn(h-1(x)))
and g = k o h. We have thus expressed g as the composition

155

144

70

156

145

Integration 71

of two maps, each of which changes fewer than n coordinates
(Figure 3-3).

We must attend to a few details to ensure that k is a function
of the proper sort. Since

(gn o h-1)'(h(a)) = (gn)'(a) · [h'(a)]- 1 = (gn)'(a),

we have Dn(g11 o h-1)(h(a)) = Dngn(a) = 1, so that k'(h(a))
= I. Thus in some open set V with h(a) E V C h(U'), the
function k is 1-1 and det k'(x) -,6- 0. Letting U = k- 1(V)
we now have g = k o h, where h: U-+ Rn and k: V-+ Rn
and h(U) C V. By (3) it suffices to prove the theorem for h
and k. We give the proof for h; the proof for k is similar
and easier.

Let W C U be a rectangle of the form D X [an,bn), where
D is a rectangle in Rn- 1. By Fubini's theorem

J 1 = J (J 1 dx 1 · · · dxn-l) dx11 •

h(W) [a,..b,.] h(DX{x•})

Let hxn: D-+ Rn-1 be defined by hx•(x 1, •.• ,xn-1)

(g 1(x\ ... ,xn), . ,gn-1(xl, ... ,xn)). Then each hxn
is clearly 1-1 and

det (hx•)'(xl, .. ,xn-1) = det h'(x 1, ••• ,xn) -,6- 0.

Moreover

J 1 dx 1 • · · dxn-l = J 1 d:~ 1 • • • dxn-t.
h(D X {x•}) h,•(D)

Applying the theorem in the case n - 1 therefore gives

J 1 = J (J 1 dx 1 • • • dxn-l) dx"
h(W) [an,bn] h,•(D)

J (J jdet(hx")'(x1, ••• ,:rn-l)jdx 1• • • dxn- 1) dxn
[a,.,b,.] D

J (J jdet h'(xl, ... ,xn)jdx 1 • • • dxn- 1) dx11

[an,bn] D

J jdet h'j. I
w

The condition det g'(x) -,6- 0 may be eliminated from the

157

146

1% Calculus on M anifolda

hYJ>o~heses of Theorem 3-13 by using the following theorem,
which often plays an unexpected role.

3-14. Theorem (Sard's Theorem). Let g: A --+ R" be con-
tinuously differentiable, where A C R" is open, and let B =
(z E A: det g'(z) = 0}. Then g(B) has measure 0.

Proof. Let U C A be a closed rectangle such that all sides
of U have length l, say. Let e > 0. If N is sufficiently large
and U is divided into N" rectangles, with sides of length l/ N,
then for each of these rectangles S, if z E S we have

!Dg(z)(y- z) - g(y) - g(z)l < elz- Yl ~ e Vn (l/N)

for all y E S. If S intersects B we can choose z E S ('\ B;
since det g'(z) = 0, the set (Dg(z)(y- z): yES} lies in an
(n - I)-dimensional subspace V of R". Therefore the set
(g(y) - g(z): y E S} lies within e Vn (l/N) of V, so that
(g(y): y E S} lies within e Vn (l/N) of the (n - I)-plane
V + g(z). On the other hand, by Lemma 2-10 there is a
number M such that

lu(z) - g(y)! < Mlz - Y! ~ M Vn (l/N).

Thus, if S intersects B, the set (g(y): yES} is contained in
a cylinder whose height is <2e Vn (l/N) and whose base is an
(n- I)-dimensional sphere of radius <M Vn (l/N). This
cylinder has volume <C(l/N)"e for some constant C. There
are at most N" such rectangles S, so g(U ('\B) lies in a set of
volume < C(l/N)" · e · N" = Cl" · e. Since this is true for
all e > 0, the set g(U ('\B) has measure 0. Since (Problem
3-13) we can cover all of A with a sequence of such rectangles
U, the desired result follows from Theorem 3-4. I

Theorem 3-14 is actually only the easy part of Sard's
Theorem. The statement and proof of the deeper result will
be found in [17], page 47.

Problems. 3-39. Use Theorem 3-14 to prove Theorem 3-13 without
the assumption det g'(x) ;>!! 0.

158
147

Integration 73

3-40. If g: Rn--+ Rn and det g'(x) ;>! 0, prove that in some open set
containing x we can write g = T o Yn o • • • o g1, where g; is of
the form g;(x) = (x\ ... ,j;(x), ... ,xn), and T' is a linear
transformation. Show that we can write g = Yn o • • • o g1 if
and only if g'(x) is a diagonal matrix.

3-41. Define f: {r: r > 0} X (0,2,.)--+ R 2 by f(r,IJ) = (r cos IJ, r sin IJ).
(a) Show that f is 1-1, compute f'(r,IJ), and show that

detf'(r,IJ) ;>! 0 for all (r,IJ). Show that/({r: r > 0} X (0,2,.)) is
the set A of Problem 2-23.

(b) If P =]\ show that P(x,y) = (r(x,y),IJ(x,y)), where

r(x,y) = Vx 2 + y2,

1
:r~a:r:/a: y/x

IJ(x,y) = 2,. +arctan y/x
,.;2
311"/2

X> 0, y > 0,
X< 0,
X> 0, y < 0,
X= 0, y > 0,
X= 0, y < 0.

(Here arctan denotes the inverse of the function tan: (-,./2,,./2)
--+ R.) Find P'(x,y). The function P is called the polar coor-
dinate system on A.

(c) Let C C A be the region between the circles of radii r1 and
r2 and the half-lines through 0 which make angles of IJ1 and IJ2 with
the x-axis. If h: C--+ R is integrableandh(x,y) = g(r(x,y),IJ(x,y)),
show that

12 O<t J h = J J rg(r,IJ)diJ dr.
c •• 6t

If Br = {(x,y): x 2 + y2 ~ r 2 }, show that
T 2.-J h = J J rg(r,IJ)diJ dr.

B, 0 0

(d) If Cr = [-r,r] X [-r,r], show that

and

J e-<z•+u•l dx dy = 1r(l - e-r')
B,

r J e-<z•+u•) dx dy = (J e-"'' dx r.
~ -r

(e) Prove that

lim J e-(z'+u'l dx dy = lim J e-<z'+u'l dx dy
~oo Br r-.oc Cr

159

148

14 Calculus on M anifold8

and conclude that

"A mathematician is one to whom that is as obvious as that twice
two makes four is to you. Liouville was a mathematician."

-LORD KELVIN

160
149

POST GRADUATE DEGREE PROGRAMME (CBCS) IN

MATHEMATICS

SEMESTER III

SELF LEARNING MATERIAL

PAPER : MATC 3.3
(Pure & Applied Streams)

Block - I : Fuzzy Set Theory
Block - II : Computer Programming in ‘C’ (Theory)

Directorate of Open and Distance Learning
University of Kalyani

Kalyani, Nadia
West Bengal, India

Course Preparation Team

1. Mr. Biswajit Mallick 2. Ms. Audrija Choudhury
Assistant Professor (Cont.) Assistant Professor (Cont.)
DODL, University of Kalyani DODL, University of Kalyani

November, 2019

Directorate of Open and Distance Learning, University of Kalyani

Published by the Directorate of Open and Distance Learning

University of Kalyani, 741235, West Bengal

All rights reserved. No part of this work should be reproduced in any form without the permission in writing
form the Directorate of Open and Distance Learning, University of Kalynai.

Director’s Massage
Satisfying the varied needs of distance learners, overcoming the obstacle of distance and reaching the un-
reached students are the threefold functions catered by Open and Distance Learning (ODL) systems. The
onus lies on writers, editors, production professionals and other personnel involved in the process to overcome
the challenges inherent to curriculum design and production of relevant Self Learning Materials (SLMs). At
the University of Kalyani a dedicated team under the able guidance of the Hon’ble Vice-Chancellor has in-
vested its best efforts, professionally and in keeping with the demands of Post Graduate CBCS Programmes
in Distance Mode to devise a self-sufficient curriculum for each course offered by the Directorate of Open and
Distance Learning (DODL), University of Kalyani.

Development of printed SLMs for students admitted to the DODL within a limited time to cater to the
academic requirements of the Course as per standards set by Distance Education Bureau of the University
Grants Commission, New Delhi, India under Open and Distance Mode UGC Regulations, 2017 had been our
endeavour. We are happy to have achieved our goal.

Utmost care and precision have been ensured in the development of the SLMs, making them useful to the
learners, besides avoiding errors as far as practicable. Further suggestions from the stakeholders in this would
be welcome.

During the production-process of the SLMs, the team continuously received positive stimulations and feed-
back from Professor (Dr.) Sankar Kumar Ghosh, Hon’ble Vice-Chancellor, University of Kalyani, who kindly
accorded directions, encouragements and suggestions, offered constructive criticism to develop it within
proper requirements. We gracefully, acknowledge his inspiration and guidance.

Sincere gratitude is due to the respective chairpersons as weel as each and every member of PGBOS
(DODL), University of Kalyani, Heartfelt thanks is also due to the Course Writers-faculty members at the
DODL, subject-experts serving at University Post Graduate departments and also to the authors and aca-
demicians whose academic contributions have enriched the SLMs. We humbly acknowledge their valuable
academic contributions. I would especially like to convey gratitude to all other University dignitaries and
personnel involved either at the conceptual or operational level of the DODL of University of Kalyani.

Their persistent and co-ordinated efforts have resulted in the compilation of comprehensive, learner-friendly,
flexible texts that meet the curriculum requirements of the Post Graduate Programme through Distance Mode.

Self Learning Materials (SLMs) have been published by the Directorate of Open and Distance Learning,
University of Kalyani, Kalyani-741235, West Bengal and all the copyright reserved for University of Kalyani.
No part of this work should be reproduced in any from without permission in writing from the appropriate
authority of the University of Kalyani.

All the Self Learning Materials are self writing and collected from e-book, journals and websites.

Director

Directorate of Open and Distance Learning

University of Kalyani

CONTENTS

Serial Number Block Unit Page Number

1 2− 11
1 Fuzzy Set Theory 2 12− 25

3 26− 34
4 35− 49

5 51− 69
2 6 70− 89

Computer Programming in ‘C’ 7 90− 105
(Theory) 8 106− 117

9 118− 149
10 150− 181

Core Paper

MATC 3.3
Block - I

Marks : 26 (SSE : 20; IA : 06)

Fuzzy Set Theory
Syllabus

• Unit 1 •

Interval Arithmetic: Interval numbers, arithmetic operations on interval numbers, distance between inter-
vals, two level interval numbers

• Unit 2 •

Basic concepts of fuzzy sets: Types of fuzzy sets, -cuts and its properties, representations of fuzzy sets,
decomposition theorems, support, convexity, normality, cardinality, standard set-theoretic operations on fuzzy
sets, Zadeh’s extension principle.

• Unit 3 •

Fuzzy Relations: Crisp versus fuzzy relations, fuzzy matrices and fuzzy graphs, composition of fuzzy rela-
tions, relational join, binary fuzzy relations.

• Unit 4 •

Fuzzy Arithmetic: Fuzzy numbers, arithmetic operations on fuzzy numbers (multiplication and division on
R+ only), fuzzy equations.

1

Unit 1

Course Structure

• Interval Arithmetic: Interval numbers, arithmetic operations on interval numbers,

• Distance between intervals, two level interval numbers

1 Introduction

Interval arithmetic is the arithmetic of quantities that lie within specified ranges (i.e., intervals) instead of
having definite known values. Interval arithmetic can be especially useful when working with data that is sub-
ject to measurement errors or uncertainties. It can be considered a rigorous version of significance arithmetic
(a.k.a., automatic precision control).

Interval arithmetic, interval mathematics, interval analysis, or interval computation, is a method developed
by mathematicians since the 1950s and 1960s, as an approach to putting bounds on rounding errors and
measurement errors in mathematical computation and thus developing numerical methods that yield reliable
results. Very simply put, it represents each value as a range of possibilities. For example, instead of estimating
the height of someone using standard arithmetic as 2.0 metres, using interval arithmetic we might be certain
that that person is somewhere between 1.97 and 2.03 metres.

This concept is suitable for a variety of purposes. The most common use is to keep track of and handle
rounding errors directly during the calculation and of uncertainties in the knowledge of the exact values of
physical and technical parameters. The latter often arise from measurement errors and tolerances for compo-
nents or due to limits on computational accuracy. Interval arithmetic also helps find reliable and guaranteed
solutions to equations (such as differential equations) and optimization problems.

Mathematically, instead of working with an uncertain real x we work with the two ends of the interval [a, b]
that contains x. In interval arithmetic, any variable x lies between a and b, or could be one of them. A function
f when applied to x is also uncertain. In interval arithmetic f produces an interval [c, d] that is all the possible
values for f(x) for all x ∈ [a, b].

Objectives

After reading this unit you will be able to

• define interval numbers

• define set operations on intervals numbers and see certain examples related to them

• define arithmetic operations on intervals numbers and see certain examples related to them

• define algebraic properties of interval numbers

• define distance between intervals

2

1.1 Interval Number System

We are familiar with the closed intervals in the real line, which is denoted by

[a, b] = {x ∈ R : a ≤ x ≤ b}.

Here, we will mainly refer to the closed intervals as intervals.
We will denote the endpoints of an interval I as I and I , where these both represent the lower and upper

endpoints respectively, that is,
I = [I, I]

and two intervals I and J are said to be equal if they are the same sets, that is

I = J & I = J, I = J.

We say that an interval I is degenerate if I = I . Such an interval contains a single real number x. By
convention, we agree to identify a degenerate interval [x, x] with the real number x.

1.1.1 Certain Important Definitions

The intersection of two intervals I and J is empty if either J < I or I < J . In this case, we let ∅ denote the
empty set and write

I ∩ J = ∅,

which indicates that I and J have no points in common. We may otherwise define the intersection I ∩ J as
the interval

I ∩ J = {z : z ∈ I & z ∈ J}
= [max{I, J},min{I, J}].

In this latter case, the union of I and J is also an interval

I ∪ J = {z : z ∈ I or z ∈ J}
= [min{I, J},max{I, J}].

In general, the union of two intervals is not an interval. However, the interval hull of two intervals, defined by

I∪J = [min{I, J},max{I, J}],

is always an interval and can be used in interval computations. We have

I ∪ J ⊆ I∪J,

for any two intervals I and J .

Example 1.1. If I = [−1, 0] and J = [1, 2], then I∪J = [−1, 2]. I ∪ J is a disconnected set and hence is not
an interval. But this is not the case if we consider I∪J and I ∪ J is still a subset of I∪J .

Intersection plays a key role in interval analysis. If we have two intervals containing a result of interest
— regardless of how they were obtained — then the intersection, which may be narrower, also contains the
result.

3

Example 1.2. Suppose two people make independent measurements of the same physical quantity q. One
finds that q = 10.3 with a measurement error less than 0.2. The other finds that q = 10.4 with an error
less than 0.2. We can represent these measurements as the intervals I = [10.1, 10.5] and J = [10.2, 10.6],
respectively. Since q lies in both, it also lies in I ∪ J = [10.2, 10.5]. An empty intersection would imply that
at least one of the measurements is wrong.

Definition 1.3. 1. As the name suggests, the width of an interval I is defined as

w(I) = I − I.

2. The absolute value of I , denoted as |I|, is the maximum of the absolute values of its endpoints

|I| = max{|I|, |I|}.

Note that, |x| ≤ |I| for every x ∈ I .

3. The midpoint of I is given by

m(I) =
1

2
(I + I).

Example 1.4. Let I = [0, 2] and J = [−1, 1]. Then the intersection and union of I and J are the intervals

I ∩ J = [0, 1], I ∪ J = [−1, 2].

We have, w(I) = w(J) = 2 and
|I| = 2, & |J | = 1.

The midpoint of I and J are 1 and 0 respectively.

The real numbers are ordered by the relation <. A corresponding relation can be defined for the intervals
as follows

I < J =⇒ I < J.

For example, [3, 4] < [6, 8] and we also have the transitivity relation which says that

A < B & B < C =⇒ A < C.

We can also define I > 0 and I < 0. That is, I > 0 if x > 0 for all x ∈ I and I < 0 if x < 0 for all x ∈ I .
We can also define another relation on the set of intervals as the set inclusion relation which says that

I ⊆ J iff J ≤ I & I ≤ J.

For example, [1, 2] ⊆ [0, 2]. This is a partial ordering. This has to be noted that not every pair of intervals is
comparable under this relation.

The notion of the degenerate interval permits us to regard the system of closed intervals as an extension of
the real number system. Indeed, there is an obvious one-to-one pairing [x, x] 7→ x between the elements of
the two systems. We will next investigate into the arithmetic operations of the intervals.

4

1.2 Arithmetic Operations on Intervals

We are about to define the basic arithmetic operations between intervals. The key point in these definitions is
that computing with intervals is computing with sets. For example, when we add two intervals, the resulting
interval is a set containing the sums of all pairs of numbers, one from each of the two initial sets. By definition
then, the sum of two intervals I and J is

I + J = {i+ j : i ∈ I & j ∈ J}.

We will return to an operational description of addition momentarily (that is, to the task of obtaining a formula
by which addition can be easily carried out). But let us define the remaining three arithmetic operations. The
difference of two intervals I and J is the set

I − J = {i− j : i ∈ I & j ∈ J}.

The product of I and J is given by

I.J = {ij : i ∈ I & j ∈ J}.

Finally the quotient I/J is defined as

I/J = {i/j : i ∈ I & j ∈ J}.

provided that 0 /∈ J .
We have seen the purpose of introducing the interval number system. So it is redundant to talk about

arithmetic operations in terms of the terms in the interval. So, we will find a way to write it in terms of
intervals.

1. Addition : Since i ∈ I and j ∈ J implies that

I ≤ i ≤ I & J ≤ j ≤ J,

we see by addition of inequalities that the sum i+ j ∈ I + J must satisfy

I + J ≤ i+ j ≤ I + J.

Hence the formula
I + J = [I + J, I + J].

Example 1.5. Let I = [0, 2] and J = [−1, 2]. Then

I + J = [−1, 3].

This is not the same as I ∪ J = [−1, 2]

2. Subtraction : Since i ∈ I and j ∈ J implies that

I ≤ i ≤ I & − J ≤ −j ≤ −J,

gives
I − J ≤ i− j ≤ I − J.

It follows that
I − J = [I − J, I − J].

5

Note that
I − J = I + (−J),

where, −J is defined as
−J = [−J,−J] = {y : − y ∈ Y }.

Note the reversal of endpoints that occurs when we find the negative of an interval.

Example 1.6. If I = [−1, 0] and J = [1, 2], then

−J = [−2,−1], & I − J = [−3,−1].

What happens for I − I? Is it necessary that I − I = 0 as in the case of any real number? Consider
I = [2, 3]. Then, as we have seen the definition of interval subtraction,

I − I = [2− 3, 3− 2] = [−1, 1].

In fact, for any interval I = [I, J], we have

I − I = [I − I, I − I]

which is equal to 0 if and only if I is a degenerate interval.

3. Multiplication : The multiplication of intervals is given in terms of the minimum and maximum of four
products of endpoints. Actually, by testing for the signs of the endpoints I , I, J, J . The formula for
the endpoints of the interval product can be broken into nine special cases. In eight of these, only two
products need be computed.

Exercise 1.7. 1. Find I ∩ J and I ∪ J for the following intervals

(a) I = [3, 4] and J = [5, 7]

(b) I = [1, 2] and J = [0, 3]

(c) I = [1, 4] and J = [2, 6]

2. Find I + J and I ∪ J if I = [5, 7] and J = [−2, 6].

3. Find I − J if I = [5, 6] and J = [−2, 4].

1.3 Algebraic Properties of Interval Numbers

We will now study certain algebraic properties related to the interval numbers as follows.

1. Commutative and Associative Properties: It is easy to show that the interval addition and multiplica-
tion are commutative and associative. That is, for any three intervals I, J,K,

I + J = J + I, I + (J +K) = (I + J) +K,

IJ = JI, I(JK) = (IJ)K.

6

2. Additive and Multiplicative elements: The degenerate intervals 0 and 1 are additive and multiplicative
identity elements in the system of intervals

0 + I = 0 + I = I, 1.I = I.1 = I, 0.I = I.0 = 0

for any interval I .

3. Nonexistence of Inverse Elements: We note that −I is not an additive inverse for I . We have

I + (−I) = [I, I] + [−I,−I] = [I − I, I − I],

and this is zero only if I = I . If I does not have zero width, then

I − I = w(I)[−1, 1].

Similarly, I/I = 1 only if w(I) = 0. In general,

I/I = [I/I, I/I]; 0 < I,

= [I/I, I/I]; I < 0.

We don’t have additional additive or multiplicative inverses except for degenerate intervals. However,
we always have the inclusions 0 ∈ I − I and 1 ∈ I/I .

4. Subdistributivity: The distributive law

x(y + z) = xy + xz

of ordinary arithmetic also fails to hold for intervals. An easy counterexample can be obtained by taking
I = [1, 2], J = [1, 2], K = [−1, 1] which gives

I(J +K) = [1, 2].([1, 1]− [1, 1]) = [1, 2].[0, 0].

Also,
IJ + IK = [1, 2].[1, 1]− [1, 2].[1, 1] = [−1, 1].

However, the subdistributive law says that

I(J +K) ⊆ IJ + IK.

We can see this in the example above. Full distributivity does hold in certain special cases. In particular,
for any real number x we have

x(J +K) = xJ + xK.

Interval multiplication can be distributed over a sum of intervals as long as those intervals have the same
sign:

I(J +K) ⊆ IJ + IK, provided that JK > 0.

5. Cancellation Law: The cancellation law

I +K = J +K =⇒ I = J

holds for interval addition.

We should emphasize that, with the identification of degenerate intervals and real numbers, interval arith-
metic is an extension of real arithmetic. It reduces to ordinary real arithmetic for intervals of zero width.

Exercise 1.8. 1. Verify the distributive law for the intervals I = [1, 2], J = [−3,−2], K = [−5,−1].

2. Prove the Cancellation law. Show that multiplicative cancellation does not hold in interval arithmetic,
that is, IK = JK does not imply I = J .

7

1.3.1 Symmetric Intervals

An interval I is said to be symmetric if I = −I . For example, [−1, 1] is symmetric and [−1, 5] is not. Any
symmetric interval has midpoint 0. If I is symmetric, then

|I| = 1

2
w(I), I = |I|[−1, 1].

The rules of interval arithmetic are slightly simpler when symmetric intervals are involved. If I, J,K are all
symmetric, then

I + J = I − J = (|I|+ |J |)[−1, 1],

IJ = |I||J |[−1, 1],

I(J ±K) = IJ + JK = |I|(|J |+ |K|)[−1, 1].

If J is symmetric and I is any interval, then
IJ = |I|J.

It follows that if J and K are symmetric, then

I(J +K) = IJ + IK

for any interval I .

1.3.2 Inclusion Isotonicity of Interval Arithmetic

Let � stand for interval addition, subtraction, multiplication, or division. If A,B,C and D are intervals such
that

A ⊆ C and B ⊆ D,
then

A�B ⊆ C �D.
These relations follow directly from the definitions given previously. Interval arithmetic is said to be inclusion
isotonic. We will now extend the concept of interval expressions to include functions such as sinx and ex.

1.4 Interval Functions

Let f be a real-valued function of a single real variable x. Ultimately, we would like to know the precise range
of values taken by f(x) as x varies through a given interval I . In other words, we would like to be able to
find the image of the set I under the mapping f , which is, f(I) = {f(x) : x ∈ I}. More generally, given a
function f = f(x1, . . . , xn) of several variables, we will wish to find the image set

f(I1, . . . , In) = {f(x1, . . . , xn) : x1 ∈ I1, . . . , xn ∈ In}
where I1, . . . , In are specified intervals.

Definition 1.9. Let g : M1 →M2 be a mapping between sets M1 and M2, and denote by S(M1) and S(M2)
the families of subsets of M1 and M2, respectively. The united extension of g is the set-valued mapping
g : S(M1)→ S(M2) such that

g(I) = {g(x) : x ∈ I, I ∈ S(M1)}.
The mapping g is sometimes of interest as a single-valued mapping on S(M1) with values in S(M2). For our
purposes, however, it is merely necessary to note that

g(I) = ∪x∈I{g(x)},
that is, g(I) contains precisely the same elements as the set image g(I). For this reason, and because the usage
is common, we shall apply the term united extension to set images such as those described previously.

8

1.4.1 Elementary Functions of Interval Arguments

For some functions, the image set is easy to compute. For example, consider f(x) = x2, x ∈ R. If I = [I, I],
it is evident that the set

f(I) = {x2 : x ∈ I}

can be expressed as

f(I) = [I2, I
2
], 0 ≤ I ≤ I,

= [I
2
, I2], I ≤ I ≤ 0,

= [0,max{I2, I
2}], I < 0 < I.

Note that I2 is not the same as I.I . For example

[−1, 1]2 = [0, 1], [−1, 1].[−1, 1] = [−1, 1].

We will use the definition of I2 for f(I). However, [−1, 1] does contain [0, 1]. The overestimation when we
compute a bound on the range of I2 as I.I is due to the phenomenon of interval dependency. Namely, if we
assume x is an unknown number known to lie in the interval I , then, when we form the product x.x, the x
in the second factor, although known only to lie in I must be the same as the x in the first factor, whereas, in
the definition of the interval product I.I , it is assumed that the values in the first factor and the values in the
second factor vary independently.

Interval dependency is a crucial consideration when using interval computations. It is a major reason why
simply replacing floating point computations by intervals in an existing algorithm is not likely to lead to
satisfactory results.

The reasoning is particularly straightforward with functions f (x) that happen to be monotonic, i.e., either
increasing or decreasing with increasing x. Note that, an increasing function f maps an interval I = [I, I]
into the interval f(I) = [f(I), f(I)].

1.4.2 Interval-Valued Extensions of Real Functions

Let us begin with an example. Consider the real-valued function f given by f(x) = 1 − x, x ∈ R. Note
carefully that a function is defined by two things: (1) a domain over which it acts, and (2) a rule that specifies
how elements of that domain are mapped under the function. Both of these are specified in the definition of f .
The elements of Domf are real numbers x, and the mapping rule is x 7→ 1− x. Taken in isolation, the entity
f(x) = 1−x is a formula—not a function. Often this distinction is ignored; in many elementary math books,
for example, we would interpret the entity as a function whose domain should be taken as the largest possible
set over which the formula makes sense (in this case, all of R). However, we will understand that Domf is
just as essential to the definition of f as is the formula f(x).

Now suppose we take the formula that describes the given function f and apply it to interval arguments.
The resulting interval-valued function

F (I) = 1− I, I = [I, I],

is an extension of the function f . we have enlarged the domain to include nondegenerate intervals I as well
as the degenerate intervals x = [x, x].

Definition 1.10. We say that F is an interval extension of f , if for degenerate interval arguments, F agrees
with f , that is, F ([x, x]) = f(x).

9

Let us compare F (I) with the set image f(I). We have according to the laws of interval arithmetic,

F (I) = [1, 1]− [I, I] = [1, 1] + [−I,−I] = [1− I, 1− I].

On the other hand, as x increases through the interval [I, I], the the value of f(x) given by 1 − x decreases
from 1 − I to 1 − I . So by definition, f(I) = [1 − I, 1 − I]. In this example, we have F (I) = f(I); this
particular extension of f obtained by the formula f(x) = 1 − x directly to interval arguments, yields the
desired set image f(I). In other words, we have found the united extension of f , which is, f(I) = 1 − I .
Although the situation is not always so simple, but we will leave it for the time being and move on to the
definition of distance between intervals.

1.5 Distance between Intervals

We are very much accustomed with the idea of metric and the basic point set theory, the convergence, com-
pleteness, etc. We will now attempt to define metric for the interval numbers.

Definition 1.11. If I and J are two intervals, then the distance between them is defined by

d(I, J) = max{|I − J |, |I − J |}.

We can define the concepts of convergence, continuity with the help of the above definition.

Definition 1.12. Let {Ik} be a sequence of intervals. We say that it converges if there exists an interval I∗

such that for every ε > 0, there is a natural number N = N(ε) such that d(Ik, I
∗) < ε whenever k > N . As

in the case of real sequences, we write
I∗ = lim

k→∞
Ik.

We know that the interval number system represents an extension of the real number system. In fact, the
correspondence [x, x]↔ x can be regarded as a function or mapping between the two systems. This mapping
preserves distances between corresponding objects. We have

d([x, x], [y, y]) = max{|x− y|, |x− y|} = |x− y|

for any real x and y. For this reason, it is called an isometry, and we say that the real line is ”isometrically
embedded” in the metric space of interval numbers.

Exercise 1.13. 1. Show that the definition of distance given between two intervals satisfy the metric ax-
ioms.

2. Find the distance between the intervals I = [1, 2] and J = [3, 5].

3. For any intervals I, J,K prove that

(a) d(I +K,Y +K) = d(I, J);

(b) d(I, J) ≤ w(J) when I ⊆ J ;

(c) d(I, 0) = |I|.

10

1.6 Few Probable Questions

1. Define symmetric interval. Show that any interval I can be expressed as the sum of a real number (i.e.,
degenerate interval) and a symmetric interval:

I = m+W, where m = m(I) and W =
1

2
w(I)[−1, 1].

2. Show that Ik → I if and only if Ik → I and Ik → I .

11

Unit 2

Course Structure

• Types of fuzzy sets, cuts and its properties,

• Representations of fuzzy sets, decomposition theorems, support,

• Convexity, normality, cardinality, standard set-theoretic operations on fuzzy sets,

• Zadeh’s extension principle.

2 Introduction

In mathematics, fuzzy sets (also known as uncertain sets) are somewhat like sets whose elements have degrees
of membership. Fuzzy sets were introduced independently by Lotfi A. Zadeh and Dieter Klaua in 1965 as an
extension of the classical notion of set. At the same time, Salii (1965) defined a more general kind of structure
called an L-relation, which he studied in an abstract algebraic context. Fuzzy relations, which are used now
in different areas, such as linguistics (De Cock, Bodenhofer & Kerre 2000), decision-making (Kuzmin 1982),
and clustering (Bezdek 1978), are special cases of L-relations when L is the unit interval [0, 1].

In classical set theory, the membership of elements in a set is assessed in binary terms according to a
bivalent condition — an element either belongs or does not belong to the set. By contrast, fuzzy set theory
permits the gradual assessment of the membership of elements in a set; this is described with the aid of a
membership function valued in the real unit interval [0, 1]. Fuzzy sets generalize classical sets, since the
indicator functions of classical sets are special cases of the membership functions of fuzzy sets, if the latter
only take values 0 or 1. In fuzzy set theory, classical bivalent sets are usually called crisp sets. The fuzzy
set theory can be used in a wide range of domains in which information is incomplete or imprecise, such as
bioinformatics.

Objectives

After reading this unit, you will be able to

• define fuzzy sets and its types

• define a-cuts of fuzzy sets and related properties

• learn various representations of fuzzy sets

• deduce the decomposition theorems of fuzzy sets

• define the set theoretic operations on fuzzy sets and see various related examples

• get an idea of the extension principle

12

2.1 Fuzzy Sets

A classical (crisp) set is normally defined as a collection of elements or objects x ∈ X that can be finite,
countable, or uncountable. Each single element can either belong to or not belong to a set A, A ⊆ X . In the
former case, the statement ”x belongs to A” is true, whereas in the latter case this statement is false.

Such a classical set can be described in different ways: one can either enumerate (list) the elements that
belong to the set; describe the set analytically, for instance, by stating conditions for membership (A =
{x : x ≤ 5}); or define the member elements by using the characteristic function, in which 1 indicates
membership and 0 nonmembership. For a fuzzy set, the characteristic function allows various degrees of
membership for the elements of a given set.

Definition 2.1. If X is a collection of objects denoted generically by x, then a fuzzy set Ã in X is a set of
ordered pairs

Ã = {(x, µÃ(x)) : x ∈ X}.

µÃ(x) is called the membership function or grade of membership (also degree of compatibility or degree of
truth) of x ∈ Ã that maps X to the membership space M (When M contains only the two points 0 and 1, A is
nonfuzzy and µÃ(x) is identical to the characteristic function of a nonfuzzy set). The range of the membership
function is a subset of the nonnegative real numbers whose supremum is finite. Elements with a zero degree
of membership are normally not listed. The set X is called the universal set and let us denote the set of all
fuzzy sets on X by F (X).

Fuzzy sets are represented in different ways.

1. A fuzzy set is denoted by an ordered set of pairs, the first element of which denotes the element and the
second the degree of membership.

Example 2.2. A realtor wants to classify the house he offers to his clients. One indicator of comfort
of these houses is the number of bedrooms in it. Let X = {1, 2, . . . , 10} be the set of available types
of houses described by x =number of bedrooms in a house. Then the fuzzy set ”comfortable type of
house for a four-person family” may be described as

Ã = {(1, 0.2), (2, 0.5), (3, 0.8), (4, 1), (5, 0.7), (6, 0.3)}.

Example 2.3. Let Ã = real numbers ”considerably” larger than 10. Then in this case, the numbers
less than or equal to 10 automatically falls out and we must define µÃ(x) in such a way that as x goes
farther away from 10, the membership function increases. We define µÃ(x) as

µÃ(x) = 0, x ≤ 10

=
1

1 + 1
(x−10)2

, x > 10

Example 2.4. Let Ã = real numbers close to 10. Then

Ã =

{
(x, µÃ(x)) : µÃ(x) =

1

1 + (x− 100)

}
.

If we plot the graph of the membership function against the members set elements, then we will get
somewhat as given in the figure.

2. A fuzzy set is represented can be sometimes solely by stating its membership function.

13

Figure 1: Real numbers close to 10

3.

Ã = µÃ(x1)/x1 + µÃ(x2)/x2 + · · · =
n∑
i=1

µÃ(xi)/xi

or
∫
x

µÃ(x)/x.

Example 2.5. If Ã =integers close to 10, then

Ã = 0.1/7 + 0.5/8 + 0.8/9 + 1/10 + 0.8/11 + 0.5/12 + 0.1/13.

Also, if Ã =real numbers close to 10, then

Ã =

∫
R

1

1 + (x− 10)2

/
x.

It has already been mentioned that the membership function is not limited to values between 0 and 1.

Definition 2.6. A fuzzy set Ã is called normal if supx µÃ(x) = 1.

A non-empty fuzzy set Ã can always be normalized by dividing µÃ(x) by supx µÃ(x). For convenience,
we will consider only normal fuzzy sets. For the representation of fuzzy sets, we will use the notation 1.

A fuzzy set is obviously a generalization of a classical set and the membership function a generalization of
the characteristic function. Since we are generally referring to a universal (crisp) set X , some elements of a
fuzzy set may have the degree of membership zero. Often it is appropriate to consider those elements of the
universe that have a nonzero degree of membership in a fuzzy set.

Definition 2.7. The support of a fuzzy set Ã, S(Ã), is the crisp set of all x ∈ X such that µÃ(x) > 0.

Example 2.8. For example (2.2), the support of Ã is S(Ã) = {1, 2, 3, 4, 5, 6}. The elements {7, 8, 9, 10} are
not part of the support of Ã.

A more general and even more useful notion is that of an a-level set.

Definition 2.9. The (crisp) set of elements that belong to the fuzzy set Ã at least to the degree a is called the
a-level set or a-cut

Aa = {x ∈ X : µÃ(x) ≥ a}

A′a = {x ∈ X : µÃ(x) > a} is called strong a-level set or strong a-cut.

14

Figure 2: Convex and Non-convex set

Example 2.10. Again we refer to the example (2.2). We list a possible a-level sets.

A0.2 = {1, 2, 3, 4, 5, 6}
A0.5 = {2, 3, 4, 5}
A0.8 = {3, 4}
A1 = {4}.

The strong 0.8-level set is A′0.8 = {4}.

Convexity also plays a role in fuzzy set theory. By contrast to classical set theory, however, convexity
conditions are defined with reference to the membership function rather than the support of the fuzzy set.

Definition 2.11. A fuzzy set Ã is convex if

µÃ(cx+ (1− c)y) ≥ min{µÃ(x), µÃ(y)}, x, y ∈ X, c ∈ [0, 1].

Alternatively, a fuzzy set is convex if all a -level sets are convex. In the figure given above, the set on the
right is convex and that on the left is not.

Definition 2.12. For a fuzzy set Ã, the cardinality |Ã| is defined as

|Ã| =
∑
x∈X

µÃ(x),

and

||Ã|| = |Ã|
|x|

is called the relative cardinality of Ã.

Obviously, the relative cardinality of a fuzzy set depends on the cardinality of the universe . So you have
to choose the same universe if you want to compare fuzzy sets by their relative cardinality.

Example 2.13. For the fuzzy set ”comfortable type of house for a four-person family” from (2.2), the cardi-
nality is

|Ã| = 0.2 + 0.5 + 0.8 + 1 + 0.7 + 0.3 = 3.5.

Its relative cardinality is

||Ã|| = 3.5

10
= 0.35

15

The relative cardinality can be interpreted as the fraction of elements of X being in Ã, weighted by their
degrees of membership in Ã. For infinite X , the cardinality is defined by |Ã| =

∫
x
µÃ(x)dx. Of course, |Ã|

does not always exist.

2.2 Basic Set-Theoretic Operations for Fuzzy Sets

The membership function is obviously the crucial component of a fuzzy set. It is therefore not surprising that
operations with fuzzy sets are defined via their membership function s. We shall first present the concepts
suggested by Zadeh in 1965. They constitute a consistent framework for the theory of fuzzy sets. They are,
however, not the only possible way to extend classical set theory consistently.

Definition 2.14. The membership function µC̃(x) of the intersection C̃ = Ã ∩ B̃ is pointwise defined by

µC̃(x) = min{µÃ(x), µB̃(x)} x ∈ X

Definition 2.15. The membership function µD̃(x) of the intersection D̃ = Ã ∪ B̃ is pointwise defined by

µD̃(x) = max{µÃ(x), µB̃(x)} x ∈ X

Theorem 2.16. Let Ã and B̃ be be two fuzzy sets on a universal set X . Then for all a, b ∈ [0, 1],

1. Aa′ ⊆ Aa;

2. a ≤ b implies that Ab ⊆ Aa and A
′
b ⊆ A

′
a;

3. (A ∩B)a = Aa ∩Ba and (A ∪B)a = Aa ∪Ba;

4. (A ∩B)
′
a = A

′
a ∩B

′
a and (A ∪B)

′
a = A

′
a ∪B

′
a.

Proof. 1. By definition, A
′
a = {x ∈ X : µÃ(x) > a} ⊆ {x ∈ X : µÃ(x) ≥ a} = Aa.

2. Let a ≤ b. Then, Ab = {x ∈ X : µÃ(x) ≥ b} ⊆ {x ∈ X : µÃ(x) ≥ a} = Aa. We can similarly
show the result for the strong cuts.

3. For x ∈ (A ∩ B)a, we have, µÃ∩B̃(x) ≥ a and hence min{µÃ(x), µB̃(x)} ≥ a. This means that
µÃ(x) ≥ a and µB̃(x) ≥ a and hence x ∈ (Aa ∩ Ba) and hence (A ∩ B)a ⊆ Aa ∩ Ba. Conversely,
for any x ∈ Aa ∩ Ba, we have x ∈ Aa and x ∈ Ba, that is, µÃ(x) ≥ a and µB̃(x) ≥ a. Hence,
min{µÃ(x), µB̃(x)} ≥ a which means that µ ˜A∩B(x) ≥ a. Hence, x ∈ (A∩B)a and consequently, we
have (A ∩B)a ⊇ Aa ∩Ba. Thus, we have (A ∩B)a = Aa ∩Ba.

For the second equality, let x ∈ (A ∪ B)a, we have, max{µÃ(x), µB̃(x)} ≥ a and hence, µÃ(x) ≥ a
and µB̃(x) ≥ a. This implies that x ∈ Aa ∪ Ba and thus (A ∪ B)a ⊆ (Aa ∪ Ba). Conversely,
for any x ∈ Aa ∪ Ba, we have, x ∈ Aa and x ∈ Ba; that is, µÃ(x) ≥ a or µB̃(x) ≥ a. Hence
max{µÃ(x), µB̃(x)} ≥ a, which means that µ ˜A∪B(x) ≥ a. This means that x ∈ (A ∪B)a and hence,
Aa ∪Ba ⊆ (A ∪B)a. Hence the result.

4. Left as an exercise.

Let us examine the significance of the properties stated in the previous theorem. Property 1 is trivial,
expressing that the strong a-cut is always included in the a-cut of any fuzzy set and for any a ∈ [0, 1];
the property follows directly from the definitions of the two types of a-cuts. Property 2 means that the set
sequences {Aa : a ∈ [0, 1]} and {A′

a : a ∈ [0, 1]} of a-cuts and strong a-cuts, respectively are always

16

monotonic decreasing with respect to a; consequently, they are nested families of sets. Properties 3 and 4
show that the standard fuzzy intersection and fuzzy union are both cutworthy and strong cutworthy when
applied to two fuzzy sets or, due to the associativity -of min and max, to any finite number of fuzzy sets.

Theorem 2.17. Let Ai be fuzzy sets over the universal set X for all i ∈ I , where I is an index set. Then,

1.
⋃
i∈I

Aia ⊆
(⋃
i∈I

Ai
)
a

and
⋂
i∈I

Aia ⊆
(⋂
i∈I

Ai
)
a

;

2.
⋃
i∈I

Ai
′
a ⊆

(⋃
i∈I

Ai
)′

a

and
⋂
i∈I

Ai
′
a ⊆

(⋂
i∈I

Ai
)′

a

Proof. 1. Left for the reader.

2. For all x ∈ X ,
x ∈

⋃
i∈I

Ai
′
a

if and only if there exists some i0 ∈ I such that x ∈ A
i′0
a (that is, µAi0 (x) > a). This inequality is

satisfied iff
sup
i∈I

µAi(x) > a,

which is equivalent to
µ ⋃

i∈I
Ai(x) > a.

That is,

x ∈

(⋃
i∈I

Ai

)′

a

.

Hence the equality in 2 is satisfied.

We now prove the second proposition in 2. For all

x ∈

(⋂
i∈I

Ai

)′

a

,

we have
µ ⋂

i∈I
Ai(x) > a;

that is,
inf
i∈I

µAi(x) > a.

Hence, for any i ∈ I , µAi(x) > a which means that x ∈ Ai′a . Hence

x ∈
⋂
i∈I

Ai
′
a ,

which concludes the proof.

The inequalities in the above theorem can’t be replaced by equalities.

17

Example 2.18. Consider the fuzzy set Ai in the universal set X defined as

µAi(x) = 1− 1

i

for all x ∈ X and i ∈ N. Then for any x ∈ X ,

µ⋃
i
Ai(x) = sup

i
µAi(x) = sup

i

(
1− 1

i

)
= 1.

Let a = 1. Then (⋃
i

Ai

)
1

= X.

However, for any i ∈ N, Ai1 = ∅ because, for any x ∈ X ,

µAi(x) = 1− 1

i
< 1.

Hence ⋃
i

Ai1 =
⋃
i

∅ = ∅ 6= X =

(⋃
i

Ai

)
1

.

This shows that equality is not possible always in case of property 1 of the above theorem. A similar
example can be used to show the same for property 2.

Theorem 2.19. Let A and B be two fuzzy sets in the universal set X . Then for all a ∈ [0, 1],

1. A ⊆ B iff Aa ⊆ Ba and A ⊆ B iff A
′
a ⊆ B

′
a;

2. A = B iff Aa = Ba and A = B iff A
′
a = B

′
a

Proof. 1. To prove the first proposition, we assume that there exists a0 ∈ [0, 1] such that Aa0 6⊆ Ba0 , that
is, there exists x0 ∈ X such that x0 ∈ Aa0 but x0 6∈ Ba0 . Then, µA(x0) ≥ a0 and µB(x0) < a0.
Hence, µB(x0) < µA(x0), which contradicts that A ⊆ B. Now assume that A 6⊆ B; that is, there
exists x0 ∈ X such that µB(x0) < µA(x0). Let a = µA(x0). Then x0 ∈ Aa and x0 6∈ Ba, which
demonstrates that Aa ⊆ Ba is not satisfied for all a ∈ [0, 1].

Now we prove the second proposition. The first part is similar to the previous proof. For the second
part, assume that A 6⊆ B. Then there exists x0 ∈ X such that µA(x0) > µB(x0). Let a be any number
between µA(x0) and µB(x0). Then x0 ∈ A

′
a x0 6∈ B

′
a. Hence A

′
a 6⊆ B

′
a, which demonstrates that

A
′
a ⊆ B

′
a is not satisfied for all a ∈ [0, 1].

2. Left as exercise.

The above theorem establishes that the properties of fuzzy set inclusion and equality are both cutworthy
and strong cutworthy.

Theorem 2.20. For any fuzzy set A in the universal set X , the following properties hold

1. Aa =
⋂
b<a

Ab =
⋂
b<a

A
′
b;

2. A
′
a =

⋃
a<b

Ab =
⋃
a<b

A
′
b.

18

Proof. 1. For any b < a, we clearly have Aa ⊆ Ab. Hence

Aa ⊆
⋃
b<a

Ab.

Now, for all x
⋂
b<a

Ab and for any ε > 0, we have x ∈ Aa−ε (since a − ε < a), which means that

µA(x) ≥ a− ε. Since ε is an arbitrary number, let ε→ 0. This results in µA(x) ≥ a (that is, x ∈ Aa).
Hence, ⋂

b<a

Ab ⊆ Aa,

which concludes the proof of the first equation. The proof of the second equation is analogous.

2. Left as exercise.

We now convert each of the a-cuts into a special fuzzy set aA, defined for x ∈ X as

µaA(x) = a.µAa(x).

Theorem 2.21. (First Decomposition Theorem). For every fuzzy set A in the universal set X ,

A =
⋃

a∈[0,1]

aA,

where the symbols have their usual meaning.

Proof. For each particular x ∈ X , let a = µA(x). Then,

µ ⋃
a∈[0,1]

aA(x) = sup
a∈[0,1]

µaA(x)

= max{ sup
a∈[0,α]

µaA(x), sup
a∈(α,1]

µaA(x)}.

Foe each a ∈ (α, 1], we have µA(x) = α < a and hence, µaA(x) = 0. On the other hand, for each a ∈ [0, α],
we have µA(x) = α ≥ a, therefore, µaA(x) = a. Hence

µ ⋃
a∈[0,1]

aA(x) = sup
a∈[0,α]

a = α = µA(x).

Since the same argument is valid for each x ∈ X , the validity of the theorem is established.

Theorem 2.22. (Second Decomposition Theorem). For any fuzzy set A in X , we have

A =
⋃

a∈[0,1]

aA
′
,

where aA
′

denotes a special fuzzy set defined by

µ
aA

′ (x) = a.µA′
a
(x)

where,
⋃

denotes the standard fuzzy union.

19

Proof. Since the proof is analogous to the proof of the First Decomposition theorem, we express it in a more
concise form. For each particular x ∈ X , let α = µA(x). Then,

µ ⋃
a∈[0,1]

aA
′ (x) = sup

a∈[0,1]
µ

aA
′ (x)

= max{ sup
a∈[0,α)

µ
aA

′ (x), sup
a∈[α,1]

µ
aA

′ (x)}

= sup
a∈[0,α)

a = α = µA(x).

Definition 2.23. The set of all levels a ∈ [0, 1] that represent distinct a-cuts of a given fuzzy set A is called a
level set of A. Formally,

Λ(A) = {a : µA(x) = a for some x ∈ X},

where Λ denotes the level set of fuzzy set A defined on X .

Theorem 2.24. (Third Decomposition Theorem). For every fuzzy set A in the universal set X ,

A =
⋃

a∈Λ(A)

aA,

where Λ(A) is the level set of A.

Proof. Analogous to the proofs of the other decomposition theorems.

Let us see some other definitions related to fuzzy sets. We will then see the Extension Principle for fuzzy
sets.

Definition 2.25. The membership function of the complement of a normalized fuzzy set Ã, µCÃ(x) is defined
by

µCÃ(x) = 1− µÃ(x), x ∈ X.

Example 2.26. Let Ã be the fuzzy set in the example (2.2) and B̃ be the fuzzy set ”large type of house”
defined as

B̃ = {(3, 0.2), (4, 0.4), (5, 0.6), (6, 0.8), (7, 1), (8, 1)}

The intersection C̃ = Ã ∩ B̃ is then

C̃ = {(3, 0.2), (4, 0.4), (5, 0.6), (6, 0.3)}

and the union D̃ = Ã ∪ B̃

D̃ = {(l, 0.2), (2, 0.5), (3, 0.8), (4, 1), (5, 0.7), (6, 0.8), (7, 1), (8, 1)}

The complement CB̃, which might be interpreted as ”not large type of house,” is

CB̃ = {(1, 1), (2, 1), (3, 0.8), (4, 0.6), (5, 0.4), (6, 0.2), (9, 1), (l0, 1)}.

It has already been mentioned that min and max are not the only operators that could have been chosen to
model the intersection or union, respectively, of fuzzy sets. The question arises, why those and not others?
Bellman and Giertz addressed this question axiomatically in 1973. They argued from a logical point of view,
interpreting the intersection as ”logical and,” the union as ”logical or,” and the fuzzy set Ã as the statement

20

”The element x belongs to the set Ã” which can be accepted as more or less true. It is very instructive to follow
their line of argument, which is an excellent example for an axiomatic justification of specific mathematical
models. We shall therefore sketch their reasoning: Consider two statements, S and T , for which the truth
values are µS and µT respectively, where µS , µT ∈ [0, 1]. The truth value of the ”and” and ”or” combination
of these statements, µ(S and T) and µ(S or T), both from the interval [0, 1] , are interpreted as the values
of the membership functions of the intersection and union , respectively, of S and T . We are now looking for
two real-valued functions f and g such that

µS and T = f(µS , µT)

µS or T = g(µS , µT).

Bellman and Giertz feel that the following restrictions are reasonably imposed on f and g:

1. f and g are nondecreasing and continuous in µS and µT .

2. f and g are symmetric, that is,

f(µS , µT) = f(µT , µS)

g(µS , µT) = g(µT , µS).

3. f(µS , µS) and g(µS , µS) are strictly increasing in µS .

4. f(µS , µT) ≤ min(µS , µT) and g(µS , µT) ≥ max(µS , µT). This implies that accepting the truth of
the statement ”S and T ” requires more, and accepting the truth of the statement ”S or T ” less than
accepting S or T alone as true.

5. f(1, 1) = 1 and g(0, 0) = 0.

6. Logically equivalent statements must have equal truth values, and fuzzy sets with the same contents
must have the same membership functions, that is,

S1 and (S2 or S3)

is equivalent to
(S1 and S2) or (S1 and S3)

and therefore must be equally true.

Bellman and Giertz now formalize the above assumptions as follows : Using the symbols ∧ for ”and” and ∨
for ”or”, these assumptions amount to the following seven restrictions, to be imposed on the two commutative
and associative binary compositions ∧ and ∨ on the closed interval [0, 1], which distributive with respect to
one another.

1. µS ∧ µT = µT ∧ µS and µS ∨ µT = µT ∨ µS .

2. (µS ∧ µT) ∧ µU = µS ∧ (µT ∧ µU) and (µS ∨ µT) ∨ µU = µS ∨ (µT ∨ µU).

3. µS ∧ (µT ∨ µU) = (µS ∧ µT) ∨ (µS ∧ µU) and µS ∨ (µT ∧ µU) = (µS ∨ µT) ∧ (µS ∨ µU).

4. µS ∧ µT and µS ∨ µT are continuous and nondecreasing in each component.

5. µS ∧ µT and µS ∨ µT are are strictly increasing in µS .

6. µS ∧ µT ≤ min(µS , µT) and µS ∨ µT ≤ max(µS , µT).

21

7. 1 ∧ 1 = 1 and 0 ∨ 0 = 0.

Bellman and Giertz then prove mathematically that µS∧T = min(µS , µT) and µS∨T = max(µS , µT).
For the complement, it would be reasonable to assume that if statement ”S” is true, its complement ”non

S” is false, or if µS = 1, then µnon S = 0 and vice versa.

Exercise 2.27. 1. Model the following expressions as fuzzy sets :

(a) Very small numbers.

(b) Numbers approximately between 10 and 20.

2. Determine all a-level sets and all strong a-level sets for the following fuzzy set

Ã = {(x, µC̃(x) : x ∈ R}
where µC̃(x) = 0 for x ≤ 10

=
1

1 + (x− 10)−2
, for x > 10.

3. Let X = {1, . . . , 10}. Determine the cardinalities and relative cardinalities of the following fuzzy sets:

(a) B̃ = {(2, 0.4), (3, 0.6), (4, 0.8), (5, 1), (6, 0.8), (7, 0.6), (8, 0.4)}.
(b) C̃ = {(2, 0.4), (4, 0.8), (5, 1), (7, 0.6)}.

2.3 Types of Fuzzy Sets

So far we have considered fuzzy sets with crisply defined membership functions or degrees of membership.
It is doubtful whether, for instance, human beings have or can have a crisp image of membership functions in
their minds. Zadeh therefore suggested the notion of a fuzzy set whose membership function itself is a fuzzy
set. If we call fuzzy sets, such as those considered so far, type 1 fuzzy sets, then a type 2 fuzzy set can be
defined as follows.

Definition 2.28. A type 2 fuzzy set is a fuzzy set whose membership values are type 1 fuzzy sets on [0, 1].

The operations intersection, union, and complement defined so far are no longer adequate for type 2 fuzzy
sets.

Definition 2.29. A type m fuzzy set is a fuzzy set in X whose membership values are type m − 1, m > 1
fuzzy sets on [0, 1].

From a practical point of view, such type m fuzzy sets for large m (even for m ≥ 3) are hard to deal with,
and it will be extremely difficult or even impossible to measure them or to visualize them. We will, therefore,
not even try to define the usual operations on them.

There are certain other types of sets. A definition was given by Hirota which is given below.

Definition 2.30. A probabilistic set A on X is defined by a defining function µA,

µA : X × Ω defined as (x, ω) 7→ µA(x, ω) ∈ ΩC

where µA(x,)̇ is the (B,BC)-measurable function for each fixed x ∈ X .

22

For Hirota, a probabilistic set A with the defining function µA(x, ω) is contained in a probabilistic set B
with µB(x, ω) if for each x ∈ X there exists an E ∈ B such that P (E) = 1 and µA(x, ω) ≤ µB(x, ω) for all
ω ∈ E. (Ω, B, P) is called the parameter space.

Further attempts at representing vague and uncertain data with different types of fuzzy sets were made by
Atanassov and Stoeva and by Pawlak which are given below.

Definition 2.31. Given an underlying set X of objects, an intuitonistic fuzzy set (IFS) A is a set of ordered
triples,

A = {(x, µA(x), νA(x)) : x ∈ X}

where µA(x) and νA(x) are functions mapping from X into [0, 1]. For each x ∈ X , µA(x) represents the
degree of membership of the element x to the subset A of X , and νA(x) gives the degree of nonmembership.
For the functions µA(x) and νA(x) mapping into [0, 1], the condition 0 ≤ µA(x) + νA(x) ≤ 1 holds.

Ordinary fuzzy sets over X may be viewed as special intuitonistic fuzzy sets with the nonmembership
function νA(x) = 1− µA(x).

Definition 2.32. Let U denote a set of objects called universe and let R ⊂ U × U be an equivalence relation
on U . The pair A = (U,R) is called an approximation space. For u, v ∈ U and (u, v) ∈ R, u and v belong to
the same equivalence class, and we say that they are indistinguishable in A. Hence the relation R is called an
indiscernibility relation. Let [x]R denote an equivalence class (elementary set of A) R containing element x;
then the lower and upper approximations for a subset X ⊆ U in A-denoted by A(X) and A(X) respectively,
are defined as follows

A(X) = {x ∈ U : [x]R ⊂ X} and A(X) = {x ∈ U : [x]R ∩X 6= θ}.

If an object x belongs to the lower approximation space of X in A, then ”x surely belongs to X in A,”
x ∈ A(X) means that ”x possibly belongs to X in A.”

For the subset X ⊆ U representing a concept of interest, the approximation space A = (U,R) can be
characterized by three distinct regions of X in A: the so-called positive region A(X), the boundary region
A(X)−A(X), and the negative region U −A(X).

The characterization of objects in X by the indiscernibility relationR is not precise enough if the boundary
region A(X)−A(X) is not empty. For this case it may be impossible to say whether an object belongs to X
or not, and so the set X is said to be nondefinable in A, and X is a rough set.

2.4 Extension Principle for Fuzzy Sets

We say that a crisp function
f : X → Y

is fuzzified when it is extended to act on fuzzy sets defined on X and Y . That is, the fuzzified function, for
which the same symbol f is usually used, has the form

f : F (X)→ F (Y),

and its inverse function, f−1 has the form

f−1 : F (Y)→ F (X).

A principle for fuzzifying crisp functions (or, possibly, crisp relations) is called an extension principle. Before
introducing this principle, let us first discuss its special case, in which the extended functions are restricted to
crisp power sets P(X) and P(Y). This special case is well established in classical set theory.

23

Given a crisp function from X to Y , its extended version is a function from P(X) to P(Y) that, for any
A ∈ P(X), is defined by

f(A) = {y : y = f(x), x ∈ A}.

Furthermore, the extended version of the inverse of f , denoted by f−1, is a function from P(Y) to P(X) that,
for any B ∈ P(Y), is defined by

f−1(B) = {x : f(x) ∈ B}.

Expressing the sets f(A) and f−1(B) by their characteristic functions (viewed here as special cases of mem-
bership functions), we obtain

[f(A)](y) = sup
x|y=f(x)

1A(x),

{f−1(B)}(x) = 1B(f(x)).

As a simple example illustrating the meaning of these equations, let X = {a, b, c} and Y = {1, 2}, and let us
consider the function

f : a → 1

b → 1

c → 2

When applying the last two equations to this function, we obtain the extension of f shown in the figure.
Allowing now sets A and B in the above equations to be fuzzy sets and replacing the characteristic functions
in these equations with membership functions, we arrive at the following extension principle by which any
crisp function can be fuzzified.

Extension Principle. Any given function f : X → Y induces two functions,

f : F (X) → F (Y),

f−1 : F (Y) → F (X),

which are defined by
[f(A)](y) = sup

x|y=f(x)
µA(x), ∀A ∈ F (X),

and
{f−1(B)}(x) = µB(f(x)), ∀B ∈ F (Y).

24

2.5 Few Probable Questions

1. Define the a-cut of a fuzzy set. Prove that for all a ∈ [0, 1], A
′
a ⊆ Aa.

2. Define strong a-cut of a fuzzy set. Show that (A ∩B)
′
a = A

′
a ∩B

′
a for every a ∈ [0, 1].

3. Define the union of two fuzzy sets. Show that (A ∪B)
′
a = A

′
a ∪B

′
a for every a ∈ [0, 1].

4. Show that for any collection of fuzzy sets Ai over a universal set X , where i belongs to the index set I ,
we have ⋃

i∈I
Aia ⊆

(⋃
i∈I

Ai

)
a

.

Can the inequality be replaced by equality? Justify.

5. State and prove the first decomposition theorem.

6. State and prove the second decomposition theorem.

7. Define the level set for a fuzzy set A. State and prove the third decomposition theorem.

25

1

 1.1 Introduction

In 1965, L. A. Zadeh introduced the concept of fuzzy set theory. Fuzzy set theory is an

extension of classical set theory. A logic that is not very precise is called a fuzzy logic. The

imprecise way of looking at things and manipulating them is much more powerful than precise

way of looking at them and then manipulating them. Fuzzy logic is one of the tools for making

computer system capable of solving problems involving imprecision. Fuzzy logic is an attempt to

capture imprecision by generalizing the concept of set to fuzzy set.

 In every day content most of the problems involve imprecise concept. To handle the

imprecise concept, the conventional method of set theory and numbers are insufficient and need

to be extended to some other concepts. Fuzzy concept is one of the concepts for this purpose.

A relation is a mathematical description of a situation where certain elements of sets are

related to one another in some way. Fuzzy relations are significant concepts in fuzzy theory and

have been widely used in many fields such as fuzzy clustering, fuzzy control and uncertainty

reasoning. They also play an important role in fuzzy diagnosis and fuzzy modeling. When fuzzy

relations are used in practice, how to estimate and compare them is a significant problem.

Uncertainty measurements of fuzzy relations have been done by some researchers. Similarity

measurement of uncertainty was introduced by Yager who also discussed its application.

 Unit 3

26

Unit 3Unit 3

2

1.2 Crisp Relation

To describe the fuzzy relation, first we describe relation by an example of daily life using

discrete fuzzy sets. Relationship is described between the colours of a fruit X

and the grade of maturity Y . Crisp set X with three linguistic terms is given as

X = {green, yellow, red}

 Similarly the grade of maturity for the other set Y will be

Y = {verdant, half-mature, mature}

Crisp formulation of a relation X Y between two crisp sets is presented in tabular form

In the above table “0” and “1” describe the grade of membership to this relation. This relation is

a new kind of crisp set that is built from the two crisp base set X and Y . This new set is now

called R and can be expressed by the rules

1. If the colour of the fruit is green then the fruit is verdant.

2. If the colour of the fruit is yellow then the fruit is half-mature.

3. If the colour of the fruit is red then the fruit is mature.

This crisp relation shows the existence or absence of connection, relations or interconnection

between two sets. Now we show the membership grades represented in the fuzzy relation.

 Verdant Half-mature Mature

Green 1 0.6 0

Yellow 0.4 1 0.3

Red 0 0.5 1

 The table above represents the fuzzy relation.

 Verdant Half-

mature

Mature

Green 1 0 0

Yellow 0 1 0

Red 0 0 1

27

3

Crisp relation is defined on the Cartesian product of two universal sets determined as

{(,) | , }X Y x y x X y Y   

 The crisp relation R is defined by its membership function

    
 

1, ,
,

0, ,R

x y R
x y

x y R


  

Here “1” implies complete truth degree for the pair to be in relation and “0” implies no relation.

When the sets are finite the relation is represented by a matrix R called a relation matrix.

1.2.1 Example

 Let  1,4,5X  and  3,6,7Y 

 Classical matrix for the crisp relation when R x y  is

3 6 7

1 1 1 1

4 0 1 1

5 0 1 1

R

 
   
  

1.2.2 Example

 Let  2,4,6,8A  and  2,4,6,8B 

 Classical matrix for the crisp relation R x y 

2 4 6 8

2 1 0 0 0

4 0 1 0 0

6 0 0 1 0

8 0 0 0 1

R

 
 
 
 
 
 

28

4

 Figure 1.1 Relation “equal to” and its characteristic function

1.3 Fuzzy relation

Let , X Y R be universal sets then;

       , , , | ,RR x y x y x y X Y  

 is called a fuzzy relation in RX Y 

 orX and Y are two universal sets, the fuzzy relation  ,R x y is given as

Fuzzy relations are often presented in the form of two dimensional tables. A m n matrix

represents a contented way of entering the fuzzy relation R .

   

   

1

1 1 1 1

1

, ,

, ,

n

R R n

m R m R m n

y y

x x y x y

R

x x y x y

 

 

 
   
  





   



1.3.1 Example

Let  1, 2,3X  and  1, 2Y 

 If the membership function associated with each order pair  ,x y is given by

    2

, x y
R x y e  

   
   

,
, | ,

,
R x y

R x y x y X Y
x y

     
  

29

5

 then derive fuzzy relation.
Solution

 The fuzzy relation can be defined in two ways using the standard nomenclature we have.

 

 
 

 
 

 
 

 
 

 
 

 

2 2 2 2 2 21 1 1 2 2 1 2 2 3 1 3 2

, , , , ,
1,1 1,2 2,1 2,2 3,1 3,2

e e e e e e
R

               
  

           
1.0 0.37 0.37 1.0 0.02 0.37

, , , , ,
1,1 1, 2 2,1 2, 2 3,1 3, 2

R
    
  

In the second method using the relational matrix, we have

1 0.37

0.37 1

0.02 0.37

R

 
   
  

Thus the membership function describes the closeness between set X andY . From

the relational matrix it is obvious that higher values imply stronger relation.

1.4 The maximum-minimum composition of relations

LetX , Y and Z be universal sets and let R be a relation that relates elements from

X toY , i.e.

      , , , , ,RR x y x y x X y Y R X Y    

 and

      , , , , , QQ y z y z y Y z Z Q Y Z    

Then Swill be a relation that relates elements inX that R contains to the elements

in Z that Q contains, i.e.

 S R Q 

Here “ ” means the composition of membership degrees of R and Q in the max‐min

sense.

     , , , , ,sS x z x z x X z Z S X Z    

 max‐min composition is then defined as

30

6

        , max , , ,S R
y

Q
Y

x z min x y y z  




 and max product composition is then defined

       , max , . ,S R
y

Q
Y

x z min x y y z  




1.4.1 Example

Let      1 2 1 2 1 2, , ,X x x and Y y y and Z z z  

0 1

1 0
R

 
  
 

 and
0 1

1 0
Q

 
  
 

Then find the max‐min composition and max product composition

 S R Q 

1 0

0 1
S

 
  
 

 is the max‐min composition.

 and

1 0

0 1
S

 
  
 

 is the max product composition

For crisp relations max‐min composition and max product will yield the same result, when

X has three elements,Y has four elements andZ has two elements like

 1 2 3, ,X x x x ܽ݊݀  1 2 3, 4, ,Y y y y y ܽ݊݀  1 2,Z z z then for relations

1 2 3 4

1

2

3

1 0 1 0

0 0 0 1

0 0 0 0

y

R

y y y

x

x

x

 
   
  

31

7

1 2

1

2

3

4

0 1

0 0

0 1

0 0

Q

x x

y

y

y

y

 
 
 
 
 
 

the max‐min composition is

1 2

1

2

3

0

0 0

0 0

1

z z

x

S x

x

 
   
  

In this example max‐min composition and max product have the same result.

1.5 Fuzzy max-min composition operation

 Let us consider two fuzzy relations 1R and 2R defined on a Cartesian space X Y

and Y Z respectively. The max-min composition of 1R and 2R is a fuzzy set defined on a

cartesian spaces X Z as

where 1 2R R is the max‐min composition of fuzzy relations 1R and 2R and max product composition is

defined as

   
1 2 1 2

max , . , | , ,x y y z x X y Y z Z
R R R R

        

1.5.1 Example

 Let  1 ,R x y and  2 ,R x y be defined as the following relational matrices

1

0.6 0.5

1 0.1

0 0.7

R

 
   
  

 and 2

0.7 0.3 0.4

0.9 0.1 0.6
R

 
  
 

 We shall first calculate the max-min composition 1 2R R

      
1 2

1 2 , ,max min , , , | , ,R R x z x y y z x X y Y z Z
R R

          


32

8

1 2

0.6 0.5
0.7 0.3 0.4

1 0.1
0.9 0.1 0.6

0 0.7

R R

 
         

 

 Now we calculate

        
1 2

1, 1 max min 0.6,0.7 ,min 0.5,0.9 max 0.6,0.5 0.6x z
R R

   


 Similarly we can calculate the other entries. The relational matrix for max-min composition

in fuzzy relation is thus

1 2

0.6 0.3 0.5

0.7 0.3 0.4

0.7 0.1 0.6

R oR

 




 



1.5.2 Example

 Let    1 2, ,R x y and R x y be defined by the following relational matrix

1 2 3 4 5

1

1 2

3

0.1 0.2 0 1 0.7

0.3 0.5 0 0.2 1

0.8 0 1 0.4 0.3

y y y y y

x

R x

x

 
   
  

1 2 3 4

1

2

2 3

4

5

0.9 0 0.3 0.4

0.2 1 0.8 0

0.8 0 0.7 1

0.4 0.2 0.3 0

0 1 0 0.8

z z z z

y

y

R y

y

y

 
 
 
 
 
 
  

 we shall first compute the max-min composition  1 2 ,R R x z

            

1 2
1, 1 max min 0.1,0.9 ,min 0.2,0.2 ,min 0,0.8 ,min 1,0.4 ,min 0.7,0

R
z

R
x 



 max 0.1,0.2,0,0.4,0 0.4 

 Similarly we can determine the grades of membership for all pairs

  , , 1,2,3, 1, 4i ix z i j  

33

9

1 2 3 4

1

1 2 2

3

0.4 0.7 0.3 0.7

0.3 1 0.5 0.8

0.8 0.3 0.7 1

z z z z

x

R oR x

x

 
   
  

 for the max product composition, we calculate

   
1 2

1 1 1 1, . , 0.1.0.9 0.09x y y z
R R

   

   2
1

1 2 1
2

, . , 0.2.0.2 0.04x y y z
R R

   

    
1 2

1 3 3 1, . , 0.0.8 0x y y
R

z
R

   

    
1 2

1 4 4 1, . , 1.0.4 0.4x y z
R

y
R

   

    
1 2

1 5 5 1, . , 0.7.0 0x y y
R

z
R

   

 hence

    
1 2

1, 1 max 0.09,0.04,0,0.4,0 0.4
o

x z
R R

  

In the similar way after performing the remaining computation, we obtain

1 2 3 4

1

1 2 2

3

0.4 0.7 0.3 0.56

0.27 1 0.4 0.8

0.8 0.3 0.7 1

z z z z

x

R oR x

x

 
   
  

1.6 Conclusion

 It is clear from the example that max-min composition and max product composition of

crisp relations will yield the same result, but in fuzzy max-min composition and max product

composition have different result.

34

10

2.1 Projection of Fuzzy Relation

Let        , , , | ,RR x y x y x y X Y   be a fuzzy relation. The projection of  ,R x y

 on X denoted by 1R is given by

   1 ,max , | ,R
y

R x x y x y X Y      
  

 and the projection of  ,R x y on Y denoted by 2R is given by

     2 , max , | ,R
x

R y x y x y X Y  

2.1.1 Example

 Let R be a fuzzy relation defined by the following relational matrix

1 2 3 4 5

1

6

2

3

0.1 0.2 0.4 0.8 1 0.8

0.2 0.4 0.8 1 0.8 0.6

0.4 0.8 1 0.8 0.4 0.2

y y y y y y

x

x

x

R

 
   
  

 The projection of  ,R x y on X is calculated as, e.g.

   
1

1 max 0.1,0.2,0.4,0.8,1, 0.8 1
R

x  

 In the similar way can calculate the grades of membership for all pairs, so the X projection is

      11 2 3,1 , ,1 , ,1R x x x

 The projection of  ,R x y on Y is calculated as, e.g.

   

1
1 max 0.1,0.2,0.4 0.4

R
y  

 In the similar way we can determine the membership grade for all other pairs, so the Y

projection

            1, 5 62 2 3 40.4 , , 0.8 , ,1 , ,1 , ,1 , , 0.8R y y y y y y

35

Unit 4Unit 4

11

2.2 Cylindrical extension of fuzzy relation
The cylindrical extension on X Y of a fuzzy set A of X is a fuzzy relation cylA whose

membership function is equal to

   , , ,cylA x y A x x X y Y    

Cylindrical extension from X-projection means filling all the columns of the related matrix by the

X -projection. Similarly cylindrical extension from Y projection means filling all the rows of

the relational matrix by the Y -projection.

2.2.1 Example

The cylindrical extension of 2R form the previous example is

1 2 3 4 5 6

1

2 2

3

0.4 0.8 1 1 1 0.8

0.4 0.8 1 1 1 0.8

0.4 0.8 1 1 1 0.8

y y y y y y

x

R x

x

 
   
  

2.3 Reflexive Relation

 Let R be a fuzzy relation in X X then R is called reflexive, if
 , 1R x x x X   

2.3.1 Example

Let  1,2,3,4X 

1 2

1 1 0.9 0.6 0.2

2 0.9 1 0.7 0.3

3 0.6 0.7 1 0.9

4 0.2 0. 1

4

9

3

3 0.

R

 
 
 
 
 
 

 is reflexive relation

36

12

2.4 Antireflexive relations

Fuzzy relation R X X  is antireflexive if

 , 0,R x x x X  

2.4.1 Example

1 2 3

1

1 2

3

0 0 0.6

0.3 0 0

0 0.3 0

x x x

x

R x

x

 
   
  

 is antireflexive relation

2.5 Symmetric Relation

A fuzzy relation R is called symmetric if,

   , , ,R Rx y y x x y X   

2.5.1 Example

 Let  1 2 3, ,X x x x

1 2 3

1

2

3

0.8 0.1 0.7

0.1 1 0.6

0.7 0.6 0.5

x x x

x

R x

x

 
   
  

 is a symmetric relation.

2.6 Antisymmetric Relation

 Fuzzy relation R X X  is antisymmetric iff

if  , 0R x y  then  , 0 , ,R y x x y X x y   

37

13

2.6.1 Example

1 2 3

1

2

3

0 0 0.7

0.2 0 0

0 0.2 0

x x x

x

R x

x

 
   
  

 is antisymmetric relation.

2.7 Transitive Relation

Fuzzy relation R X X  is transitive in the sense of max-min iff

       , max min , , , ,R R R

y X
x z x y y z x z X  


 

 since 2R R R  if

      2 , max , , ,R R
y X

x z x y y z
R

  




 then R is transitive if  R R R R R R  

and 2R R means that    2 , ,Rx y y x
R

 

2.7.1 Example

Let  1, 2, 3,X x x x

 is

0.7 0.9 0.4

0.1 0.3 0.5

0.2 0.1 0

R

 
   
  

a transitive relation?

Solution

0.7 0.9 0.4 0.7 0.9 0.4

0.1 0.3 0.5 0.1 0.3 0.5

0.2 0.1 0 0.2 0.1 0

R R

   
       
      

 

2

0.7 0.7 0.5

0.2 0.3 0.3

0.2 0.2 0.2

R

 
   
  

38

14

 Since  2 ,i jx x
R

 is not always less than or equal to  ,i jx x
R

 , hence R is not transitive.

2.7.2 Example

 Let  1, 2,X x x

 is
0.4 0.2

0.7 0.3
R

 
  
 

a transitive relation?

Solution

0.4 0.2 0.4 0.2

0.7 0.3 0.7 0.3
R R

   
    
   

 

 using max-min composition

         
         

2
max min 0.4,0.4 ,min 0.2,0.7 max min 0.4,0.2 ,min 0.2,0.3

max min 0.7,0.4 ,min 0.3,0.7 max min 0.7,0.2 ,min 0.3,0.3
R

 
  
  

2 max(0.4,0.2) max(0.2,0.2)

max(0.4,0.3) max(0.2,0.3)
R

 
  
 

2 0.4 0.2

0.4 0.3
R

 
  
 

  2 ,i jx x
R


is less than or equal to  ,i jx x

R
 , so R is transitive.

2.8 Similarity Relations

R X X  which is reflexive, symmetric and transitive is called the similarity relation.
1 2 3 4 5 6

1

2

3

4

5

6

1 0.2 1 0.6 0.2 0.6

0.2 1 0.2 0.2 0.8 0.2

1 0.2 1 0.6 0.2 0.6

0.6 0.2 0.6 1 0.2 0.8

0.2 0.8 0.2 0.2 1 0.2

0.6 0.2 0.6 0.8 0.2 1

R

x x x x x x

x

x

x

x

x

x

 
 
 
 

  
 
 
 
 

is a similarity relation.

39

15

2.8.1 Theorem

 Each equivalence class  R X is given as

     , 0,1
X

R X
R

  

 where  R X is the ߙ-cut of  R  .

2.8.2 Definition

 A X , A is a fuzzy set the  -cut of A is a non fuzzy set denoted by A and defined by

     : , 0,1AA x x     

2.8.3 Example

 For  1R x we have

    0.2 1 1 2 3 4 5 6, , , , ,R x x x x x x x

   1 2 3 4 5 60.2 1

0.2 0.2 0.2 0.2 0.2 0.2 0.2
x x x x x xR x

     

    0.6 1 1 3 4 6, , ,R x x x x x

   1 3 4 60.6 1

0.6 0.6 0.6 0.6 0.6
x x x xR x

   

    1 1 1 3,R x x x

   1 31 1

1 1 1
x xR x

 

Equivalence class for  1R x

 1
1 2 3 4 5 6 1 3 4 6 1 3

0.2 0.2 0.2 0.2 0.2 0.2 0.6 0.6 0.6 0.6 1 1R x x x x x x x x x x x x x           

         
1

1 2 3 4 5 6

max 0.2,0.6,1 max 0.2,0.6,1 max 0.2,0.6 max 0.2,0.60.2 0.2R x x x x x x x     

 1
1 2 3 4 5 6

0.2 0.6 0.2 0.61 1R x x x x x x x     

40

16

2.8.4 Example

Equivalence class for the similarity relation R is

 1
1 2 3 4 5 6

0.2 0.6 0.2 0.61 1R x x x x x x x     

 2
1 2 3 4 5 6

0.2 0.2 0.2 0.8 0.21R x x x x x x x     

 3
1 2 3 4 5 6

0.2 0.6 0.2 0.61 1R x x x x x x x     

 4
1 2 3 4 5 6

0.6 0.2 0.6 0.2 0.81R x x x x x x x     

 5
1 2 3 4 5 6

0.2 0.8 0.2 0.2 0.21R x x x x x x x     

 6
2 3 4 51 6

0.6 0.2 0.6 0.8 0.2 1R x x x x x x x     

2.9 Antisimilarity Relation

If R is a similarity relation then the complement of R is antisimilarity relation.

R X X  is a antisimilarity relation if

    / , 1 ,x y x y
R R

  

The antisimilarity relation is antireflexive, symmetric and transitive in the sense of max-
min, i.e.

      / / /, min max , , , ,
y X

x z x y y z x z R
R R R

  


   
 

2.9.1 Example

 Prove that

1 0.1 0.7

0.1 1 0.7

0.7 0.7 1

R

 
   
  

is antisimilarity relation?

41

17

Solution

 According to definition of antisimilarity relation

   / , 1 ,x y x y
R R

  

 /

1 0.1 0.7

, 1 0.1 1 0.7

0.7 0.7 1

x y
R


 
    
  

 /

0 0.9 0.3

, 0.9 0 0.3

0.3 0.3 0

x y
R


 
   
  

 This is anti-reflexive, symmetric and transitive, so R is antisimilarity relation.

2.10 Weak Similarity

R X X  which is reflexive and symmetric is called the relation of weak similarity
(not transitive).

1 0.1 0.8 0.2 0.3

0.1 1 0 0.3 1

0.8 0 1 0.7 0

0.2 0.3 0.7 1 0.6

0.3 1 0 0.6 1

R

 
 
 
 
 
 
  

 is weak similarity relation

2.11 Order Relation

An order relation R X X  is transitive relation in the sense of max-min; i.e

       , max min , , , , ,R R R
y X

x z x y y z x z X  


 

 42

18

2.12 Pre Order Relations

A pre order relation R X X  is reflexive and transitive in the max-min sense e.g.

1 2 3 4 5

1

2

3

4

5

1 0.7 0.8 0.5 0.5

0 1 0.3 0 0.2

0 0.7 1 0 0.2

0.6 1 0.9 1 0.6

0 0 0 0 1

R

x x x x x

x

x

x

x

x

 
 
 
 
 
 
  

2.13 Half Order Relation

 A fuzzy half order is a relation R X X  which is reflexive

  , 1R x x x X   

 and weakly antisymmetric, i.e.

if  , 0R x y  and  , 0R y x  then x y

1 2 3 4 5 6

1

2

3

4

5

6

1 0.8 0.2 0.6 0.6 0.4

0 1 0 0 0.6 0

0 0 1 0 0.5 0

0 0 0 1 0.6 0.4

0 0 0 0 1 0

0 0 0 0 0 1

x x x x x x

R

x

x

x

x

x

x

 
 
 
 

  
 
 
 
 

is half order relation

43

19

3.1 Fuzzy Graph

In 1975, Rosenfeld considered fuzzy relations on fuzzy sets. He developed the theory of

fuzzy graphs. Bang and Yeh during the same time introduced various connectedness concepts in

fuzzy graph. Inexact information is used in expressing or describing human behaviors and mental

process. The information depends upon a person subjectively and it is difficult to process

objectively.

Fuzzy information can be analyzed by using a fuzzy graph. Fuzzy graph is an expression

of fuzzy relation and thus the fuzzy graph is frequently expressed in fuzzy matrix.

Mathematically a graph is defined as  G , V E where V denotes the set of vertices

and E denotes the set of edges. A graph is called a crisp graph if all the values of arcs are 1 or 0

and a graph is called fuzzy graph if its values is between 0 and 1.Fuzzy graph  ,G   is a

pair of functions  : 0,1S 

 where S is the set of vertices and  : 0,1S S   , ,x y S  .

 Fuzzy graph  ,H v is called a fuzzy subgraph of G if

    , x x x S    and    , , , v x y x y x y S  

3.1.1Example

Fuzzy relation is defined by the following fuzzy matrix the corresponding fuzzy graph is

shown in the fig (3.1)

1 2 3

1

2

3

0.5 1.0 0.0

0.0 0.0 0.5

1.0 1.0 0.0

b b b

a

a

a

 
 
 
  

44

20

1a

2a

3a

1b

2b

3b

0.5

0.5

1.0

1.0

1.0

 Fig 3.1

 Fuzzy graph

3.2 Complement of a Fuzzy Graph

The complement of a fuzzy graph  : ,G   is a fuzzy graph : (,)G   where   and

(,) () () (,) ,u v u v u v u v V       

 Complement of a fuzzy graph are shown in fig below

1(0.5)u

4(0.4)u 3 (0.3)u

2 (0.6)u 1(0.5)u

4(0.4)u 3 (0.3)u

2 (0.6)u

G G

Fig 3.2()a

Complement of a fuzzy graph

45

21

1(0.6)v

4(0.4)v 3 (0.6)v

2 (0.4)v

G G

1(0.6)v

4(0.4)v

2 (0.4)v

3 (0.6)v

 Fig 3.2 b

Complement of a fuzzy graph

3.3 Model for Predicting Score in Cricket

 In this model we can predict score using max-min composition,max product composition

and max-av composition.

Speed of bowling = ሼfast bowling,medium bowling, spin bowlingሽ and

Y= condition on pitches= {good wicket, fair wicket, sporting wicket, green wicket, crumbling

wicket, rough wicket}

 Let R denotes the relationship between speed of bowling and condition on pitch and Q

 denotes the relationship between conditions on pitches and runs on the board.

.

0.6 0.5 0.4 0.1 0.9 0.5

0.8 0.6 0.9 0.2 0.1 0.6

0.7 0.8 0.6 0.7 0.1 0.2

gd w f w s w gr w c w r w

fast

R medium

spin

 
   
  

46

22

and

. . .

. 0.4 0.8 0.7

. 0.3 0.8 0.8

. 0.2 0.7 0.8

. 0.8 0.6 0.4

. 0.7 0.5 0.4

. 0.9 0.4 0.2

low r ave r hig r

gd w

f w

s w
Q

gr w

c w

r w

 
 
 
 

  
 
 
 
 

R Q  Relationship between speed of the bowling and runs on the board

 We calculate R Q by using max-min composition rule

  max min(0.6,0.4), min(0.5,0.3), min(0.4,0.2), min(0.1,0.8), min(0.9,0.7), min(0.5,0.9)

  max 0.4,0.3,0.2,0.1,0.7,0.5

 0.7

 Similarly we can calculate the other entries

 The relational matrix for max-min composition in fuzzy relational is thus

. . .

0.7 0.6 0.6

0.6 0.8 0.8

0.7 0.8 0.8

low r ave r hig r

fast

R Q medium

spin

 
   
  



Max Product composition

 Now by using max product composition we find the relationship between speed of the

bowling and runs on the board

 R Q  Relationship between speed of the bowling and runs on the board

 We calculate R Q by using max product composition rule

  max 0.6.0.4,0.5.0.3,0.4.0.2,0.1.0.8,0.9.0.7,0.5.0.9

  max 0.24,0.15,0.08,0.08,0.63,0.45

 0.63

(3.1)

47

23

Similarly

  max 0.48,0.4,0.28,0.06,0.45,0.2

 0.48

 and

  max 0.42,0.4,0.32,0.04,0.36,0.1

 0.42

Similarly we calculate the other entries and the relational matrix for max product composition is

. . .

0.63 0.48 0.4

0.54 0.64 0.64

0.56 0.64 0.64

low r ave r hig r

fast

R Q medium

spin

 
   
  



Max-av Composition

Now by using max product composition we find the relationship between speed of the

bowling and runs on the board

R Q  Relationship between speed of the bowling and runs on the board

 We calculate R Q by using max-av composition rule

 1

.max 0.6 0.4,0.5 0.3,0.4 0.2,0.1 0.8,0.9 0.7,0.5 0.9
2

     

  1
.max 1,0.8,0.6,0.9,0.16,0.14

2


  1
0.16

2


 0.8

for the second entry

 1

.max 0.14,0.13,0.11,0.7,0.14,0.9
2

  1
0.14

2


 0.7

(3.2)

48

24

 for third entry

 1

.max 0.13,0.13,0.12,0.5,0.13,0.7
2

  1
0.13

2


 0.65

 Similarly we calculate the other entries and the relational matrix for max-av composition is

. . .

0.8 0.7 0.65

0.85 0.8 0.85

0.75 0.8 0.8
av

low r ave r hig r

fast

R Q medium

spin

 
   
  



By analyzing the results of    3.1 , 3.2 and  3.3 we conclude that  3.2 is more reliable.

3.4 The Modus Ponens Law in Medical Diagnosis

The creators of fuzzy set theory, who develop mathematical models applied to different

technical domain, have also made representative contributions in medical investigation. To

decide an appropriate diagnosis in one patient we introduce three non fuzzy sets

 The set of symptoms  1 2, , , mS S S S 

 The set of diagnosis  1 2, , , PD D D D 

 The set of patients  1P P

The symptoms occurring in set S are associated with the diagnosis from set D .The symptoms

1 2, , , nS S S that are stated in set S are included in the pairs      1 1 1 2 1, , , , , , nP S P S P S .Fuzzy

relation PS as a one row matrix

      
1 2

1, 1 1, 2 1,...

... n

PS PS PS n

S S S

PS P S P S P S     

where  1 , , 1, 2, ,PS jP S j n   is a value of the membership degree providing us with

evaluation of the intensity jS in 1P .

The next relation consists of the pairs      1 1 1 2 n, , , , , , PS D S D S D .

(3.3)

49

Core Paper
MATC 3.3
Block - II

Marks : 37 (SSE : 30; IA : 05)
Computer Programming in ‘C’ (Theory)

Syllabus
• Unit 5 •

Fundamentals of ‘C’ Language : Basic structure of a ‘C’ program, Basic Data type, Constants and Vari-
ables, Identifier, Keywords, Constants, Basic data type, Variables, Declaration and Initialization, Statements
and Symbolic constants. Compilation and Execution of a ‘C’ program.

• Unit 6 •

Operators and Expressions : Arithmetic, Relational, Logical operators. Increment, Decrement, Control, As-
signment, Bitwise, and Special operators. Precedence rules of operators, Type Conversion (casting), Modes
of arithmetic expressions, Conditional expressions.

• Unit 7 •

Input / Output Operations : Formatted I/O - Single character I/O (getchar(), putchar()), Data I/O (scanf(),
printf()), String I/O (gets(), puts()). Programming problems. Decision Making Statements : Branching – if
Statement, if else Statement, Nested if else Statement. else if and switch Statements. Loop Con-
trol : for Statement, while Statement, do while Statement. break, continue and exit Statements. Programming
problems.

• Unit 8 •

Functions : Function declaration, Library functions, User defined function, Passing argument to a function,
Recursion. Programming problems. Arrays : Array declaration and static memory allocation. One dimen-
sional, two dimensional and multidimensional arrays. Passing arrays to functions. Sparse matrix.

• Unit 9 •

Pointers : Basic concepts of pointer, Functions and Pointers. Pointers and Arrays, Memory allocation,
Passing arrays to functions, Pointer type casting. Programming problems. Structures and Unions : Declaring
a Structure, Accessing a structure element, Storing methods of structure elements, Array of structures, Nested
structure, Self –referential structure, Dynamic memory allocation, Passing arrays to function. Union and rules
of Union. Programming problems.

• Unit 10 •

File Operations : File Input / Output operations – Opening and Closing a file, Reading and Writing a file.
Character counting, Tab space counting, File-Copy program, Text and Binary files.

50

School of Distance Education

‘C’ Programming for Mathematical Computing Page 22

Unit 3: Overview of C
Structure
3.1. History of C

3.2. Importance of C

3.3 Sample Programs

3.4 Basic Structure Of C Programs

3.5 Programming style

3.6 Executing A C Program

3.7 Unix System

3.8 MS- DOS System

3.9 Summary

3.1. History of C

C is a structured general purpose machine Independent high level programming language
developed by Dennis Ritchie at AT & T’s Bell Labs of USA in the mid 1970s for the Unix based
operating system. Many of the important concepts of C are borrowed from the language BCPL
(Basic Combined Programming Language), developed by Martin Richards in 1967. Although
originally designed as a systems programming language, C has proved to be a powerful and flexible
language that is used for a variety of applications for nearly every available platform. The merit of C
lay in the fact that it is easier to read, more flexible and more efficient at using memory. It is
particularly popular for personal computer programmers because it requires less memory than other
languages. C is the archetype or original model for many modern languages as when we find
Language constructs in C, such as "if" statements, "for" and "while" loops, and types of variables, can
be found in many later languages. Today, there are very few platforms that do not have a C compiler

In the late, seventies C began to replace the more familiar languages of that time like, ALGOL,
PL/I, etc. The drawback of the B language was that it did not know data-types. Both BCPL and B are
“ type less” system programming languages. By Contrast, C Provides a variety of data types with
powerful features. The fundamental data types are integers, characters and floating point numbers of
various sizes. In addition there is a hierarchy of derived data types created with arrays, pointers,
structures and union.

Since C was developed along with the UNIX operating system, it is has close association with
UNIX. Major parts of the popular operating systems like windows, Linux and Unix are coded in C.
This is because when it comes to performance nothing beats C. Although C is technically a high-
level language, it is one of the "lowest-level" high-level programming languages in the sense; it is
much closer to assembly language than are most other high-level languages. This closeness to the
underlying machine language allows C programmers to write very efficient code. More over if one is

Unit 5

51

School of Distance Education

‘C’ Programming for Mathematical Computing Page 23

to extend the operating system to work with new devices one needs to write device driver programs.
These programmes are exclusively written in C.

For many years, C was the reference manual, but eventually with the appearance of many C
compilers coupled with the wide popularity of UNIX operating system, it gained wide popularity
among computer professionals. Today, C is the language of choice while building a variety of
hardware and operating system platforms.

The American National Standards Institute (ANSI) constituted a committee in 1983, to provide an
updated definition of C. The resulting definition “ANSI C “was completed in late 1988, and modern
compilers are already supporting most of the features of this standard .The standard is based on the
original reference Manual in the first edition, the classic book “The C Programming Language” ,
with little or no changes on the original design of the C language . They ensured that old programs
still worked with the new standard, failing that, the compiler would produce warnings of new
behavior.

One of the significant contributions of the standard is the definition of a new syntax for the defining
and declaration of the function. This extra information makes it easier for compilers to detect errors
caused by mismatched arguments. A second significant contribution of the standard is the definition
of a library to accompany C. These library functions specifies functions for accessing the operating
system, formatted input and output, memory allocation, string manipulation, and the like. A
collection of standard headers provides uniform.

3.2. Importance of C

C is an immensely popular language widely used and well understood. Some of the versatile features
of C language are: reliability, portability, flexibility, interactivity, modularity and finally efficiency
and effectiveness. It is a great tool for expressing programming ideas in a way it is easily understood,
regardless of the language users are most familiar with. It is in fact the original or archetypal
building block for many other currently known languages and it is very close to assembly language. C
is a robust language whose rich set of built in functions, and operators can be used to write any
complex programs. In C large programs are divided into small programs called functions and data
moves freely around the systems from one function to another. Moreover, the C compiler combines
the capabilities of an assembly language with the attributes of a high level language and therefore it is
useful for writing both system software and business packages without worrying about the hardware
platforms where they will be implemented..The great thing about C is that it can be used to write
high performance code for both application and system software. Further it can interact with
hardware at quite low level. In fact, many of the compilers available in market are written in C. It is
the language used for developing system applications that forms major portion of operating systems
such as Windows, UNIX and Linux. C is increasingly being used in Database systems, Graphics,
Spread sheets, word processors, Compilers /Assemblers, Network drivers and interpreters.

52

School of Distance Education

‘C’ Programming for Mathematical Computing Page 24

The variety of data types and powerful operators available in C makes C programs very efficient and
fast. In C there are only 32 key words and its strength lies in its built-in functions. Some standard
functions are available which can be used for developing programs. C Being highly portable,
programs written for one computer can be made to run on another system with little or no
modification.

C is at once one of the pillars of modern information technology (IT) and computer science (CS). C
is a high level language that lets us to write very low level stuff like device drivers that runs as fast as
assembly written programs. C's power and fast program execution come from its ability to access low
level commands, similar to assembly language, but with high level syntax. It allows low level access
to information and commands while still retaining the portability and syntax of a high level language.
In this process C imposes few constraints on the programmer. Further it is tailor- made for structured
programming, thus requiring the user to think a problem in terms of function modules or blocks. A
collection of these modules make a program debugging and testing easier..Thus, C meets the
requirements, where speed, space and portability are important.

Another prime feature of C is its ability to extend itself. A program in C is basically a collection of
functions that are supported by the C library. We can add our own functions to the C library .With
the availability of large number of functions , the programming burden becomes simple. C being
simple and easy to understand, most of the operating systems and game software are written in C .

Before discussing some distinct features of C, we shall look at some sample programs in C, and as
we proceed, can learn more about the language.

3.3 Sample Programs

Printing A Message: Sample program 1

The only way to learn a new programming language is by writing programs in it. Let us begin by
looking at the construction of a very simple program.

The following is the output of the above program code when it is executed:

hello, fine

Fig. 3.1 The first C program to print a single line of text

main()

{

/* ……Printing begins…….*/

Printf(“ hello, fine ”);

/* ……Printing ends…….*/

}

53

School of Distance Education

‘C’ Programming for Mathematical Computing Page 25

In the above C program, the code begins executing at the beginning of main. main() is a special

function used by the C systems to tell the computer where the program begins. This means that every

program must have a main somewhere. In this example, main is defined to be a function that expects

no arguments, which is indicated by the empty list (). All the statements that belong to main() are

enclosed within a pair of braces { } as indicated above. The opening brace “{“ indicates the

beginning of the function main and the closing brace “}“ marks the end of the program. All the

statements between these two braces form the function body. The function body contains a set of

instructions to perform the given task.

In our example, the function body contains three statements out of which only the printf line is an

executable statement. A function is called by naming it, followed by parenthesized list of arguments,

so this calls the function printf with the argument “ hello, fine ”. printf is a library function that

prints output , in this case the string of characters (String constant or character string) between quotes.

The two lines

/* ……Printing begins…….*/

And

/* ……Printing ends…….*/

Are comment lines which in this program tells what the program does. Any characters between /*

and .*/ are ignored by the compiler (comments are solely given for the understanding of the

programmer or the fellow programmers); they may be used freely to make a program easier to

understand . Any number of comments can be written at any place in the program. The normal

language rules do not apply to text written with in /* and .*/ . Thus we can type this text in small

case, capital, or a combination. Moreover, comment can be split over more than one line, as in,

/* printing

begins.*/

Such a comment is often called a multi-line comment. Comments cannot be nested. For example,

/* Printing begins /*Printing ends.*/*/

Is invalid and therefore results in an error.

Let us come back to the printf function, the only executable statement of the program .

printf(“ hello, fine ”);

The above quotation can be printed in two lines, by adding another printf function, as in,

printf(“hello,\n”);

printf(“fine”);

54

School of Distance Education

‘C’ Programming for Mathematical Computing Page 26

The information contained between the parentheses is called the augment (which are simply strings
of character to be printed out) of the function. The argument of the first printf contains a combination
of two characters \ and n at the end of the string. The combination sequence” \n “ is called newline
and it takes the character to the next line. Therefore, you will get the output split over two lines. \n is
one of the several Escape Sequence (similar in concept to the carriage return key on a type writer,
which when printed advances the output to the left margin on the next line) available in C. if you try
something like

printf(“hello, fine

”);

The C compiler will produce an error message.

No space is allowed between \ and n. printf never supplies a new line automatically, so several
function calls may be used to build up an output line in stages, as in,

.

To produce identical output. Here \n represents only a single character. An escape sequence like \n
provides a general and extensible mechanism for representing hard to type or invisible characters. It is
also possible to produce multi line output by one printf statement with the use of newline character at
appropriate places, as in,

printf (“hello\n….fine,\n……I\n……..am ok!”);

Where the output is

hello

…..fine,

……….I

……….am ok !

main()

{

/* ……printing begins…….*/

printf(“ hello,”);

printf(“ fine,”);

printf(“ \n”);

/* ……printing ends…….*/

}

55

School of Distance Education

‘C’ Programming for Mathematical Computing Page 27

The inclusion of the preprocessor directive # include < stdio.h > at the beginning of all programs

that use any input/output library functions should not be insisted for functions like, printf and scanf,
Printf is a pre defined standard C function (predefined in the sense that it is function that has already

been written, compiled, and linked together with the program at the time of linking).

Note that the print line ends with a semi colon. Thus the mark ; acts as a statement terminator.

That is, every C statement must end with a ; mark. In C , everything is written in lowercase letters.

However, uppercase letters are used for symbolic names representing constants. we may also use

uppercase letters in output strings like “HELLO” and “FINE”.

The General format of simple C programs is shown below.

Function Name

Beginning of program

Program statements

End of program

SAMPLE PROGRAM 2: Adding Two Numbers

Here is a simple program which demonstrates the use of new ideas, including comments, declaration,

variables, and arithmetic expressions.

main()

{

…..

……

…..

}
Simple C program Format

The main Function
The main () is a function and is part of every program. There are different forms of main statement in C. viz.,

main ()

int main ()

main (void)

void main (void)

int main (void)

The empty pair of parenthesis indicates that the function has no arguments This may be explicitly indicated by

using the keyword void inside the parenthesis. Just like the way functions in a calculator returns a value,
functions in C also return a value to the operating system. That is, It is also possible to specify the keyword int or
void before the word main. Some compilers permit us to return nothing or no information to the operating

system from main (). In such a case we should precede it with the key word void. The key word void means
that the function does not return any value to the operating system and int means that the function s returns an

integer value to operating system. When int is specified, the last statement in the program must be “return 0”.

56

School of Distance Education

‘C’ Programming for Mathematical Computing Page 28

Addition of Two numbers: Sample program 2

Consider another program, which performs addition on two numbers. This program explains the need

for the use of declaration of variables, and use of operators.

On execution of this program we will get the following output:

10

50.10

The first line of the program is a comment line. Comment line in the beginning give information

such as name of the program, author, date etc. To indicate line numbers comment characters can also

be used. in other lines. The words num and amount are variable names used to store numeric data.

The numeric data may be either in real or integer form. In C, all variables must be declared before

they are used, usually at the beginning of the function before any executable statement. The type

declaration statement is written at the beginning of main () function. In lines 4 and 5, the

declarations

int num;

float amount;

/* addition of two numbers */

main ()

{

int num;

float amount;

num = 10;

amount = 20.25+29.85;

printf (“ % d\n”,num);

printf (“%5.2f”,amount);

}

/Program to add two numbers:/

57

School of Distance Education

‘C’ Programming for Mathematical Computing Page 29

tells the compiler that num is an integer (int) and amount is a floating (float) point (numbers with

fractional part) numbers. All declaration statements ends with a semicolon. The words such as int
and float are called keywords and cannot be used as variable names .The range of both int and float
depends on the machine you are using; 16- bit ints, which lie between -32768 and +32768 , are

common, as are 32-bit ints. A float number is typically 32-bit quantity, with at least six significant

digits and magnitude generally between about 10-38 and 10+38. While declaring the type of variable

one can also initialize it as shown in line 7 and 9.That is , the statements

num = 10;

amount = 20.25+29.85;

are called the assignment statement. Every assignment statement must have a semicolon at the end.

The order in which we define the variables is sometimes important sometimes and sometimes not.

For example,

int i =10, j =25;

is same as

int j= 25, i=10;

However,

float a= 1.5, b = a + 3.2;

Is alright. But

float b= a+3.2, a = 1.5 ;

Is not, because we are trying to use a even before defining it.

Moreover, the following statements would work

int a,b,c,d

a = b = c = d = 10;

However the following statement would not work

Int a= b= c= d =10;

The next statement of the program is an output statement that prints the value of number. The

print statement

printf (“ % d\n”, num);

58

School of Distance Education

‘C’ Programming for Mathematical Computing Page 30

contains two arguments..The first argument “%d’ tells the compiler that the value of the second

argument num should be printed as a decimal integer. These arguments are separated by comma.
The newline character “\n “ causes the next output to appear on a new line.

The last statement of the program

printf (“%5.2f”, amount);

print out the value of amount in floating point format. The format specification “%5.2f “ tells the

compiler that the output must be floating type , with five places in all and two places to the right of

the decimal point.

Calculation of Interest: Sample Program 3

C supports the basic four arithmetic operators (-, +, * . /) along with various others. The use of

such operators along with other variable declarations, the while loop construct and # define

preprocessor directive are illustrated in the program below. The program calculates the value of

money at the end of each year of investment, assuming the interest rate at 11 percent with an initial

investment of 50 000 for 10 years .In this program, the variable value represents the value of money

at the end of the year and the amount represents the value of the money at the start of the year. The

statement

amount = value ;

makes the value at the end of the current year as the value at the beginning of the next year .

The preprocessor compiler directive #define, defines a symbolic constant. Whenever a symbolic

name is encountered, the compiler automatically substitutes the value associated with the name. If

you want to change the value you have to simply change the definition. #define line should not end

with a semicolon and are usually written in upper case letters(so that they can be readily distinguished

from the lower case variable names), usually placed at the beginning before the main () function.

They are not declared in the declaration section. The declaration section of the program declares year
as integer and amount ,value and rate as floating point numbers. When two or more variables are

declared in one statement, they are separated by commas. It is also possible to declare the floating

point variables as multiple statements as in,

float amount;

float value;

float rate;

59

School of Distance Education

‘C’ Programming for Mathematical Computing Page 31
Fig.3.5 The Investment Program

/* ………………………… INVESTMENT PROBLEM ………………….. */

define PERIOD 10

#define PRINCIPAL 50000.00

/* ………………………… MAIN PROGRAM BEGINS ………………….. */

main ()

{ /* ……………………DECLARATION STATEMENTS …………….. */

int year;

float amount, value, rate;

/* ………………………… ASSIGNMENT STATEMENTS …………….. */

amount = PRINCIPAL ;

rate = 0.11;

year = 0;

/* …………… ……… COMPUTATION STATEMENTS… ………….. */

/* …………… COMPUTATION USING while LOOP ………….. */

While (year < = PERIOD)

{

printf (“ % 2d % 8.2 f \n” , year, amount);

value = amount + rate * amount;

year = year +1;

amount = value;

}

/* ……….. ………………… while LOOP ENDS… ………….. */

}

/* …………… ……… PROGRAM ENDS … ………….. */

60

School of Distance Education

‘C’ Programming for Mathematical Computing Page 32

In the while loop all computation and printing are accomplished. The body of a while loop can
be one or more statements enclosed in braces . The parenthesis after the while contain a condition that
is tested. So long as this condition remains true all , all statements within body of the while loop keep
getting executed repeatedly. When the condition becomes false , the control passes to the first
statement that follows the body of the while loop..In this case as long as the value of the year is less
than or equal to the PERIOD, the four statements grouped by braces that follows the while are
executed. The loop ends when year becomes greater than PERIOD.

Sample Program 4: Use of Sub routines:
A very simple program that explains the use of mul () function is shown below. It uses a user

defined

//A program using user defined function//

/* ………………………… PROGRAM USING FUNCTION ………………….. */

int mul (int a, int b); /* DECLARATION….. */

/* ………………………… MAIN PROGRAM STARTS………………….. */

main ()

{

int a, b,c;

a =7;

b =10;

c = mul (a,b);

printf (“multiplication of %d and % d is % d”, a,b,c);

}

/* ………………………… MAIN PROGRAM ENDS

MUL FUNCTION STARTS………………….. */

int mul (int x, int y)

int p;

{

p = x * y;

return (p);

}

/* MUL () FUNCTION ENDS . */

61

School of Distance Education

‘C’ Programming for Mathematical Computing Page 33

function equivalent to subroutine in FORTRAN or Sub program in BASIC. The Execution of the
program will print the output

Multiplication of 7 and 10 is 70
The mul () function multiplies the value of variables x and y and the result is returned to the main

() function when it is called in the statement

c = mul (a,b);
The mul () function has two arguments x and y (declared as integers) and when called the values of

a and b are passed onto x and y respectively. This example also shows a bit more of how printf
works.

Sample Program 5: Use of Math Functions:
There are many occasions where we often use standard mathematical functions like cos, sin, exp,

etc.

Figure 3.1 Use of Cosine Function

/* … PROGRAM USING COSINE FUNCTION …………….. */

include < math.h >

define PI 3.1416

define MAX 180

main ()

{

int angle;

float x,y;

angle = 0;

Printf (“Angle Cos(angle) \n\n “);

While (angle < = MAX)

{

x = (PI/MAX) * angle;

y = cos (x);

printf (“% 15 d % 13.4 f\ n “, angle, y);

angle = angle +10;

}

}

62

School of Distance Education

‘C’ Programming for Mathematical Computing Page 34

The standard mathematical functions are defined and kept as a part of C math library for use in
programs. The use of any of these mathematical functions in the program can be accomplished by
means of # include instruction in the program. The #include directive tells the preprocessor to treat
the contents of a specified file as if those contents had appeared in the source program at the point
where the directive appears Like # define, it is also a compiler directive and tells the compiler to link
the specified mathematical functions from the library. The instruction is of the form

include < math.h >

math.h is the file name containing the required information. Program code,(Figure 3.1) explains the
use of cosine function. Another # include instruction that is often used is

include <stdio.h>

<stdio.h> refers to the standard I/O header file containing standard Input output functions. That is, it
adds the contents of the file named stdio.h to the source program and the ankle brackets cause the
preprocessor to search the directories specified by the Include environment variable for stdio.h, after
searching directories specified by the / I compiler option. For example, to use the function printf() in
a program, the line

#include <stdio.h>

Should be at the beginning of the source file, because the definition for printf() is found in the file
stdio.h.

As explained earlier, C programs are divided into modules or functions. To use any of the
standard functions, the appropriate header file should be included...Header files contain definitions of
functions and variables which can be incorporated into any C program by using the pre-processor
#include statement. This is done at the beginning of the C source file . To access the functions stored
in the C library, it is necessary to tell the compiler about the files to be accessed. This is achieved by
the use of pre processor directive

#include <filename>

Placed at the beginning of the program. Note here that filename is the name of the library file that
contains the required function definition.

3.4 Basic Structure Of C Programs
The programs in C so far discussed illustrates that it can be viewed as a group of building blocks

called functions. A function is a segment that groups a number of program statements to perform
specific task. To write a c program , we must first create functions and then put them together.

The different sections of a C program as shown in figure 3.2..The documentation section consists
of a set of comment lines giving the name of a program, author, date and other details, which the
programmer would like to use later .The link section provides instructions to the compiler to link
functions from the system library. All symbolic constants are defined in the definition section. Global

63

School of Distance Education

‘C’ Programming for Mathematical Computing Page 35

variables (variables that are used in more than one function) and all the user defined functions are
declared in the global declaration section that is out side of all the functions.

Every C program must have one main () function section that contains two parts, the declaration and

executable part, appearing between the opening and closing braces. In the declaration part all those

variables used in the executable part are declared..There is at least one statement in the executable

part. The program execution begins at the opening brace and ends at the closing brace which marks

the logical end of the program. Every statements in the declaration and executable parts end with a

semi colon (;).\

The sub program section contains all the user defined functions that are called in the main function.

User defined functions are generally placed immediately after the main function, although they may

appear in any order. All sections , except the main function may be absent when they are not required.

Documentation Section

Link Section

Definition Section

Global Declaration Section

main () Function section

{

Declaration Part

Execution Part

}

Sub Program section

Function 1

Function 2

…….. (User Defined functions)

Function n

Fig.3.2 An over view of C program

64

School of Distance Education

‘C’ Programming for Mathematical Computing Page 36

3.5 Programming Style
Programming style is a set of rules or guidelines used when writing the source code for a computer

program. It is often claimed that following a particular programming style will help programmers to read and
understand source code conforming to the style, and help to avoid introducing errors.

C has no specific rules for the position at which a statement is to be written. That’s why it is often called a
free –form language. First of all, all statements are entered in small case letters. Upper case letters are used
only for symbolic constants. The statements in the program must appear in the same order in which we wish to
be executed.; unless of course the logic of the problem demands a deliberate “jump”, which is out of sequence.
These statements are terminated with a semi-colon (;), and are collected in sections known as functions. By
convention, a statement should be kept on its own line. Blank spaces may be inserted between two words to
improve the readability of the statement. However , no blank spaces are allowed with in a variable, constant or
key word.

Since C is a free-form language, we can group statements together on one line. The statements

a = b;

x = y-1;

z = a-1;

can be written on one line as

a = b; x = y-1; z = a-1;

The program

main ()

{

Print f (“hello”);

}

May be written in one line like

main () { Print f (“hello”)};
However, this style makes the program more difficult to understand. Rather than putting everything on one line, it is

much more readable to break up long lines so that each statement and declaration goes on its own line.

Comments in code can be useful and they provide the easiest way to set off specific parts of code (and their purpose);
as well as providing a visual "split" between various parts of your code. Having good comments throughout your code
will make it much easier to remember what specific parts of your code do. Care should be taken not to over emphasize
generous use of comments inside the code. For debugging as well as testing of the code Judiciously inserted comments is
very helpful and it improves the code readability as well as the understandability of the code logic.

3.6 Executing A C Program

C program Execution involves the following steps

1. Creating the program
2. Compiling the program
3. Linking the program with functions that are needed from the C library
4. Executing the program.

65

School of Distance Education

‘C’ Programming for Mathematical Computing Page 37

Although these steps remain the same irrespective of the operating system, system commands for implementing the
steps and conventions for naming the files may differ on different systems. An operating system is a program that
controls the entire operations of a computer system. All I/O operations are channeled through the operating system. It is
an interface between the hard ware and the user. The most popular ones today are UNIX and MS-DOS .Figure 3.10
illustrates the steps involved in the execution of C program.

3.7Unix System: Creating the program

Once you have written the program you need to type it and instruct the machine to execute it. Once we

Syntax Errors Yes

NO Object code

Data Error logic logic error
And data errors?

No Errors

System Ready

Enter program

Edit source program

Compile source
program

Link to system Library

Execute object code

Corrected output

Stop

Program code

C Compiler

System library

Input data

Fig.3.10 Process of compiling and running in C

66

School of Distance Education

‘C’ Programming for Mathematical Computing Page 38

load the UNIX OS in to the memory , the computer is ready to receive the program. The program

must be entered into a file. The file name can consists of ,letters, digits and special characters

followed by a dot and a letter c.

For eg,

hello.c

The file is created with the help of another program called text editor., either ed or vi. The command

for calling the editor and creating the file is

ed filename

if the file existed before , it is loaded up. If not the file has to be created so that it is ready to receive

the new program. Any corrections to the program are done under the editor. when the editing is over

it is saved on the disk .It can the be referenced at any time later by its file name. The program that is

entered into the file is known as source program .A source program is a program coded in a

languages other than machine language, ad it is translated into machine language before being

executed.

Compiling and Linking

Once you have written the program you need to type it and instruct the machine to execute it. To

type the C program you need another program called Editor. Once the program has been typed it

needs to be converted to machine language (0s and 1s) before the machine can execute it. To carry

out this conversion we need another program called compiler. Assume that the source program has

been created in a file named kmv.c The compilation command to achieve this task under UNIX is

cc kmv.c

The source program instructions are now translated into a form that is suitable for execution by the

compiler. The translation is done after examining each instruction for its correctness. If everything is

alright, the compilation proceeds silently and the translated program is stored in another file with the

name kmv.o. This program is called the object code.

Linking is the process of putting together other programs files and functions that are required by

the program. Under UNIX, the linking is automatically done when the cc command is used. Errors, if

any should be should be corrected in the source program with the help of editor and the compilation

is done again..The compiled and link program is called the executable object code and is stored

automatically in another file named a.out.

67

School of Distance Education

‘C’ Programming for Mathematical Computing Page 39

Executing The Program
On compiling the program its machine language equivalent is stored as an EXE file which is an

executable file. The command a.out would load the executable object code into the computer
memory and execute the instructions .During execution, the program may request for some data to be
entered through the keyboard.

Here are the steps that you need to follow to compile and execute your C program using Turbo C
or C++.

1. start the compiler at C > prompt. The compiler (TC.EXE is usually present in C:\TC\BIN
directory).

2. Select New from File menu
3. Type the program.

4. Save the program using F2 under a proper name(say prog.c)

5. Use Ctrl +F9 to compile and execute the program

6 Use Alt +F5 to view the output.

Creating your own Executable File
Note while linking, the linker always assign the same name a.out. while Compiling a new program ,
this file will be over written by the executable object code of the new program .To prevent this from
happening , we should rename the file immediately using the command

mv a.out name

Or

use the cc command option

cc-o name source-file

This cc command option will store the executable object code in the file name and prevent the old
file a.out from being destroyed..

To compile and link multiple source program files, we must append all the filenames to the cc
command.

Cc filename-1.c…… filename-n.c

These files will be separately compiled into object files called

filename-i.o
and then linked to produce an executable program file a.out . Also it is possible to compile each file
separately and link them later .The commands,

c c - c mod1.c

c c - c mod2.c

68

School of Distance Education

‘C’ Programming for Mathematical Computing Page 40

will compile the source files mod1.c and mod2.c into object files mod1.o and mod2.o. They can be
linked together by the command

c c mod1.o mod2.o

Further, the source and object files can be combined as

C c mod1.c mod2.o

Here only mod1.c is compiled and then linked with the object file mod2.o. This approach helps in
situations when one of the source files need to be changed and recompiled or an existing object file is
to be used along with the program to be compiled.

3.8 MS- DOS System

In MS-DOS system, the program is created by any word processing software in non document
mode and should end with the characters ” .c. “. For example, program.c ,pay.c , etc. Then the
command

MSC pay.c

Would load the program stored in the file pay.c and generate the object code. This code is stored in
another file under the name pay.obj. The linking is done by the command

LINK pay.obj

Which generates the executable code. with the file name pay.exe. Now the command would execute
the program and give the results.

3.9 Summary

1. Every C program needs a main() function.
2. The execution of a function begins at the opening brace of the function and ends at the

corresponding closing brace.
3. C programs are written in lowercase letters. Upper case letters are used for symbolic and

output strings.
4. Every program statement must end with a semicolon.
5. All variables must be declared for their types before they are used in the program.
6. Include header files using # include directive for reference to special names and functions

that it does not define. They should not end with a semicolon. The # sign must appear in the
first column of the line.

7. When braces are used to group statements, the opening brace must have a corresponding
closing brace,

8. A comment can be inserted anywhere to increase readability and understandability of the
program. Comments help the users in testing and debugging. Care must be taken to match the
symbols /* and */

69

School of Distance Education

‘C’ Programming for Mathematical Computing Page 41

Unit 4:Constants Variables and Data Types
Structure

4.1 Introduction

4.2 The C Character Set

4.3 C Tokens

4.4 Key Words and Identifiers

4.5 Constants

4.6 Variables

4.7 Data Types

4.8 Declaration of Variables

4.9 Declaration of Storage Class

4.10Assigning Values To Variables

4.11Defining Symbolic Constants

4.12Declaring a Variable as Constant

4.13Declaring a Variable as Volatile

4.14 Summary

4.1 Introduction

To communicate with a computer we have to speak a language which the computer understands

since a computer speaks in bits bytes. . This means that, English or for that matter any other natural

language by them cannot be used to perform the task of communication with computer. For this

we have to have a language that is close to human language and far removed from machine

language. A programming language is a methodical/systematic language designed to communicate

instruction to a machine, especially to a computer and it can be used to create programs that control

the behavior of a machine . However, learning C as a programming language is very much like

learning English language. Learning English language begins with learning first of all the alphabets,

then learning how to combine these alphabets to form words, combining words to form

sentences, and finally learning to combine sentences to form paragraphs. On the same analogy ,

Learning C is not different. Instead of straight away learning how to write programs, we must

incrementally learn (1) what alphabets, numbers, and special symbols are used in C, (2) how using

these alphabets, numbers and special symbols, constants, variables and keywords are constructed,

and (3) finally how these are combined to form an instruction and how groups of instructions are

combined in accordance with “ rules for sentence building” or syntax to form a program. The steps
in learning C language is depicted below in the Figure 4.1 ,

Unit 6

70

School of Distance Education

‘C’ Programming for Mathematical Computing Page 42

As in any language, C language has its own vocabulary and grammar (or syntax rules) and each

program instruction must conform precisely to the syntax of the language. In this chapter we will

discuss the concepts of constants, variables and their types.

4.2 The C Character Set

A C character set denotes any valid alphabet, digit or special symbol, to represent an information.

The set of characters that can be used to write a source program is called source character set and the

set of characters available during program execution is called execution character set. Very often, in

most implementations of C, both character sets are taken as identical. Generally, a character data

type holds a single character(or one byte), enclosed with in single quotes, to represent a character

constant. For e.g., the expressions ‘a’ , ‘b’,and ‘0’ represent character constants. Remember that “a”
is used to represent a string of characters(or sequence of characters enclosed with in double quotes)

and is different from ‘a’. Further, ‘\n’ is used to represent a new line character, that is used to move
the cursor to a new line on the screen. Figure 4.2 shows the entire character set (i.e., the valid

alphabets, numbers, special characters and white spaces) allowed in C. The compiler ignores white

spaces unless they are part of a string constant. White spaces may be used to separate words, and are

prohibited between characters of key words and identifiers.

Trigraph Characters

Some characters from the C character set are not available in all environments, because keyboard

may not have keys to cover the entire characters set of the language. A Trigraph, is a three character

replacement for a special character in the C character set. ANSI C introduces the concept of

“Trigraph” Sequences to provide a way to enter certain characters that are not available on some

keyboards. Actually, each Trigraph sequence contains three characters (i.e., two question marks

followed by another character) as in Figure 4.3. i.e., Each trigraph sequence is introduced by two

question marks followed by a third character that indicates the character to be represented. For eg., ,

if a key board does not support square brackets , we can still use them in a program using the

Trigraphs ?? (and ??).

Figure 4.1: Steps in Learning C Language

ProgramsInstructions

Alphabets

Digits

Special Symbols

Constants

Variables

Key words

71

School of Distance Education

‘C’ Programming for Mathematical Computing Page 43

4.3 C Tokens

A token is a source program text that the compiler does not break down into atomic units. They are

the basic building blocks/elements of the C language, constructed together to make a C program.

That is, each and every smallest individual units in a C program are called Tokens. The Tokens in C

language include:

Figure 4.2 : The C Character Set

Alphabets Upper case letters A,B,……., Z

Lower case letters a,b,…… .., z

Digits All decimal digits 0,1,2,…….9

Special Characters ; semicolon , comma & ampersand . period

* asterisk + plus sign ‘ apostrophe ? question

mark

< opening bracket > closing bracket ^ caret ~ tilde

or less than sign or greater than sign

! exclamation mark | vertical bar (left parenthesis

) right parenthesis \ backlash [left bracket

] right bracket $ dollar sign } right brace

_ under score { left brace = equal sign

% percent sign # number sign / slash

@ commercial at - hyphen or minus “ quotation mark

sign

White Spaces

Blank spaces

Horizontal Tab

Carriage Return

New Line

Form Feed

72

School of Distance Education

‘C’ Programming for Mathematical Computing Page 44

1. Key words (eg: float, double etc.,)

2. Constants (eg: 100, -10.0 etc.,)

3. Strings (eg: “ABC”, “month” etc.,)
4. Operators (eg: +, - etc.,)

5. Identifiers (eg: main, total etc.,)

6. Special Symbols (eg: [],() etc.,)

C Programs are written using these tokens and the syntax of the language.

4.4 Key Words and Identifiers

Every C word fall under two categories, viz,. either a key word or an Identifier. C Key words
(also called Reserved words) are the words that convey a special meaning to the C Compiler. They

are the system defined identifiers that do have a fixed meaning (i.e., it does not change) and cannot

be used as variable names. They are the basic building blocks for program statements and are written

in lowercase letters. C language supports 32 (Thirty Two) keywords and are listed in Figure

4.4.below.

Fig. 4.3 ANSI C Trigraph Sequences

Trigraph Sequence Translation

??= # number sign

??([left bracket

??)] right bracket

??< { left brace

?? > } right brace

??! | vertical bar

??/ \ back slash

??| ^ caret

??~ ~ tilde

73

School of Distance Education

‘C’ Programming for Mathematical Computing Page 45

auto float double long

short signed unsigned const

goto else switch break

if do while for

typedef extern static struct

default enum return sizeof

register union int case

void char continue volatile

An Identifier refers to the names of variables (i.e., the one which changes during program
execution), names of functions, arrays, and structures. They are user defined names consisting of a
combinations of alphabets, digits with a letter as the first character and underscore. The under score
symbol is treated as a letter in the C character set and it helps in the readability of long variable
names. That is, they are the names given to C entities such as , variables, types, functions, structures
and labels in the program. However, the lengths of identifiers in C, vary from one implementation to
another. In general, Identifier are created to give a unique name to C entities so as to identify it
during the execution of the program. For example: int apple; Here apple is an identifier which denote
a variable of integer type. In fact, Keywords (either C or Microsoft) are not used as
identifiers.(i.e., they are reserved for special use). Identifiers are in general, used to name
constants, functions, files and the like, apart from variables.
Rules for Identifiers

1. The first character must be an alphabet(uppercase or lowercase) or an under score.
2. All succeeding characters must be letters or digits.
3. Key words should not be used as identifiers.
4. Name of identifier is case sensitive i.e. num and Num are two different variables.
5. Identifier name cannot be exactly same as constant name which have been declared in the header

file of C and you have included that header file.
6. Name of identifier cannot be exactly same as of name of function with in the scope of the function.
7. Name of function cannot be global identifier.
8. No two successive underscores are allowed.
9. Only first 31 characters are significant.
10. No special characters or punctuation symbols are used except the under score.

Figure 4.4 Key words in C

74

School of Distance Education

‘C’ Programming for Mathematical Computing Page 46

4.5 Constants

A constant in C refers to a piece of data that does not change throughout the execution of the

program. That is, Constants in C are expressions with a fixed value that are not changed during the

execution of the program and are declared with the define keyword .In general, C constants can be

divided into two major categories

1. Primary constants

2. Secondary constants.

These constants are further categorized as shown in Figure 4.5.

At this stage, we would restrict our discussion to only primary constants(or basic constants)

namely, Integer, Real and Character constants. Let use details of each of these constants..

Integer Constants

Integer constants are the numeric constants (Constants associated with number) without any

fractional or exponential part. Integer constants take one of the following forms:

1. A decimal integer. , e.g., 1 , 134, 10005 (Decimal integers are a set of digits, 0 through 9,

preceded by an optional – or + sign). Embedded spaces, commas, and non digit characters

are not allowed between digits.

2. An Octal integer constant (base 8), e.g., 0 1 , 134, 0303242 . An octal constant is introduced

Fig. 4.5 Types of C Constants

C Constants

Primary Constants Secondary Constants

Numeric Constant Character Constant Array

Pointer

Structure

Union

Enum. etc

Integer

Constant

Real

Constant

Single
Character

Constant

String

Constant

75

School of Distance Education

‘C’ Programming for Mathematical Computing Page 47

by a leading 0 and digits, the digits are 0 through 7 .

3. A Hexa decimal (base 16) Number. e.g., 1 , 0x1, 0X186A2. A hex constant is preceded by a

leading 0X or 0x and the digits are 0 through 9 followed by A through F (Note that upper and

lower case Letters are allowed) .

4. A character Constant.

Integer constants can also be suffixed with an identifier U (or u) or L (or l), which is used to

indicate that the constant is unsigned or long, respectively. For e.g., 567U or 567u These suffixes

may be combined as in .e.g., 989712343UL or 989712343ul . The largest integer value that can be

stored is machine dependent. It is 32767 on 16-bit and 2147483647 on 32-bit machines. For

constructing the integer constants, certain rules have been laid down. These rules are as under:

Rules for constructing Integer constants

1.An integer constant must have at least one digit

2.It must not have a decimal point.

3.It can be either + ve or - ve.(If no sign precedes, it is assumed to be + ve.).

4. No Commas or Blanks are allowed within an integer constant.

5. The allowable range is between -32768 to 32767(For 16 bit compiler).

Real Constant

Certain quantities that vary continuously, such as prices, distances, temps, and so on, are

represented by numbers containing fractional parts like 10.246. Such numbers are called Real or
Floating point constants. That is, a real constant is one of :

• A fractional constant followed by an optional exponent

• A digit sequence followed by an exponent.

In either case followed by an optional of f, l (for single precision) , F. L(For double Precision),

where:

• An optional digit sequence followed by a decimal point followed by a digit sequence.

• A digit sequence followed by a decimal point.

Further, an exponent is one of :

• E or e followed by an optional + or – followed by a digit sequence (A digit sequence

is an arbitrary combination of one or more digits).

76

School of Distance Education

‘C’ Programming for Mathematical Computing Page 48

Floating point constants are normally represented as double precision quantities. Following rules

must be observed while constructing real constants in fractional form:

1. A real constant must have at least one digit

2. It must have a decimal point

3. It could be either positive or negative

4. If no sign precedes an integer constant, it is assumed to be positive.

5. No commas or blanks are allowed within the real constant.

The exponential form of representation of real constants is usually used if the value of the

constant is either too small or too large . In this form of representation, the real constant is

represented in two parts. The part appearing before ‘e’ is called mantissa, whereas the part
following ‘e’ is called exponent. Thus 0.000213 is represented in exponential form as 2.13e-4 . The

General form is

mantissa e exponent

Following rules must be observed while constructing real constants expressed in exponential form:

1. The mantissa and exponential part should be separated by a letter e or E.

2. The mantissa part may have + ve or –ve sign.(default sign is positive).

3. The exponent must have at least one digit , which must be a +ve or _ve integer. Default sign is

+ve.

4 .Range of real constants expressed in exponential form is -3.4e38 to 3.4e38.

Character Constant

Character constants are the constant which use single quotation around characters. example, `b`,

`k`, `l` etc. In general, A character constant is a single alphabet, a single digit, or a single special

symbol enclosed with in single quotes(or inverted commas). For both the inverted commas(single

quotes) should point to the left. For example, `C` is a valid character constant while ‘ C‘ is not. In
C, characters are small integers, so you can use a character constant anywhere you can use an integer

constant and vice versa. More over, the maximum length of a character constant can be 1 character.

String Constants

It is a collection of characters enclosed in double quotes. It may contain letters, digits, special

characters and blank space. Examples are:

“Hello!” “How Are You “ “ ? “ “X ”

77

School of Distance Education

‘C’ Programming for Mathematical Computing Page 49

Note that a character constant (e.g., ‘X’) is not equal to the single character string constant(e.g.,
“X”) . Further, a single character string constant does not have an equivalent integer value while a
character constant has an integer value. More over, character strings are often used in programs to

build meaningful programs. Moreover, the entity having two consecutive double quotes without any

characters in between them, i.e., “ “, is called a null string. Here, the quotes acts as delimiters and
are not part of the string.

Backlash character constants

Sometimes, it is necessary to use newline(enter), tab, quotation mark etc. in the program which

either cannot be typed or has special meaning in C programming. Such characters with special

meaning should be preceded by a backlash symbol to make use of special function of them.. The

backlash (\) causes “escape” from the normal way the characters are interpreted by the compiler.
Each backlash character constant represents one character, although they consist of two characters.

These character combinations are called escape sequences. Given below (Table 4.1)is the list of

special characters and their purpose .

4.6 Variables

Every language should support the basic data objects namely, variables and constants. Variables
are memory location in computers memory to store data. To indicate the memory location, each

variable should be given a unique name called identifier. Variable names are just the symbolic

representation of a memory location. These memory locations can contain integer, real or character

constants. Unlike constants that remain unchanged during the execution of program , a variable may

take different values at different times during execution. Examples of variable names are : sum,

count, bike, interest etc. A variable name can be chosen by the programmer in a meaningful manner

so as to reflect its function. Variables are to be declared before using it in the program.

Rules for writing Variable names in C

1. Variable names can be composed of letters(upper & lower case) , digits, and underscore. There

is no rule for the length of a variable. A variable name is any combination of 1 to 31 alphabets.

2. The first letter of a variable should be either a letter or an under score. Note that upper and

lower case are significant

3. No commas or blanks are allowed with in a variable name.

4. No special symbol other than underscore can be used in the variable name.

5. It should not be a key word.

6. White spaces are not allowed.

78

School of Distance Education

‘C’ Programming for Mathematical Computing Page 50

Constant Meaning

‘\a’ audible alarm

‘\b’ back space

‘\f’ form feed

‘\n’ new line

‘\r’ carriage return

‘\t’ horizontal Tab

‘\v’ vertical tab

‘\”’ double quote

‘\’’ single quote

‘\?’ question mark

‘\\’ backlash

‘\0’ null

Table 4.1

4.7 Data Types.

Like other computer languages, C supports data types namely, of integer, character and of float
type. In C, all variables must be declared before they are used, usually at the beginning of the

function before an executable statements. A declaration announces the properties of variables; it

consists of a type name and a list of variables such as

int Celsius;

int count;

The type int means that the variables listed are integers. ANSI C supports three classes of data

types:

1. Primary data types

2. Derived data Types

3. User defined data Types.

79

School of Distance Education

‘C’ Programming for Mathematical Computing Page 51

All C Compilers support five fundamental data types, namely integer(int) , character(char), Floating

point(float), double precision floating point(double) and void. Extended data types like long int
,long double are also in use in C. Figure 4.6 gives an overview of primary data types in C.

Integer Types

This data type allows a variable to store numeric values. int keyword is used to refer integer data

type. The. integers are whole numbers with a range of values supported by a particular machine

(that is, the storage size of int data type is 2 or 4 or 8 byte. It varies with the processor in the CPU

that we use). Generally, the C integer types were intended to allow code to be portable among

machines with different inherent data sizes (word sizes), so each type may have different ranges on

different machines. The problem with this is that a program often needs to be written for a particular

PRIMARY DATA TYPES

Integral Type

Integer Character

signed unsigned

int unsigned int

short int unsigned short

long int unsigned long int

Char

Signed char

Unsigned char

Floating point type

void
float double long double

Fig. 4.6 Primary data types in C

80

School of Distance Education

‘C’ Programming for Mathematical Computing Page 52

range of integers, and sometimes must be written for a particular size of storage, regardless of what

machine the program runs on. In fact, integers occupy one word of storage, and since the word size

of machines vary, the size of integer that can be stored depends on the computer. For a 16 bit word

length, the size of the integer value is limited to the range -2 15 to 2 15-1. A signed integer uses one bit

for sign and 15 bits for the magnitude of the number.

In order to provide control over the range of numbers and storage space, the C language defines

several integer data types: integer, short integer, long integer, and character, all both in signed
and unsigned varieties. For eg., Short int represents fairly small integer values and requires half

the amount of storage space as a regular int number uses. Unlike signed integers, unsigned integers

use all the bits for the magnitude of the number and are always positive. To increase the range of

values we declare long and unsigned integers

Floating point types

C uses the key word float to define floating point numbers . Floating point numbers are stored in

32-bit, with six digits precision. Key word double is used to define big floating point numbers. It

reserves twice the storage for the number. A double data type number uses 64 bits giving a precision

of 14 digits. On PC’s this is likely to be 8 bytes. The double type represents the same data type that

float represents, but with a greater precision. To extend the precision further, the key word long
double with 80 bits are used.

Void types

Void is an empty data type normally used as a return type in C to declare that no value will be

returned by the function. It can also play the role of generic type, meaning that it can represent any of

the other standard types.

Character type

A single character of the character set of C, can be defined as a character (or char) type data .

Key word char is used for declaring the variable of character type. Usually, a character enclosed

between a pair of single quotes denotes a character constant. The size of char is 1 byte(or 8 bits of

internal storage)..The qualifier signed or unsigned may explicitly applied to char.

4.8 Declaration of Variables

In order to use a variable in C, we must first declare it before they are used in the program.

Declaration does two things:

1. It tells the compiler what the variable name (type name) is

2. It specifies what type of data (or properties) the variable will hold

81

School of Distance Education

‘C’ Programming for Mathematical Computing Page 53

The type declaration statement is written at the beginning of main () function.

Primary type instruction

A variable can be used to hold a value of any data type in a memory location. After assigning

variable names, we have to declare them. The syntax for declaring a variable is:

data-type v1,v2,….vn;

Here v1,v2,….vn are the variable names and are separated by commas A declaration statement must

end with a semicolon. For example,

int num, sum;

int code;

double ratio;

are valid declarations. Here, Keywords int and double are used to represent integer and real type data

respectively. When qualifier is applied to the data type then it changes its size (The size qualifiers are

:short and long) or its sign (sign qualifiers are: signed and unsigned). While using qualifiers like,

short, long, unsigned without specifying the basic data type , the C compiler will treat the data type

as int . Moreover, if we want to declare a character variable as unsigned, then we must do so by

using both the terms like unsigned char

User Defined Declaration

In C language, a user can define an identifier that represents an existing data type. The user

defined data type identifier can later be used to declare variables. The General syntax is:

typedef type identifier;

Here type represents existing data type and “identifier” refers to the row name given to the data type.

Example:

typedef int amount;

typedef float sum;

Here amount symbolizes int and sum symbolizes float. They can be later used to declare variables

as follows:

amount dep1,dept2;

sum section1[20],section2[20];

Therefore dept1 and dept2 are indirectly declared as integer data type and section1 and section 2 are

indirectly float data type.

82

School of Distance Education

‘C’ Programming for Mathematical Computing Page 54

Another user defined data type is enumerated data type provided by ANSI C standard which is

defined as follows:.

enum identifier { value1,value2,…..valuen};

The “identifier “ here , is a user- defined enumerated data type which can be used to declare

variables that can have one of the values enclosed with in the braces . After the definition we can

declare variables to be of this ‘new’ type as below.

enum identifier v1,v2,…..vn;

The enumerated variables v1,v2,…vn can have only one of the values value1, value2 ….. value n.

Th assignments of the following type:

v1 = value3;

v5 = value1;

are valid.

For example:

enum day { Monday, Tuesday,…….,Sunday};

enum day week_ st,week_end;

week_ st = Monday;

week_end = Friday;

If (week_st = = Tuesday)

week_end = Saturday;

The C compiler automatically assign integer digits beginning with 0 to all the enumeration constants.

That is, the enumeration constant value 1 is assigned 0, value 2 is assigned 1, and so on. The

automatic assignment can be overridden if we assign enumeration constant values explicitly as;

enum day { Monday = 1 , Tuesday,…….,Sunday};

Here Monday is assigned the value 1.The remaining constants are assigned values that increase

successively by 1.

The definition and declaration of enumerated variables can be combined in one statement as in :

enum day { Monday, Tuesday,…….,Sunday} week _st, week_end;

83

School of Distance Education

‘C’ Programming for Mathematical Computing Page 55

4.9 Declaration of Storage Class

C has a concept of “storage class” that defines the scope and life time of variables and/ or functions
within a program. Storage class specifier helps to specify the type of storage used for data objects,

C program uses the following storage classes specifiers:

• auto

• register

• static

• extern

In a declaration only one storage class specifiers is permitted, as there is only one way of storing

things and if the storage class specifiers in a declaration is omitted then a default is chosen,

depending on whether the declaration is made outside or inside the function. For external

declarations the default storage class specifiers will be extern and for internal declaration it will be

auto. It is the default storage class for all local variables. The variables with local life time are

allocated new storage each time execution control passes to the block in which they are defined.

When execution returns, the variables no longer have meaningful values,.

register is used to define local variable (or used for variables that need quick access-such as

counters) that should be stored in a register instead of RAM. The variable declared as register is

stored in the CPU register, the default value of that variable is the garbage value.. That is, the

variable has a maximum size equal to the register size (usually one word) and cannot have unary ‘&’
operator applied to it (as it does not have a memory location).The scope of the variable is local to the

block in which it is defined (or it contains) and the variable is alive till the control remains with in

the block in which the variable is defined..

static is the default storage class for global variables. The variable that is declared as static is

stored in the memory, default value of which is zero. Life of variable persist between different

function calls. The static storage class provides a life time over the entire duration of program and

are not available to the linker. Therefore, another compilation unit can contain an identical declaration

that refers to different object. A static object can be declared anywhere (or it does not have to be at

the beginning of the block). static variables may be initialized in their declarations; the initializes

must be constant expressions, and it is done only once at compile time when memory is allocated for

the static variable. Further, the scope of the static automatic variables is identical to that of automatic

variables; however the storage allocated becomes permanent for the duration of the program.

The extern storage class is used to give reference of a global variable or function in another file,

that is visible to all program files. It is the default class for objects with file scope .The variable

84

School of Distance Education

‘C’ Programming for Mathematical Computing Page 56

declared as extern is stored in the memory, the default value of that variable is being zero. Variable is

alive as long as the program’s execution does not come to an end . External variable can be declared
outside all the functions or inside functions using ‘extern’ keywords. External variables may be
declared outside any function block in a source code file the same way another variable is declared,

by specifying the type and name(extern keyword may be omitted).Typically, when declared at the

beginning of the source file, the extern key word is omitted. When you use extern the variable

cannot be initialized as all it does is point the variable name at a storage location that has been

previously defined. If the program is in several source files and the variable is defined in several files,

collect extern declarations of variables and functions in separate header file then included by using #

include when you have multiple files and you define a global variable function which will be used in

another files also then extern will be used in another file to reference of defined variable or function.

The extern class specifies the same storage duration as static objects, but the object of function is

not hidden from the linker .Using the extern key word in a declaration, results in external linkage and

results in static duration of the object Memory for such variables is allocated when the program

begins execution, and remains allocated until the program terminates. The storage class is another

qualifier(like long and unsigned) that can be used in the variable declaration as given below:

auto int count;

register char ch;

static int y;

extern long sum;

The extern and static class variables are automatically initialized to zero. Auto variables , on the

other hand contain undefined (or garbage)values unless they are initialized explicitly.

4.10 Assigning Values To Variables

Variables are used in program statements. Any variable used in the program must be declared

before using it in any statement. In fact, the type declaration statement is written at the beginning of

main() function. While all the variables are declared for their type, the variables that are used in

expressions (on the right side of equal sign) must be assigned values before they are encountered in

the program. First we will discuss the subtle variations of the type declarations as:

(a) While declaring the type variable we can also initialize it as:

int i = 5, j = 15;

float a = 1.2, b = 1.99;

85

School of Distance Education

‘C’ Programming for Mathematical Computing Page 57

(b) The order in which we define variable is sometimes important and sometimes not.

For e.g., int i = 10, j = 12; . is same as

int j= 12, i = 10.

However, float a= 1.5, b= a +3.2; is alright

But float b = a+ 3.2 ,a = 1.5 is not,

Because, here we are trying to use a even before defining it.

(c) The following statements work better

int a,b,c,d;

a = b = c = d = 10;

However the following statement would not work

int a = b = c = d = 10, an instance of using b (to assign to a) before defining it.

The Assignment statement

We can assign values to the variables using the assignment operator = as follows:

variable_name = constant;

Multiple assignments in one line are permitted in C. For eg.,

initial _value= 0; final value = 10; is a valid statement.

It is also possible to assign a value to variable at the time the variable is declared. This takes the

following form:

data-type variable_name = constant;

More than one variable can be initialized in a single statement as:

a= b = c = 2;

x = y = z = MIN;

Note here that, MIN is a symbolic constant defined at the beginning.

Reading Data from Key board

There is a function in C, called the scanf function, which allows the programmer to accept input

from the key board(or pass data to our C program). That is, Once executed our program will wait

for the user inputs , once it came across any scanf function during program execution. It is a general

input function available in C and is very similar in concept to the printf function. That is, printf and

86

School of Distance Education

‘C’ Programming for Mathematical Computing Page 58

scanf are two standard C programming language functions for console input and output. scanf
works much like an INPUT statement in BASIC language. The syntax of scanf function is:

scanf(“format string”, &argument list);

The format string must be a text enclosed in double quotes and it contains the format of data

being received for connecting it into internal representation in memory. e.g., integer (%d), float

(%f), character (%c), or string (%s). The argument list contains a list of variables each preceded by

the address list and separated by comma. The number of argument is not fixed. However

corresponding to each argument there should be a format specifier. Inside the format string the

number of argument should tally with the number of format specifier. For eg., if i is an integer and j

a floating point number , to input these two numbers we may use scanf(“%d %f”, &i, &j);. The

& symbol before each variable name is an operator that specify the variable name’s address. We
must always use this address. Let us look at an eg’.,

scanf(“%d”, &number);

when this statement is encountered by the computer, the execution stops and waits for the value

of the variable number to be typed in. Since the control string “%d” specifies that it is an integer to
be read from the terminal , we have to type in the value in the integer form. Once the number is

typed in and the return key is pressed, the computer then proceeds to the next statement. The

required header for the scanf function is # include < stdio.h >.

4.11 .Defining Symbolic Constants

A symbolic constant is a name that substitute for a sequence of characters (characters may be a

numeric constant, a character constant, or a string corresponding to a character sequence) that cannot

be changed..When the program is compiled, each occurrence of a symbolic constant is replaced by

its corresponding character sequence compiled. They are usually defined at the beginning of the

program. The symbolic constants may then appear later in the program in place of the numeric

constants, character constants, etc, that the symbolic constants represent. The syntax of the Symbolic

constant is:

#define symbolic- name value of constant

For example, consider a C program with the following symbolic constant definitions:

#define PI 3.141593

#define TRUE 1

#define FALSE 0

87

School of Distance Education

‘C’ Programming for Mathematical Computing Page 59

define PI 3.141593 defines a symbolic constant PI whose value is 3.141593.When the program is

preprocessed, all the occurrences of the symbolic constant pi are replaced with the replacement text

3.141593. Here the preprocessor statements begin with # symbol. and are not end with a semi colon.

By convention preprocessor constants are written in UPPER CASE. Further during run time, the

value of a symbolic constant does not change. Symbolic names are sometimes called constant

identifiers. Since symbolic names are constants, they do not appear in declarations.

Rules for Symbolic Constants

1. Symbolic names have the same form as variable names written in UPPER CASE.

2. No blank space between ‘#’ and the word define.

3. ‘#’ must be the first character in the line.

4. A blank space is required between #define and symbolic name and between symbolic name and
the constant.

5. #define (#define is a preprocessor compiler directive) statements do not end with a semi colon.

6. After definition, the symbolic name should not be assigned any other value within the program by
using an assignment statement.

7. symbolic names are not declared for data types. Its data type depends on the type of constant.

8. #define statements may appear anywhere in the program but before it is referenced in the program.

4.12 Declaring a Variable as Constant

In environments that support C, we may like the value of certain variables to remain constant

during Program execution. We can achieve this by declaring the variable with the qualifier const at

initialization as in e.g.,

const int class_size = 20;

The const is a new data type qualifier defined by ANSI C. This tells the compiler that the value of

the int variable class_size must not be modified by the program. However, it can be used on the

RHS of an assignment statement like any other variable.

4.13 Declaring a Variable as Volatile

Although we have phrased the discussion in terms of declaring a variable as constant , by far the

most frequent use of another qualifier volatile, that could be used to tell explicitly the compiler that

a variables value may be changed at any time by any external source is imminent. For example:

volatile int date;

88

School of Distance Education

‘C’ Programming for Mathematical Computing Page 60

This means that the value of date may be altered by some external factors even if it does not appear

on the LHS of an assignment statement. When we declare a variable as volatile, the compiler will

examine the value of the variable each time it is encountered to see whether any external alteration

has changed the value.

If we wish that the value of a variable must not be modified by the program while it may be

altered by some other process, then we may declare it as both const and volatile as :

volatile const int date = 12 ;

4.14 Summary

1. The three primary constants and variable types in C are int, float and character.

2. A variable name can be of maximum 31 character.

3. Do not use a key word as a variable name.

4. Each variable used must be declared for its type at the beginning of the program or function.

5. Each variable must be initialized before they are used in the program.

6. Integer constants, by default, assume int types. To make the numbers long or unsigned , append

L or U to them.

7. Floating point default to double To make them to denote float or long double , append letters F

or L to the numbers.

8. Do not use l for long.

9. Use single quote for character constants and double quotes for string constants.

10. Do not combine declarations with executable statements.

11. A variable can be made constant either by using #define at the beginning of program or by

declaring it with the qualifier const at the time of initialization.

12. ‘#’ must be the first character in the line

13. No blank space between ‘#’ and the word define is allowed.

14. A variable defined before the main function is available to all the functions in the functions in

the program.

15. A variable defined inside a function is local to that function and not available to other functions.

16. Input/output in C can be achieved using scanf () and printf() functions.

17. No blank space are allowed within a variable, constant or keyword.

89

School of Distance Education

‘C’ Programming for Mathematical Computing Page 61

Module II:Introduction
This is the second module of the four modules for the C programming language course in your B Sc

Programme. Programming a computer at once means preparing a set of instructions for it to follow. These
instructions invariably has to be written in one of the several high level languages, such as C, C++ etc. or
in a low level language such as the assembly language . Eventually these instructions get translated to
produce machine language program. Since it is the translated version of a program that is actually getting
executed, at this level it does not matter in what language the source program may have written in. But
some languages are more suited to particular applications than others: For example, C offers a mix of all
the advantages of the high level languages, plus many of the desirable features which assembly alone can
provide. It has a wealth of operators and library of built in functions that pave the way for easy
programming. In this module you will find a quick introduction to many of the operators & functions in C
managing of input and output operations. The Module consists of two units in total viz,

Unit 1: Operators and Expressions.

Unit 2: Managing Input And Output Operations.

This module starts with unit 1, in which various built –in operators are discussed in great length. Unit 2, is
devoted to Managing I/O operations in C.

Unit 1:Operators And Expressions
Structure
1.1 Introduction:

1..2 Arithmetic Operators

1.3 Relational Operators

1.4 Logical Operators.

1. 5 Assignment Operators.

1.6 Increment and Decrement operators.

1.7 Conditional Operator

1.8 Bitwise Operators

1.9 Special Operators

1.10 Arithmetic Expressions

1.11 Evaluation of Expression

1.12. Precedence of Arithmetic Operators

1.13 Some computational problems

1.14 Type conversion in expressions

1.15 Operator Precedence and associativity

1.16 Mathematical Functions

1.17 Summary

Unit 7

90

School of Distance Education

‘C’ Programming for Mathematical Computing Page 62

1.1 Introduction:
C language has a wide range of built –in operators to perform various operations. The symbols which are

used to perform logical and mathematical operations in a C program are called operators. These C operators
are used to join individual constants and variables to frame expressions. Moreover, operators, functions,
constants and variables are combined to shape expressions. That is, operators are used with operands to build
expressions. For example , the following is an expression containing two operands and one operator ‘ +’ (an
operator to perform addition).

8 + 5

whose value is 13. The value can be any type other than void. C offers the following operator Groups.

• Arithmetic

• Assignment

• Logical/relational

• Incremental and decrement operators

• Conditional

• Special Operators

• Bit wise operators.

1..2 Arithmetic Operators

The C arithmetic operators are the +, -, /, * and the modulo operator % . These C arithmetic operators are
used to carry out mathematical calculations like addition, multiplication, division and modulus in c programs.
Unlike /, which returns quotient, the % returns the reminder, the integer division truncates any fractional part.
That is, the expression

x % y

produces the remainder when x is divided by y, and thus is zero when y divides x exactly. Note that the
operator ‘ % ‘ cannot be applied on floating point or double type data. Further, C does not have an operator
for exponentiation. The operators in C with their meaning are listed in Table 5.1 below.

Integer Arithmetic

When both the operands in a single arithmetic expression are integers, the expression is called an integer
expression, and the operation is called integer arithmetic. Integer arithmetic always yields an integer value. For
example, for integer operands such as a and b with assigned values respectively, 15 and 5, we have:

a + b = 20

a - b = 10

a * b = 75

a / b = 3

a % b = 0

91

School of Distance Education

‘C’ Programming for Mathematical Computing Page 63

During integer division , if both operands are of the same sign, the result is truncated to zero. If one of

them is negative, the direction of truncation is machine dependant. .That is , 6/7 = 0 and -6/-7 = 0 but -6/7

may be zero or -1(that is , machine dependent).

Similarly, during modulo operation, the sign of the result is sign of the first operand., as in:

-16 % 3 = - 1

-16 % -3 = - 1

16 % - 3 = 1

Operator Meaning

+ Addition(unary plus)

- Subtraction(Unary minus)

* Multiplication

/ Division

% Modulo division (reminder after division)

Table 5.1 Arithmetic Operators

The Precedence to the operations associated with the operators are listed as:

Operator type Precedence priority

Unary Minus 1 Highest

*, / , % 2 Second

+, - 3 Third

That is, when an expression is given for evaluation, they are evaluated from Left to Right, based on the

precedence associated with the operators. On the other hand, if the precedence’s associated with the operators

are to be overridden, it is necessary to use parenthesis in the expression. However, the expression within the

parenthesis is evaluated on the basis of the precedence rule , with parentheses again evaluated from left to

right. For expressions with nested parentheses, we evaluate the innermost one first, then the one immediately

outside and so on.

92

School of Distance Education

‘C’ Programming for Mathematical Computing Page 64

Real Arithmetic

The C language contains the basic real arithmetic operators. An arithmetic operation involving only real

operands is called real arithmetic. A real operand may accept values either in decimal or exponential form. An

arithmetic operation between an integer and integer gives an integer result, while , the result of applying

the real operators to real is another real. For floating point values, it is rounded to the number of significant

digits permissible, and the final value is an approximation of the corrected result. For example, if operands x,

y ,z are floats, then we will have,

x = 6.0/ 7.0 = 0.857143

y = 1.0/ 3.0 = 0.333333

z = -2.0 /3.0 = -0. 666667.

The operator % cannot be used with real operands

Mixed Mode Arithmetic

If operands in an expression contains both integer and real constants or variables then it is a mixed mode

arithmetic expression. That is, When one of the operands is real, an operation between an integer and real

always gives a real result. In this operation, the integer is first promoted to a real one and then operation is

performed. The expression thus obtained is called a Mixed mode arithmetic expression. For e.g., 25/ 10.0 =

2.5 while, 25/10= 2.

1.3 Relational Operators

Relational operators are used to check relationship between two operands. If the relation is true, it returns

value 1 and if the relation is false, it returns value zero. The relational operators are

>, > = , < , < =

They all have the same precedence. C offers six relational operators in all. These operators and their

meanings are listed in Table 5.2.

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

= = is equal to

!= is not equal to

Table 5.2 Relational Operators.

93

School of Distance Education

‘C’ Programming for Mathematical Computing Page 65

A simple relational expression contains only one relational operator . When arithmetic operations are used

on either side of a relational operator, arithmetic expressions will be evaluated first and then the results are

compared. Relational operators have lower precedence than arithmetic operators and are used in decision

making and loops(i.e., in statements like If and while) in C programming..The Syntax Is:

ae-1 relational operator ae-2

with ae-1 and ae-2 representing arithmetic expressions.

For e.g., 4.6 < = 10 TRUE

4.6 < - 10 FALSE

x+y = y+z TRUE only if sum of values of x and y are equal to the sum of values of y and z

Relational operator complements

Among the six relational operators, each one is complement of another operator. They are as:

 > is complement of < =

 < is complement of > =

 = = is complement of ! =

We can simplify an expression involving the not and less than operators using the complements as :

! (x < y) simplified to x > = y

! (x > y) simplified to x < = y

! (x ! = y) simplified to x= = y

! (x < = y) simplified to x > y

! (x > = y) simplified to x < y

! (x = = y) simplified to x !> = y

1.4 Logical Operators.

Logical operators are used to combine expressions containing relational operators. These operators perform

logical operations on the given expressions .In C there are 3 logical operators (Table 5.3) and are:

Operator Meaning of operator

&& logical AND

| | logical OR

! logical NOT

. Table 5.3

94

School of Distance Education

‘C’ Programming for Mathematical Computing Page 66

Logical operators perform logical-AND (&&) and logical –OR (| |) operations. Its Syntax is:

logical-AND-expression:

inclusive-OR- expression

logical –AND- expression & & inclusive- OR- expression

logical-OR-expression:

logical –AND- expression

logical -OR- expression | | logical - AND- expression

some example of usage of logical expression is:

1. If (age > 60 & & salary < 300 000)

2.If (number < 0 | | number > 1000) .

Logical operators & & and | | are used when we want to test more than one condition and to make decisions.

They do not perform the usual arithmetic conversions. Instead, they evaluate each operand in terms of its

equivalence to 0.The result of logical operation is either 0 or 1 and is of int type. The operands of logical-

AND and logical-OR are evaluated from left to right. If the value of the first operand is sufficient to determine

the result of the operation, the second operand is not evaluated . The C logical operators are described in Table

5.4 belo

Operator Description

&& If both operand are non zero logical AND produces the value 1.If either

operand is equal to zero, the result is zero and if the first operand is equal to

zero, the second operand is not evaluated.

| | The logical-OR performs an inclusive - OR operation on its operands. The

result is 0 if both operands have 0 values. If either operands has a non zero

value, the second operand is not evaluated.

Table 5.4

While using compound expressions, care should be taken in using the precedence of relational and logical

operators. The relative precedence are listed as:

! Highest

> > = < < =

= = ! =

& &

| | Lowest.

95

School of Distance Education

‘C’ Programming for Mathematical Computing Page 67

1. 5 Assignment Operators.
The assignment operators perform an arithmetic operation on the 1value and assign the result to the

1value.The usual assignment operator is the ‘=’ ,. In addition, C has a set of less frequent shorthand

assignment operators of the form (+ +, - =, * =, / =, % =). The syntax s;

v op = exp;

where v is a variable, exp is an expression and op is a C binary arithmetic operator.(or short hand binary

operator). For e.g., consider the statement x + = y +1 ; this is same as x= x+(y+1). Here the operator + =

means add ‘ y + 1 to x ‘ (or increment x by y + 1) . Some of the commonly used short hand assignment

operators with their description is shown in Table 5.6. In all expressions involving these operators, the type of

an assignment expression is the type of its left operand, and the value is the value after the assignment.

Statement with simple assignment
operator

Statement with assignment operator

a = a + 1

a = a - 1

a = a* (n+1)

a = a/(n+1)

a = a % b

a + = 1

a - = 1

a* = n+1

a / = n+1

a % = b

Table 5.6. Short hand assignment operators

1.6 Increment and Decrement operators.
C provides two operators ++ and - - called increment and decrement operators and these operators are

useful in controlling the loops through an index variable. The + + operator adds 1 to its operand while the
decrement operator - - subtracts 1. Both of these operators are unary operators. (That is, used on single
operand. ++ adds 1 to operand and - - subtracts 1 to operand respectively). For example:

Let a = 3 and b = 7

a ++ ; becomes 4 and a - - becomes 6

The unusual aspect is that ++ and - - may be used either as prefix (before the variable as in ++a) or post
fix (after the variable as in a ++) . In both case effect is to increment a. But the expression ++a increments a
before its value is used, while a ++ increments a after its value has been used. This means that in a context
where the value is being used, not just the effect, + + a and a++ are different. For e.g., in the assignment
statement x = i ++, if i =5, then x = i++ sets x= 5 , but x = ++ i sets x to 6. In both case i becomes 6. The
increment and decrement operators can only be applied to variables, an expression like (i +j) ++ is illegal. In
general, a prefix operator first adds 1 to the operand and then the result is assigned to the variable on the left.
On the other hand, a post fix operator first assigns the value to the variable on left and then increments the
operand.

96

School of Distance Education

‘C’ Programming for Mathematical Computing Page 68

Similar is the case, when we use ++ or - - in subscripted variable. That is, the statement

a[i++] = 5;

Is equivalent to

a[i] =5;

i = i+1;

Rules for increment (++) and decrement (- -) operators.

1.They are unary operators and require variable as their operands.

2.A postfix ++ or - - operator used with a variable in an expression, the expression is evaluated first

using the original value of the variable and then the variable is incremented(or decremented by one).

3 When prefix ++ or - - is used in an expression, the variable is incremented (or decremented) first and

then the expression is evaluated using the new value of the variable.

4.The precedence and associativity of ++ and - - operators are the same as those of unary + and

unary -

1.7 Conditional Operator

Conditional operator (? :) is a ternary operator (that demands three operands) consisting of symbols ” ?” and

“: “ and are used for decision making in C. The operator works by evaluating test expression, returning a
value if that expression is TRUE and different one if the expression is evaluated as FALSE. The general syntax

is:

identifier = (test expression) ? expression1 : expression2;

This is an expression, not a statement, so it represents a value. If the condition (or test expression) is true , it

evaluates and returns expression1, otherwise it evaluates and returns expression2 .Conditional operator can be

used as a short hand for some if-else statements. For example, consider the statements,

a = 10;

b = 20;

x = (a > b) ? a : b;

Here in this example, x will be assigned the value of b. This can be achieved using the if…..else statement as

follows:

If (a > b)

x = a ;

else

x = b;

97

School of Distance Education

‘C’ Programming for Mathematical Computing Page 69

.1.8 Bitwise Operators

Bit wise operations in C are carried out by using operations on bits(or lowest form of data that can be

accessed in digital hardware) at individual level. That means , Bit wise operators are used to perform bit

operations on given two variables. Four commonly used bit wise operators in C are ~ , & ,| , and ^. Generally,

Bitwise operators manipulate the value of individual bits(i.e., 1 or 0). Further, to understand “<< “and “>>” ,
there are two shift operators which are used to shift the position of a bit (or a set of bits) to another location,

in a multi-bit value. Moreover, these operators work only on a limited number of types: int and char. That

means, they may not be applied to data types : float and double. Bit wise operators supported by C are listed

in the following Table 5.7.

Operator Description of the operator

& Binary AND operator copies a bit to the result if it exists in both operands(or

Bitwise AND)

| Binary OR operator copies a bit if it exists in either operand(or Bitwise Inclusive

OR).

^ Binary XOR operator copies the bit if it is set in one operand but not both (or

Bitwise Exclusive OR).

~ Binary Ones complement operator is unary and it has the effect of flipping bits(or

Bitwise ones complement).

<< Binary left shift operator(or bitwise left shift). The left operands value is moved

left by the number of bits specified by the right operand.

>> Binary right shift operator (or bitwise right shift). The left operands value is

moved right by the number of bits specified by the right operand

1.9 Special Operators

C language provides a number of special operators which have no counter parts in other languages. These

operators include comma operator, sizeof operator, pointer operators(& and *) and member selection

operator (. and -- >) . Pointer operators will be discussed while introducing pointers and member selection

operators will be discussed with structures and union. The comma and sizeof operators are discussed in this

section.

Table 5.7 Bit wise operators

98

School of Distance Education

‘C’ Programming for Mathematical Computing Page 70

The Comma Operator

This operator is used to link the related expressions together. A coma -linked list of expressions are

evaluated left to right and the value of right most expression is the value of the combined expression. For

example, the statement

int x, y,z;

z = (x =10, y = 20, x * y);

Here the 1st statement will create three integer type variables : x, y,z . In the 2nd statement, R.H.S will be

evaluated first. As a result, 10 will be stored in variable x, then 20 will be stored in variable y and then values

in x and y will be multiplied, result of which will be stored in the variable z as 200 at the end of the

execution. Since comma operator has the lowest precedence of all operators, the use of parentheses are

necessary.

The size of Operator

The sizeof operator works on variables, constants and even on data types. It returns the number of bytes, the

operand occupies in the memory. It is a compile time operator and when used with an operand, it returns the

number of bytes occupied by its operand on that particular machine.

Examples include:

m = sizeof (sum);

n = sizeof(long int);

o = sizeof (235L) ;

The sizeof operator is normally used to determine the lengths of arrays and structures when their sizes are not

known to the programmer and is also used during program execution, for dynamic memory space

allocation of variables.

1.10 Arithmetic Expressions

Arithmetic expressions have numbers and variables combined with the regular numeric operators (+ , - , *, /

) , as per syntax of the language and simplify to a single number .Some of the examples of C expressions are

(table 5.8) given below:

Algebraic Expression C Expression

a×b-c a*b-c

ab/c a*b/c

ax2+bx+c a*x*x+b*x+c

Table 5.8 C Expressions

99

School of Distance Education

‘C’ Programming for Mathematical Computing Page 71

1.11 Evaluation of Expression

Every expression is formed out of operands and operators. Expressions in C, are evaluated using an

assignment statement of the form:

variable = expression;

Usually when a statement is encountered, the expression (on the RHS) is first evaluated and the result

obtained thus, is used to replaces the previous value of the variable on the LHS. All variables used in the

expression must be assigned values before evaluation is attempted. An example of a valid evaluation

expression is;

x = a* b-c;

Remember that blank space around an operator is optional and adds only to improve the readability..

1.12. Precedence of Arithmetic Operators

The two distinct priority levels of arithmetic operators in C are:

* / % High priority

+ - Low priority

An arithmetic operation without parentheses will be evaluated from left to right, using the rules of operator

precedence. The basic evaluation procedure involves two left to right pass through the expression..During the

1st pass, high priority operators (if any) are applied. and during the 2nd pass low priority operators, if any , are

applied as they are encountered. For example, consider the statement,

x = a-b/3 + c*2-1

when a= 9, b=12, and c =3 , the statement becomes

x = 9- 12/3 + 3*2 -1

1st pass

Step 1: x = 9- 4 + 3*2 -1

Step 2: x = 9-4+6-1

Second pass

Step 3: 5+6-1

Step 4: 11-1

Step 5: 10

However, one can change the order if evaluation, by introducing parentheses into the expression. The

same above expression in parentheses reads as:

x = 9- 12/(3 + 3)*(2 -1)

100

School of Distance Education

‘C’ Programming for Mathematical Computing Page 72

Whenever parentheses are used, the expression contained in the left most set is evaluated first and the

expression on the right most the last. The steps are as follows:

First pass:

Step 1: 9-12/6*(2-1)

Step 2: 9-12/6*1

Second Pass

Step 3: 9-2*1

Step 4: 9-2

Third pass

Step 5: 7

Though the procedure here, involves three left to right passes, number of evaluation steps is equal to the

number of arithmetic operators. That is, the number of evaluation steps is same (equal to 5) for evaluation

without and with parentheses

It may happen that parentheses may be nested, in which case evaluation will proceed outward from the inner

most set of parentheses as in eg;, x = 9- (12/(3 + 3)*2) -1 = 4 .

Rules for evaluation of Expression

1. The arithmetic expressions are evaluated from left to right using the rules of precedence.

2. When parentheses are used , the expression with in the parentheses assume highest priority

3. First parenthesized sub expressions from left to right are evaluated.

4. The precedence rule is applied in determining the order of application of operators in evaluating sub

expressions.

5. The associativity rule is applied when two or more operators of the same precedence level appear in a

sub expression.

6. If parentheses are nested, the evaluation begins at the inner most sub expression

1.13 Some computational problems

On most computers, any attempt to divide a number by zero will result in an abnormal termination of the

program. In such instances, care should be taken to test the denominator that is likely to assume zero value so

that the division by zero error may be avoided. Further, one must specify the correct type of operands and it

should be of the correct range, so that any error due to over flow / under flow may be eliminated.

101

School of Distance Education

‘C’ Programming for Mathematical Computing Page 73

1.14 Type conversion in expressions

C lets mixing of constants and variables of different types in an expression. It automatically, converts any

intermediate values to the proper type so that expressions can be evaluated without loosing any significance.

This automatic conversion is called implicit type conversion. If the operands are of different types, the lower

type is automatically converted to the higher type before the operation proceeds. The result is of higher type.

The sequence of rules to be followed while evaluating an expression are given below.

Rules for evaluating expressions

All short and char are automatically converted to int: then

1. If one of the operand is long double, the other will be converted to long double and the result will be long
double.

2. else, if one of the operands is double, the other will be converted to double and the result will be double.

3. else, if the operand is float, the other will be converted to float and the result will be float;
4. else if one of the operand is unsigned long int, the other will be converted to unsigned long int and the

result will be unsigned long int.
5. else, if one of the operands is long int and the other is unsigned int, then

(a) If unsigned int can be converted to long int, the unsigned int operand will be converted as such and the

result will be long int;
(b)else, both operands will be converted to unsigned long int and the result will be unsigned long int;
6. else, one of the operands is long int, the other will be converted to long int and the result will be long int;
7. else, if one of the operands is unsigned int, the other will be converted to unsigned int and the result will

be unsigned int.

Explicit conversion

Explicit conversion is used to tell the compiler to treat a variable as of a different type in a specific context.

The compiler will automatically change one type of data in to another (or locally convert) to make it sense.

For instance, if you assign an integer value to a floating point variable, the compiler will insert code to

convert the int to a float. The general syntax is:

(type-name)expression

Where type-name is one of the standard C data types. The expression may be a constant, variable or an
expression. Casting allows you to make this type conversion explicit, or to force it when it would not normally
happen. To perform casting, put the desired type including modifiers like unsigned inside parentheses to the
left of the variable or constant you want to cast. For Example

float a = 5.25;

int b = (int)a; /*Explicit casting from float to int */

The value of b here is 5.

102

School of Distance Education

‘C’ Programming for Mathematical Computing Page 74

1.15 Operator Precedence and associativity

Two operator characteristics (or precedence and associatively of operators) determines how operators group

with operators. Precedence is the priority for grouping different types of operators with their operands.

Associativity is the left to right or right to left order for grouping operand to operators that have the same

precedence. An operator’s precedence is meaningful only if other operators with higher to lower precedence
are present. Expressions with higher-precedence operators are evaluated first. The grouping of operands can be

forced by using parentheses Operators that have the same rank have the same precedence.

For example, in the following statements, the value of 1 is assigned to both a and b because of the right-to-
left associativity of the = operator. The value of c is assigned to b first, and then the value of b is assigned to
a.

b = 2;

c = 1;

a = b = c;

Because the order of sub expression evaluation is not specified, you can explicitly force the grouping of
operands with operators by using parentheses.

In the expression

a + b * c / d

the * and / operations are performed before + because of precedence. b is multiplied by c before it is divided

by d because of associativity. Table 5.8 gives a complete list of C operators, their precedence levels , and their

rules of association.

Operator Description Associativity

()

[]

Function call

Array element reference

Left to right

Right to Left

+ Unary plus Right to left

- Unary minus

++ increment

- - decrement

! Logical negation

~ Ones complement

* Pointer reference

& address

Sizeof

(type)

Size of an object

Type cast

* multiplication Left to right

/ division

% Modulo

103

School of Distance Education

‘C’ Programming for Mathematical Computing Page 75

+ addition Left to right

- subtraction

<< Left shift Left to right

>> Right shift

< Less than Left to right

< = Less than or equal

> Greater than

> = Greater than or equal to

= = equality Left to right

! = In equality

& Bitwise AND Left to right

^ Bitwise XOr Left to right

| Bitwise OR Left to right

&& Logical AND Left to right

| | Logical Or Left to right

?: Conditional expression Right to left

= Assignment operators Right to left

* = /= % =

+ = - = & =

^ = | =

< < = > > =

, Comma operator Left to right

Table 5.8 Precedence and Associativity of operators

1.16 Mathematical Functions
Mathematical functions such as cos, sqrt,log etc are frequently used in the analysis of real life problems. Most

C compilers support these basic type functions. To use any of these functions in a program, we should include
the line

include stdio.h.

In the beginning of the program. Table 5.9 shows some standard mathematical functions

1.17 Summary:
1. An operator in C is used with operands to build functions.
2. Each expression in C should end with a semicolon.
3.Associativity is applied when more than one operator of the same precedence are used in an expression.
4. All mathematical functions implement double type parameters and return double type values.
5. On either side of binary operator, always use spaces to increase readability.
6.Care should be taken to increment/decrement operators to floating point variables.
7.Assignment =. Operator should not be confused with equality operator = = .

104

School of Distance Education

‘C’ Programming for Mathematical Computing Page 76

Function Meaning of function

Trigonometric

acos(x) arc cosine of x

asin(x) arc sine of x

atan(x) arc tangent of x

atan2(x,y) arctangent of x/y.

cos(x) cosine of x

sin(x) sine of x.

tan(x) tangent of x.

Hyperbolic

cosh(x) hyperbolic cosine of x.

sinh(x) hyperbolic sine of x.

tanh(x) hyperbolic tangent of x.

Other functions

exp(x) e to the power of x.

fabs(x) absolute value of x.

floor(x) x rounded down to the nearest integer.

fmod(x,y) remainder of x/y.

log(x) natural log of x, x>0.

pow(x,y) x to the power y.

sqrt(x) square root of x, x > = 0.

Fig 5.9 Mathematical Functions

105

School of Distance Education

‘C’ Programming for Mathematical Computing Page 77

Unit 2:Managing Input and output Operations
Structure

2.1 Introduction

2.2 Reading a Character

2.3 Writing a Character

2.4 Formatted Input

2.5 Formatted output

2.6 Summary

2.1 Introduction

In order to learn a program effectively in C language, one should know, how to manage input and output

of data to and from the screen and the key board. Most programs take some data as input and display the

processed data, often as results, on a suitable medium. The two methods so far used, for providing data to

program variables, rely on : (1) Assigning values to variables through assignment statements and (2) using the

input function scanf (to read data from a key board). For getting the output results, usually the printf function

that sends results out to a terminal, is used.

The Input and output operations are convenient for program that interact with the user, takes input from the

user and print the message. Unlike, other higher level languages, C does not provide any input-output (I/O)

statements as part of its syntax. Instead , a set of library functions provided by the operating system for input

and output operations are borrowed and used by C. The standard library for I/O operations used in C is stdlib.

That is , Standard input (or stdin) is a data stream used to receive input from user / collects characters typed

at the keyboard and stdout, is the data stream for sending output to a device such as monitor etc., . In

otherwords, to include input and output functionality in C programs, the stdio header is needed. Each program

that uses a standard I/O function must contain the statement

include < stdio.h >

at the beginning. This instruction tells the compiler, ‘to search for a file named stdio.h and place its contents

at the appropriate place in the program . Indeed, the contents of the header file become part of the source code
when it is compiled. In fact, this statement can be avoided in situations, where the functions printf and scanf
have been defined as part of the C language. Here, in this chapter, a brief introduction of some common I/O

function that can be used in many machines without much change is discussed.

2.2 Reading a Character

The simplest of all I/O operations is reading a character from the standard input unit(or key board) and

writing it to the standard output unit(or the screen). The most basic way of reading input is by calling the

function getchar. The C library function getchar gets a character from stdin, regardless of what it is, and

Unit 8

106

School of Distance Education

‘C’ Programming for Mathematical Computing Page 78

returns it to the program. That is, it is used to get a character from console, and echoes to the screen. It is the

most basic input function in C, included in the stdio.h header file. The getchar takes the following form:

variable_name = getchar();

Variable name is a valid C name that has been declared as of char type. When this statement is

encountered, the computer waits until a key is pressed and then assigns this character as a value to getchar
function. Since getchar is used on the RHS of an assignment statement, the character value of getchar is in

turn assigned to the variable name on the left. For example,

char = name;

name = getchar ();

Will assign the character “a” to the variable name when we press the key a on the keyboard. Since getchar is a

function, it requires a set of parentheses as shown. The use of getchar function is illustrated in the program

(Table 6.1) below..

Program Output

#include <stdio.h>

#include<conio.h>

int main()

{

char a;

clrscr();

printf(“Enter a character\n”);

a=getchar();

printf(“The character entered is %c

\n”,a);

getchar();

return 0;

}

Enter a character

b

The character entered is b

Table 6.1: use of getchar function

107

School of Distance Education

‘C’ Programming for Mathematical Computing Page 79

The getchar function may be called successively to read the characters contained in a line of text..The

following program me segment , for example, reads characters from key board one after another until the

‘return key’ is pressed

call character;

character = ‘ ‘;

while (character ! = ‘\n’)

{

character = getchar ();

}

The getchar returns the character it reads, or, if there are no more characters accessible, it will return the

special value EOF (“end of file”) .That is, The getchar function accepts any character keyed in, This includes

TAB and RETURN . In other words, when we enter single character input, the newline character is waiting in

the input queue after getchar() returns. A dummy getchar or fflush function (to flush out unwanted

function) may be used to get away the unwanted new line character , when we use getchar in a loop

interactively. However, getc is used to accept a character from standard input.

2.3 Writing a Character

Often there do occur circumstances, where we want to solve computational problems and to display the

characters therein on the console. The two special functions in C, that is designed to handle the output of

character to monitor is putch and putchar . That is, Like getchar, there is an analogous companion C library

function putchar that writes a single character to the standard output stream, (or console), specified by the

argument char to stdout(i.e., it is same as calling putc(c,stdout). The putchar function displays a single

character on the screen. The syntax is:

putchar (variable_name);

where variable_name is a type char variable containing a character. For e.g., the statement

answer = ‘N’

putchar (answer);

will display the character N on the screen. The statement

putchar (‘\n’);

108

School of Distance Education

‘C’ Programming for Mathematical Computing Page 80

would cause the cursor on the screen to move to the beginning of the next line. The following example

(Fig.6.1) explains the use of putchar() function. Putch() function, on the other hand is useful in writing the

output, character by character, on the display.

The puts Function

The puts function stands for put string (or a bit of text) to the screen and this function works inside the main

function. That means, the function puts() writes str to stdout, then writes a new line character. The general

form of the function is:

int puts (char A []);

A puts() function automatically appends a new line character at the end of any text it display and it uses a

character array as parameter which is displayed on the screen. The puts() function performs a function that is

similar to printf() with a %s conversion specifier (or formatted text display). However, putc is used for

sending a single character to standard output.

2.4 Formatted Input
The standard formatted input function in C is scanf (that supply input in a fixed format) and is the input

analog of printf, providing many of the conversion facilities in the opposite direction.. The scanf contains two
important things –the format string and the address list and it reads characters from the input file and
converts them to internal form.. That is, scanf reads characters from the standard input, interprets them
according to the specifications in format, and stores the results through the remaining arguments. Very often,
This is the function used to read an input from the command line. The general format of an input statement
is:

include <stdio.h>

int main ()

{

char ch ;

for (ch = ‘A’; ch < = ‘Z’ ; ch++) {

putchar (ch);

}

return (0);

}

Output

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Fig.6.1 Program to read and write all the letters in English alphabet

109

School of Distance Education

‘C’ Programming for Mathematical Computing Page 81

scanf(“ format string”, arg1,arg2,……, arg n);

Here the format string gives information to the computer on the type of data stored in the list of arguments

arg1, arg2,….arg n and in how many columns (or address of locations) they are found. That is, format
string specifies, how each input is read(.i.e., as a decimal integer, a decimal float, a character, a string and

so on in matching arguments). The argument must be a pointer to a data type that is being read. In fact,

format string and arguments are separated by commas.

scanf stops when it exhausts its format string, or when some input fails to match the control specification.

It returns as its value the number of successfully matched and assigned input items. This can be used to

decide how many items were found. On end of file, EOF is returned; note that this is different ' from 0,

which means that the next input character does not match the first specification in the format string. The

next call to scanf resumes searching immediately after the last character already converted. The format

string usually contains conversion specifications, which are used to control conversion of input. The format

string may contain:

• Blanks or tabs, which are ignored.

• Ordinary characters (not %), which are expected to match the next non-white

space

• character of the input stream.

• Conversion specifications, consisting of the character %, an optional assignment

suppression

• character *, an optional number specifying a maximum field width, an optional h, 1, or L

indicating the width of the target, and a conversion character

A conversion specification directs the conversion of the next input field. Normally the result is placed in

the variable pointed to by the corresponding argument. If assignment suppression is indicated by the *

character, however, the input field is skipped; no assignment is made. An input field is defined as a string of

non-white space characters; it extends either to the next white space character or until the field width, if

specified, is exhausted. This implies that scanf will read across line boundaries to find its input, since

newlines are white space

Inputting Integer l numbers

The field specification for reading an integer number is

% w sd

The percentage sign (%) indicates that a conversion specification follows.. w is an integer number specifying

the field width of the number to be read and d the data type. For example, in the statement

scanf(“%3d %5d”, &num1,&num2);

the two variables in which numbers are to be stored are num1 and num2 and are of integer type. The input data

items must be separated by spaces, tabs or new lines. A sample data line may thus be;

110

School of Distance Education

‘C’ Programming for Mathematical Computing Page 82

500 31246

The value 500 is assigned to num1 and 31246 to num2. Observe that the symbol & (ampersand) should

precede each variable name, that is used to indicate the address of the variable name.

The scanf statement causes data to be read from one or more lines till numbers are stored in all the specified

variable names. Also no blanks are permitted between characters in the format-string. The data type character

d may be preceded by l to read long integers and h to read short integers.

Inputting real numbers

The scanf reads real numbers using the specification %f for both decimal and exponential notation. The

input field specification may be separated by any arbitrary blank spaces. If the number to be read is of double

type, then

Program Output

main()

{

float x,y;

double p,q;

printf(“values for x and y is :\n”);

scanf(“%f %e” , &x ,&y);

printf(“\n”);

printf(“x= %f\n y= %f\n\n”, x, y);

printf(“values of p and q is: ”);

scanf(“%lf %lf ”, &p, &q);

printf(“\n\np = % .12lf \np = %.12e”, p, q);

}

values for x and y is : 12.3456 17.5e-2

x=12.345600

y=0.175000

values of p and q is :4.142857142857

18.5678901234567890

p= 4.142857142857

q= 1.8567890123456e+001

Table 6.2 : Reading of real numbers.

the specification should be %lf. Consider the statement

scanf(“%f %f %f”, &p,&q, ,&r) ;

with the data line

462.85 41.23E-1 543

111

School of Distance Education

‘C’ Programming for Mathematical Computing Page 83

It will assign the value 462.85 to p, 41.23E-1 to q and 543.0 to r. T he program (Table 6.2) below shows

how to read real numbers in both decimal and exponential notation

Inputting character strings

A scanf function can input strings containing more than one character. The syntax is:

%ws or %wc

The corresponding arguments should be a pointer to character array. When the argument is a pointer to a char

variable, then %c may be used to read a single character. Some scanf versions support the following string

conversion specification.:

% [characters]

% [^ characters]

The specification % [characters] imply that only the characters within brackets are permissible in the input

string. Any encounter of other string characters, will terminate the string. The specification % [^characters]
does exactly the reverse. That is , characters after the ^ are not permitted in the input string, The reading of the

string will be terminated at the encounter of one of these characters.

Reading Mixed data types

scanf can be used to input data containing mixed mode type. When one attempts to read an item that does not

match the type , the scanf function does not read any further and immediately returns the value read. For e.g.,

scanf(“%d %c %f”, c %s “ , &count, &code, &ratio, &name) ;

will read the data line

15 p 1.453 coffee

Correctly and assign values in the order in which they appear.

Rules for scanf

• Each variable to be read need a filed specification and a variable address of proper type.

• For any non -white space character used in the format string there must be a matching character in

the user input.

• Ending the format string with white space will result in error.

• The scanf reads until:

1. A whitespace character is found in the numeric specification or

2. Maximum number of characters have been read

3. An error is detected.

4 .The EOF is reached

112

School of Distance Education

‘C’ Programming for Mathematical Computing Page 84

2.5 Formatted output

Formatted output refers to an output data that has been arranged in a particular format, using certain

features, that are effectively exploited to control the alignment and spacing of print-outs on the terminals.. The

main output routine is printf , which writes a formatted string to the stdout stream. The printf() function is

used to print the character, string, float, integer, octal and hexa decimal values on to the output screen and it

returns the number of characters that was written if an error occurs, it will return a negative value. The

required header for the printf function is:

#include <stdio.h>

The general form of printf statement is :

printf (“ control string”’ arg1,arg2,…., arg n);

Control string consists of three types:

1.character that will be printed on the screen as they appear.

2.format specification

3.escape sequence characters like, \n,\t, and \n.

The control string specifies the number of arguments (or variables whose values are formatted and printed

according to the specification of control string) that follow with their types. The arguments should match in

number, order and type with the format specification. A simple format specification is as:

% w. p type-specifier

Where w , is an integer specifying the total number of columns for output value and p is another integer that

specifies the total number of digits to the right of the decimal point or the number of characters to be printed

from a string.

Printf formatting is controlled by ‘format identifiers’ which in the simplest form are listed below:

%d % i decimal signed integer.

% o octal integer

%x % X Hex integer

%u unsigned integer

% c character

%s string

%f double

%e %E double

%p pointer

%n number of characters written by this printf, no argument expected

%% % .No argument expected.

113

School of Distance Education

‘C’ Programming for Mathematical Computing Page 85

Output of Integer Numbers
The format specification for printing an integer number is:

% w d

Where w specifies the minimum field width for the output and d , the value to be printed as an integer.

However, if a number (right justified in the given field width with leading blanks) is greater than the specified

field width, it will be printed in full, over riding the minimum specification. It is possible to force the printing

to be left- justified by placing a minus sign directly after the % character. More over, it is possible to pad with

zeros the leading blanks by placing a zero before the field width specifier. Here, The minus (-) and zero (0) are

named as flags. For printing short integers we may specify hd . And for printing long integers the specifier ld
is used in place of d in the format specifier. Some examples of different format are:

Format output

Printf(%d”’, 1076)

Printf(%6d”’, 1076)

Printf(%-6d”’, 1076)

Printf(%06d”’, 1076)

Output of Real Numbers:

Using the following form specification, the output of a real number may be displayed in decimal form:

% w.p f

The integer w indicates the number of positions that are to be used for the display of the value and the integer p

represents the number of digits to be displayed after the decimal point. That is, the values when displayed, is

rounded to p decimal places with right justification in the field of w columns, with leading trails and blanks.

The default precision is actually 6 decimal places. The negative numbers will be printed with the minus sign

and of the form [-] mmm-nnn.

A real number can be displayed in exponential form using the specification:

% w. p e

The display is of the form

[-] m.nnnne[±]xx

Where the length of the string n ‘s is specified by the precision p with the default precision being 6..Moreover,

the field width w should satisfy the condition

1 0 7 6

1 0 7 6

1 0 7 6

0 0 1 0 7 6

114

School of Distance Education

‘C’ Programming for Mathematical Computing Page 86

w ≥ p +7

and will be rounded off and printed right justified in the field of w columns. Further, padding the leading

blanks with zeros and printing with left justification using flags 0 or – before the field specifier is also

possible. Following are some examples:

Format output

Printf(“%5.3f”,x)

Printf(%5.2f”’,x)

Printf(%-5.2f”’,x)

Printf(% -8.2e”’,x)

For dynamic format specification during run time (i.e., with field width and precision given as arguments

for w and p) we have the special field specification:

printf(“%*.*f” , width, precision, number);

For e.g.,

printf(‘%*.*f”, 7,2, number);

Is equivalent to

printf(‘%7.2f”, number);

Printing of a single character

A single character can be displayed in the keyboard at the desired position , right justified in the field of w

column (with default value for w being 1) using the format

% wc

Printing of strings

The format specification for outputting strings is similar to that of real numbers.. The format being:

% w. ps

With w the field width for display and p indicates that only first p characters of the string are to be displayed

with right justification..Some examples are:

9 . 8 7 6
6

9 . 7 6

9 . 7 6

9 . 7 6 e + 0 1

115

School of Distance Education

‘C’ Programming for Mathematical Computing Page 87

Table showing specification and out put

%s (specification) output

N E W D E L H I 1 1 0 0 0 1

%20s(specification) output

N E W D E L H I 1 1 0 0 0 1

% 20.10s(specification) output

N E W D E L H I

%.5s(specification) output

N E W D

%-20.10s(specification) output

N E W D E L H I

%5s(specification) output

N E W D E L H I 1 1 0 0 1

Mixed data output

Mixed data types in one printf statement is permitted in C. For e.g.,

printf(“%d % f % s %c ,a,b,c,d); is a valid one.

code Meaning

116

School of Distance Education

‘C’ Programming for Mathematical Computing Page 88

%c

%d

%e

%f

%g

%i

% o

%s

%u

%x

Print a single character

Print a decimal number

Print a floating point number in exponent form

Print a floating point number Without

exponent form

Print a floating point number Either e-

type

or f-

type

Print a signed decimal integer

Print an octal integer without leading zero.

Print a string

Print an unsigned decimal integer

Print a hexagonal integer, without leading 0.s

Table 6.1 printf format codes

Remember that, the format specification should match the variables in number, order and type. Table 6.1

below shows commonly used printf format codes

The letters used as prefix for certain conversion characters are:

h short integer

l long or double

L for long double .

2.6 Summary

1. While using getchar, clear all unwanted characters on the console.

2. While using I/O functions always use the header < stdio.h >.

3. For functions that use character handling use the header< ctype.h>

4. For any variable to be read or printed, the proper field specification is to be done.

5. Always enclose format control strings in double quotes.

6. While using scanf the address specifier & ampersand is to be used.

7 Single character constants are to be enclosed in single quotes.

8. Avoid white space at the end of format string and use comma after he format string in scanf statements.

9. Do not use commas in the format string of a scanf statement.

117

School of Distance Education

‘C’ Programming for Mathematical Computing Page 89

Module III: Introduction
This module is designed as an introduction to control structures: branching and looping. Programming

languages by default execute in sequence, line by line. This is very useful since in this mode of execution, it

is done in an orderly manner . But if we need to make decisions and evaluate some input and decide which

path to take depending on that input then we use Control Structures. Control Structures allow

programmers, to change that default sequential execution. In most Programming Languages such as C,

PHP, C++, C#, Java, JavaScript, and others, we have Control Structures. The first Control Structure we are

going to talk about is the “if” and “if … else”. What this structure does is to evaluate the condition of the
“if” statement and determine if it’s true or false; then if it’s true executes the statements inside the “if”
body, otherwise executes statements in the else body or continues executing the rest of the program.

Actually, the flow of control in a computer program may be altered in two ways. One involves alternate

paths provided by if…else or switch statements; the other is through the repetitive execution of a set of

instructions. The first mechanism is called branching, the second called looping. Branching is deciding

what actions to take and looping is deciding how many times to take a certain action. In the first unit of the

module, you are guided through the structure of the various branching constructs like, if…else, else…if,
switch etc., with sample programs. The next unit is a tour through the control structure through looping:

viz, while, do…while, for(,,) loop ,and continue statement.

Unit 1:Decision Making And Branching
Structure

1.1 Introduction

1.2 Decision Making with if statement

1.3 The Simple If Statement

1.4 The IF…..ELSE Statement

1.5 Nested If-else statements

1.6 The else -If Ladder

1.7 The Switch Statement

1.8 The ?: Operator

1.9 The GOTO statement

1.10 Summary:

Unit 9

unit

118

School of Distance Education

‘C’ Programming for Mathematical Computing Page 90

1.1 Introduction.

Decision making is one of the most important concepts in C programming. That is, the programs

should be able to make logical decisions based on the conditions they are in. C language has three

major decision making instructions- the if statement, the if else statement, and the switch statement.

These statements ‘control’ the flow of program execution (or they specify the order in which
computations are performed), and are known as control statements. Here we will learn each of these,

and discuss their features, capabilities and applications in more detail.

1.2 Decision Making with if statement

The key word, if statement, is a conditional branching statement. It, instructs the compiler that, what

follows is a decision control instruction. That is, it allows the program to select an action (i.e., a

condition is evaluated, and if it is true the statement is executed, and, the program skips past it if it is

found false) based upon the user’s input. The condition following the keyword if is always enclosed

within a pair of parenthesis. It takes the form:

If (test expression)

A decision control instruction can be implemented in C using (1) The simple if statement, (2) The if –
else statement (3) nested if-else statement and (4) else if ladder.

1.3 The Simple If Statement

The general form of if statement looks as:

if (test expression)

{

statement block;

}

statement –x;

Here the expression can be any valid expression including a relational expression. We can even use
arithmetic expressions in the if statement. In fact a compound statement composed of several
statements enclosed with in braces (braces are used to group declarations and statements together into
a compound statement or block), can replace the single statement. Remember, there is no semicolon
after the right brace that ends a block. If the test expression evaluates to true, then the compound
statement is executed. Otherwise the control jumps to the statement following the right brace ignoring
the compound statement.. Please do remember that in C, a non zero value is considered to be true,
where as a zero is considered to be false. Here is a simple program (Figure 7.1) using simple if
statement:

119

School of Distance Education

‘C’ Programming for Mathematical Computing Page 91

/* Demonstration of if statement*/

include < stdio.h >

include < conio.h>

int main ()

{

int number;

clrscr ();

printf (“ enter a number\n”);

scanf(“ %d”, &number);

If (number > 0)

printf(“ The given number is positive\n”);

getch();

return 0;

}

output

enter a number

5

The given number is positive

r

Fig.7.1 program for illustration of simple if statement

110
120

School of Distance Education

‘C’ Programming for Mathematical Computing Page 92

On execution of this program, if you type a number greater than zero, you will get a message on the

If logical

expression

screen through printf(). If you type some other number(i.e., a number less than 0, the program

does not do anything. The Flow chart given in Fig. 7.2 help you understand the flow of control in

simple if statement.

1.4 The IF…..ELSE Statement.

The if statement by itself will execute a group of statements or a single statement, when the

expression following it evaluates to true and it does nothing when it evaluates to false .In fact, the if
–else statement is an extension of the simple if statement and is used to express decisions. It permits

the programmer to write a single comparison, and then execute one of the two statements depending

on whether the test expression (in parentheses) is true or false. That is, the if…else statement is used,

the intention of the programmer is to execute the group of statements denoted as true (.i.e., the

true block of statements immediately following the if statements), or else the test expression

statements denoted as false are executed..In either case, either a true or a false block of

codes/statements, are executed not both .In both cases, control is transferred to the subsequent

statement-x. This is interpreted in the flow chart of Fig.7.3.

True

{ statement 1;

….

statement n;}

statement-x

False

next Statement

Fig.7.2 Flow chart I illustrating simple If conditional statement

entry

121

School of Distance Education

‘C’ Programming for Mathematical Computing Page 93

Test expression ?

Example 7.1: A program to check whether the number is odd or even?

entry

Fig.7.3 Flow chart I illustrating simple If –else conditional statement

statement-x

False

{ statement 1;

….

statement n;}

{ statement 1;

….

statement n;}

True

include < stdio.h >

int main () {

int number;

printf(“ Enter a number.\n”);

scanf(“%d”, &number);

if ((number % 2) = = 0)

printf(“%d is even,” , number);

else

printf(“%d is odd..” , number);

return 0;

}

Output

Enter a number

22

22 is even.

Fig.7.4 A program to illustrate the If ….else statement

122

School of Distance Education

‘C’ Programming for Mathematical Computing Page 94

There are a few points that deserve worth mentioning:

1.The group of statements after the if up to and not including the else is the ‘ if block’. Similarly, the
statements after the else form the ‘else block’.

2.The statements in the if and those in the else block have been indented to the right.

3. As with the if statement, the default scope of else is also the statement immediately after the else.
In order to override this default scope, a pair of braces must be used.

1.5 Nested If-else statements.

The if….else statement can be used in nested form when a serious decision are involved. In nested if
..else construct, we write an entire if-else construct with in either the body of the if statement or the
body of an else statement. The logic of execution is shown in Fig.7.5.The syntax is:

if (test condition-1)

{

if (test condition-2);

{

statement-1;

}

else

{

statement-2;

}

}

else

{

statement-3;

}

statement-x;

Here, if the test expression -1 is false, the statement -3 will be executed; otherwise control of the
program jumps to perform the second test condition. If the condition- 2 is true, the statement-1 will be
evaluated, otherwise the statement-2 will be evaluated and then the control is transferred to the
statement-x.

123

School of Distance Education

‘C’ Programming for Mathematical Computing Page 95

Test condition-1

?

Test condition-2

?

Example 7.2: A program to check whether the two numbers is <, than or > than or equal.

trueFalse

entry

Fig.7.3 Flow chart I illustrating nested If –else statement

statement-x

true
False

statement-1
statement-2statement-3

Next statement

124

School of Distance Education

‘C’ Programming for Mathematical Computing Page 96

1.6 The else -If Ladder

Another way of describing the nested if-else is the else-if ladder, where, every else is associated

with an if statement. That is, else-if, is a combination of if and else. Like else, it extends an if
statement to execute a different statement in case the original if expression is evaluated as False.

The syntax is:

include < stdio.h >

int main () {

int num1, num2;

printf(“ Enter two integers.”,\n);

scanf(“%d %d”; & num1, &num2);

if (num1= = num2)

printf(result: %d=%d”, num1,num2);

else

if(num1> num2)

printf(“result:%d > %d”, num1,num2);

else

print(“result: %d >%d “,num2,num1);

return 0;

}

Output

Enter two integers

4

2

Result:4>2

Fig.7.7: program illustrating nested if -else

125

School of Distance Education

‘C’ Programming for Mathematical Computing Page 97

If (condition-1)

statement-1;

else-if (condition-2)

statement-2;

else-if (condition-3)

statement-3;

else-if (condition-n)

statement-n;

else

default-statement;

statement-x;

This construct is called the else-if ladder and is useful where two or more alternatives are

available for selection. In else-if ladder various conditions are evaluated one by one starting from top

to bottom, on reaching a condition evaluating to TRUE the statement group associated with it are

executed and skip other statements. If none of the expressions is evaluated to true, then the

statement or group of statements associated with the final else is executed. In this construct nesting is

allowed only in the else part . In fact, In else……if ladder, we do not have to pair if statements with

else statements. That is, there is no need to remember the number of braces opened as in nested

if….else. Moreover, else….if ladder produces the same effect as nested if-else with the benefit that it

is easy to code. The flow chart corresponding to else-if ladder is shown in fig.7.8

In this construct, the conditions are checked, starting from the top of the else-if ladder, moving

downwards. That is, firstly, condition-1 is checked, and if it is true, statement-1 is executed and

control is transferred to statement-x. On the other hand, If condition-1 is false, condition-2 is checked

and if true, statement -2 is executed and control is transferred to statement-x skipping the rest of the

ladder .When all the n conditions are false, then the final default-statement is executed followed by

the execution of statement-x. The following program(Fig.7.9) explains the else-if construct.

126

School of Distance Education

‘C’ Programming for Mathematical Computing Page 98

True False

Fig.7.8 Flow chart I illustrating else- If ladder

statement-x

FalseTrue

Default statement

statement-2

statement-1

Statement-n

entry

Condition -1

Condition -n

Condition -2

Condition -3

False

False

True

True
statement-3

Next statement

127

School of Distance Education

‘C’ Programming for Mathematical Computing Page 99

Rules for Indentation.

The sections of this page cover the guidelines of acceptable code indentation. Indentation is important

for clarity and sticking to standard. The guidelines that are to be followed while using indentation ,

for control statements are listed below:

1. Indent statements that are dependent on the previous statements; provide at least three spaces of

indentation.

2.Align vertically else clause with their matching if clause.

3.Use braces on separate lines to identify a block of elements.

4.Indent the statements in the block by at least three spaces to the right of the braces.

5.Align the opening and closing braces.

6. Indent the nested statements as per the above rules.

7. Code only one statement/clause on each line.

#include < stdio.h>

#include <conio.h >

void main ()

{

int num;

clrscr();

printf(“enter a number.\n”);

scanf(“%d”, &num);

If(num = =0)

Printf(“Given number is Zero.\n”);

else if (number > 0)

printf(“Given number is positive.\n”);

else

printf(“Given number is negative.\n”);

getch ();

}

Output

Enter a number.

5

Given number is positive.

Fig.7.9. program for else if ladder demonstration.

128

School of Distance Education

‘C’ Programming for Mathematical Computing Page 100

1.7 The Switch Statement

The switch statement is much like a nested if statement and it allows us to make a decision from a

number of choices. In fact, it is a powerful decision making statement that allows a variable to be

tested for equality against a list of values. The condition of a switch statement is a value. The case
says that if it has the value of whatever is after that case then do whatever follows the colon. That

is,.each value is called a case, and the variable being switched on is checked for each switch case.

More correctly, a switch-case default (since these keywords go together to make up the control

statement) accepts single input from the user and based on that input executes a particular block of

statements. The break is used to break out of the case statements, and is usually surrounded by

braces, which it is in. The syntax is:

switch (integer expression)

{

case value-1;

block-1

break;

case value-2;

block-2

break;

…………

………….

default:

default-block

break;

}

statement-x;

The integer expression following the key word switch is any C expression that yields an integer

value. It could be an integer constant or an expression that evaluates to an integer. The keyword case
is followed by an integer or a character constant. Each constant in each case must be different from

all the others. When the switch is executed, the value of the expression is compared against the

values value-1,value-2,…When a match is found, the program executes the statements following that
case, and all subsequent case and default statements as well .If no match is found, with any of the

129

School of Distance Education

‘C’ Programming for Mathematical Computing Page 101

case statements, only the statements following the default are executed. Moreover, the switch
statement transfers control to a statement within its body. Control passes to the statement whose

case constant-expression matches the value of switch (expression). Further, execution of the

statement body begins at the selected statement and proceeds until the end of the body or until a break

statement transfers control out of the body. A default is optional. When present, it will be executed if

the value of the expression does not match any of these case values .if not present, no action takes

place if all matches fail and the control goes to the statement-x.

The selection process of switch statement is explained by the following flow diagram (Fig.7.10).

(No match)default

entry

Fig.7.10 Flow chart I illustrating switch statement

statement-x

Expression= value -1

Block-2

Switch
expression

block-1

Default block

Expression= value -2

130

School of Distance Education

‘C’ Programming for Mathematical Computing Page 102

The following program explain how this control structure works. Here is a program (Fig.7.11)using

switch statement:

#include <stdio.h>

int main ()

{

char grade = ‘B’;

switch (grade)

{

case ‘A’ :

Printf(“very good!\n”);

Break;

case ‘B’:

case’C’ :

Printf(“good\n”);

Break;

case ‘D’:

Printf(“passed\n”);

Break;

case ‘F’:

Printf(“pl try again\n”);

Break;

default :

Printf(“grade invalid\n”);

}

Printf(“grade is %c\n”, grade);

Return 0;

}

Fig. 7.11 : An example showing switch statement

131

School of Distance Education

‘C’ Programming for Mathematical Computing Page 103

This program on execution gives the following output:

Output

Good

Your grade is B.

Rules for using switch case :

1.The expression used in a switch statement must be an integral or enumerated type.

2.With in a switch statement one can have any number of case statements, with each case followed

by the

value to be compared to and a colon.

3.case label must be unique , and must be constants or constant expressions. case labels must end

with

semicolon

4.case label must of integral type and should not be of floating point type.

5.When the variable being switched on is equal to a case, the statements following that case will

execute

until a break statement is reached.

6.switch case should have at most one default label and can be placed anywhere in the switch,
usually

placed at the end . default label is optional. No break is needed in the default case.

7.break statements takes control out of the switch (or switch terminates and the flow of control

jumps to

the next line following switch statement) and it is possible to share two or more case statement to

have one break statement.

8.Nesting(switch within switch) is permitted for switch statement.

9.It is not necessary that every case needs a break statement. If no break appears, the flow of control

will

fall through to subsequent cases until a break is reached.

10 relational operators are not allowed in switch case statement .

132

School of Distance Education

‘C’ Programming for Mathematical Computing Page 104

1.8 The ?: Operator

The operator ?: is just like an if..else statement except that because it is an operator one can use it

within expressions. This is a ternary operator in that it takes three values. The general form of use of

this operator is:

conditional expression ? expression 1 : expression 2

Here, the conditional expression is evaluated first and the result if it is non zero, then expression

1 is evaluated and its value is returned as the value of the conditional expression. Otherwise,

expression 2 is evaluated and its value is returned. For example the code segment,

If (x < 0)

flag = 0;

else

flag = 1;

can be written as

flag = (x< 0) ? 0 : 1;

consider evaluation of yet another function

y = 1.5x+3 for x≤ 2

2x +4 for x >2.

This can be done using the conditional operator ? : as:

y = (x >2) ? (2*x+4) : (1.5 *x+3);

133

School of Distance Education

‘C’ Programming for Mathematical Computing Page 105

.On execution of the program, the maximum variable gives the maximum value of the three numbers .

1.9 The GOTO statement

In C, GO TO statement is used for altering the normal sequence of program execution by transferring

control to some other part of the program. That is ,A goto statement provides an unconditional jump

from the go to a labeled statement in the function. The general form of a go to statement is:

goto label;

………….

…………

label:

Statement;

include < stdio.h >

include < conio.h >

Void main ()

{

int a,b.c, maxm;

printf(“ program to find maxm value of three numbers:\n”);

printf(“enter the first number:\n”);

scanf(“%d”, &a);

printf(“enter the second number:\n”);

scanf(“%d”, &b);

printf(“enter the third number:\n”);

scanf(“%d”, &c);

max= a>b? (a>c?a: (b > c?b:c)) : (b>c? b:c);

printf(“the maximum number is %d:”, maxm\n”);

}

Fig 7.12: illustration of the conditional operator.

134

School of Distance Education

‘C’ Programming for Mathematical Computing Page 106

In this syntax label; is an identifier, to identify the place where the branch is to be made.? That is,

when the control of program reaches to go to statement, it will jump to the label:, and execute the

codes after it. Control may be transferred to anywhere within the current function. The label is placed

immediately before the statement where the control is to be transferred. A label: is any valid variable

name, followed by a colon and can be any where in the program either before or after the go to

label; statement. During program execution when a statement like

go to begin;

Is met, the control flow will jump to the statement immediately following the label begin; This

happens unconditionally.

Note that though, using goto statement give power to jump to any part of program, using goto
makes the logic of the program complex and tangled .It breaks the normal sequential execution of the

program. If the label: is used before the statement goto label; a loop will be formed and some

statements will be executed repeatedly. Such a jump is called as a forward jump. On the other hand, if

the label: is placed after the goto label; some statements will be skipped and the jump is called a

forward jump.

A goto is often used at the end of a program to direct the control to go to the input statement, to

read further data, in fact, such goto statements puts one to enter in a permanent loop called infinite

loop, until one take some special steps to terminate the program. Such infinite loops are to be

avoided. Another use of goto is to transfer control out of a loop 9or nested loop) when certain

peculiar conditions are encountered. Use of goto statement is highly discouraged in any programming

language because it makes difficult to trace the control flow of a program, making the program hard

to understand and hard to modify. An example to explain the control flow of goto statement is shown

in fig 7, 12.Here in this program,

we want to display the numbers from 0 to 9. For this, we have defined the label statement loop above

the goto statement. The given program declares a variable n initialized to 0. The n++ increments the

value of n till the loop reaches 10. Then on declaring the goto statement, it will jumps to the label

statement and prints the value of n.

1.10 Summary:

1. There are three ways of taking decisions in a C program. - The if statement, the if else statement,

and the switch statement. The default scope of the if statement is only the next statement.

2 An if block need not always be associated with an else block. However, an else block is always

Associated with an if statement.\

135

School of Distance Education

‘C’ Programming for Mathematical Computing Page 107

3. If the outcome of an if else ladder is only one of two answers then the ladder should be replaced

either with an else-if or by logical operators.

4. When we need to choose one among number of alternatives, a switch statement is used.

5. The switch key word is followed by an integer or an expression that evaluates to an integer. the

case

key word is followed by an integer or a character constant. the control jumps through all the

cases

unless the break statement is given.

6. The usage of goto is to be avoided as it obstructs the normal flow of execution.

#include< stdio.h>

#include< conio.h>

int main()

{

int n =0;

loop: ;

printf(“ \n%d”, n);

n++;

if(n <10)

{

goto loop;

}

getch();

return 0

}

Fig.7.12 Use of go to statement

136

School of Distance Education

‘C’ Programming for Mathematical Computing Page 108

Unit 2: Decision making and looping
Structure
2.1 Introduction
2.2 The While statement
2.3 The Do Statement
2.4 The For Statement
2.5 Jumps in loops
2.6 The continue statement
2.7 Summary:
2.1 Introduction

The multifunctional ability of the computer lies in its adaptability to perform a set of instructions repeatedly. This

involves repeating some portion of the program either a specified number of times or until a particular condition is being

satisfied. This repetitive operation is done through a loop control instruction. During looping, a set of statements are

executed until some conditions for termination of the loop is encountered .A program loop consists of two segments, one

is the body of the loop and the other known as the control statement. The control is tested always for execution of body

of the loop.

Depending on the position of the control statement in the loop, a control may be classified as the entry controlled loop
or as the exit controlled one (Fig.8.1). In the entry controlled loop, the control condition is tested first and if satisfied

then only body of the loop is executed. In the exit controlled loop, the test is made at the end of the body, so the body is

executed unconditionally first time.

test

condition

Body of loop

entry

false

true

True

test

condition

Body of loop

entry

false

Fig.8.1 loop control s
tructures

(b) Exit controlled loop
t controlled loop

(a) Entry controlled loop

137

School of Distance Education

‘C’ Programming for Mathematical Computing Page 109

A looping process, in general, would include the following four steps:

1. Setting and initialization of a counter.

2. Execution of the statement in the loop

3. Test for a specified condition for execution of the loop.

4. Incrementing the counter.

The three loop constructs in C language for performing loop operations are:

1. The while statement

2. The do-while statement

3. The for statement.

2.2 The While statement.

While statement is a sentinel controlled repetition which can be iterated infinite number of times. Number

of iterations is controlled using the sentinel variable (test expression). It is one of the simplest looping

structures. The basic format of the while statement is:

Sentinel loops

Based on the nature of control variable, and the type of value assigned to it, for testing the

control expression, there are two types of loops:

1. counter controlled

2. sentinel controlled loops (repetition).

Counter controlled repetitions are the loops which the number of repetitions needed for the

loop is known before the loop begins; these loops have control variables to count repetitions.

Counter controlled repetitions need initialized control variable (loop counter), an increment

(or decrement) statement and a condition used to terminate the loop (continuation condition).

Sentinel controlled repetitions are loops with an indefinite repetitions; this type of loop

use a special value, called sentinel value, to change the loop control expression from true to

false(i.e., to indicate end of iteration) .

138

School of Distance Education

‘C’ Programming for Mathematical Computing Page 110

The while is an entry-controlled loop statement. The test condition is evaluated and only if the condition is

true the body is executed. After execution of the body, the test-condition is once again evaluated and if it is

true, the body is executed once again. This process of repeated execution of the body continues until the test-

condition finally becomes false and the control is transferred out of the loop. On exit, the program continues

with the statement immediately after the body of the loop. If the body contains only one statement it is not

necessary to put the braces, but placing them is a good programming practice. Let us look at a simple example,

which uses a while loop.

While (test condition)

{

body of the loop

}

include< stdio.h>

int main()

{

int p,n,count;

float r,si;

count =1;

while(count <= 4)

{

printf (”enter values for p,n,r\n”);

scanf (“%d %d %f “, &p,&n,&r”);

si = p*n*r/100;

printf(“Simple interest is: Rs. %\n f”, si);

count = count +1;

}

return 0;

}

Fig 8.2: program to illustrate while loop

139

School of Distance Education

‘C’ Programming for Mathematical Computing Page 111

Here, the program executes all the statements after while 4 times. The logic for calculating the simple interest

is written within a pair of braces (i.e., the statements form body of while loop) immediately after the keyword

while. The parentheses after the while contain a condition. So long as this condition remains true, all

statements within the body of the while loop keeps getting executed repeatedly. .Also, to start with, the

variable count is initialized to 1 and every time the logic of simple interest is executed, the value of count is

incremented by one .The index variable count here, is called the loop counter .

The following points about while are worth noting.

1. The statements within while loop would keep on getting executed till the condition being tested

remains true. When the condition becomes false, the control passes to the first statement that follows

the body of the while loop.

2. In the place of condition there can be any other valid expression. So long as the expression evaluates to

a non zero value, the statements within the loop would get executed.

3. The condition being tested may be relational or logical operators as in the example below.

while (i < = 4)

while (i > = 4 && j < = 5)

while (i >. = 4 && (j < 5 || c< 10))

4. The statements within the loop may be a single line(i.e., here braces optional) or a block of

Statements as in example shown below.

while(i < =5)

i = i+1;

is same as, while(i < =5)

{

i = i+1;

}

5. Almost always, the while must test a condition that will eventually become false, otherwise the loop

Will be executed for ever.

6. Instead of incrementing a loop counter (not necessarily integer it can be a float), one can Decrement

it and can still manage the body of the loop to be executed repeatedly.

2.3 The Do Statement

The do while loop is also a kind of loop, which is similar to the while loop, in contrast to while loop, the do

while loop tests at the bottom of the loop after executing the body of the loop. Since the body of the loop is

executed first and then the loop condition is checked we can be assured that the body of the loop is executed at

140

School of Distance Education

‘C’ Programming for Mathematical Computing Page 112

least once. The while on the other hand, will not execute its statements if the condition fails for the first time.

That is, the while tests the condition before executing any of the statements within the while loop. As against

this, the do-while tests the condition after having executed the statements within the loop. Since the test

condition is evaluated at the bottom of the loop, the do-while statement is

an exit controlled loop statement. The do-while loop looks like this: Here the statement is executed first, and

next the expression is evaluated. If the condition in the expression is true then the body is executed again and

this process continues till the conditional expression becomes false. When the expression becomes false the

loop terminates. This difference is brought about more clearly by the following program.

Here the, since the condition fails the first time itself, the printf () will not get executed at all. The same

program using the do-while construct is

do

{

body of the loop

}

while (test condition);

#include<stdio.h>

int main ()

{

while (4<1)

printf(“hello\n”);

return 0;

}

#include<stdio.h>

int main ()

{

do

{

printf(“hello\n”);
} while (4<1);

return 0

}

141

School of Distance Education

‘C’ Programming for Mathematical Computing Page 113

In this program, the printf () would be executed once, since first the body of the loop is executed and then the

condition is tested. Break and continue are used with do while just as they would be in a while. A break takes

one out of the do-while by passing the conditional test. A continue sends you straight to the test at the end of

the loop.

2.4 The For Statement

The for loop is another entry-controlled loop that provides a more concise loop control structure. It

is a counter controlled repetition. Therefore the number of iterations must be known before the loop

starts (or predetermined). The body of a for statement is executed zero or more times until an

optional condition becomes false. Also one can use optional expressions with in the for statement to

initialize and change values during the for statements execution. The general form of the for loop is:

That is, in the control block of the for loop statement there are three expressions separated by

semicolon (;).The execution of the for loop is as :

1. The initialization: Initialization of the control variables is done first using assignment

statements .It is typically used to initialize a loop counter variable.

2. The value of the control variable is tested using the test condition. The test condition is a

relational expression, such as i <5 that determines when the loop will exit. That is, the loop

condition expression is evaluated at the beginning of each iteration. The execution of the loop

continues until the loop condition evaluates to false.

3. Increment: The increment expression is evaluated at the end of each iteration. It is used to

increase or decrease the loop counter variable.

Let us write down the simple interest program(which we have written earlier using while
statement) using for (Fig.8.3). If this program is compared with the one written using while
construct, we can see that , the three steps of for loop construct have now been incorporated in the

for statement. Here in this program (fig 8,3), when the for statement is executed for the first time,

the value of count is set to an initial value 1. Next the condition count <=3 is tested. Since the count

was set to 1, the condition is satisfied and the body of the loop is executed for the first time. Up On

reaching the closing brace of for, control is sent back to the for statement, where the value of count

for (initialization; test condition; increment;)

{

body of the loop

}

142

School of Distance Education

‘C’ Programming for Mathematical Computing Page 114

is incremented by 1. Again the test is performed to check whether the new value of count exceeds 3.

If the value of count is less than or equal to 3, the statements within braces of for are executed

again,. The body of the for loop continues to get executed till count does not exceed the final value

3.The control exits from the loop , when count reaches the value 4.and the control is transferred to

the statement(if any) immediately after the body of for.

.

Additional Features of for loop

1. More than one variable can be initialized at a time in the for statement as in :

for (p =1, n =6; n <11; ++n)

Statement. That is, initialization section has two parts p = 1 and n = 6 , separated by comma..Like

initialization section, increment section too can have more than one part. The multiple arguments

in

the increment section too are separated by commas.

2. The test condition may have any compound relation and the testing need not be limited only to the

Loop control variable. For eg:

#include<stdio.h>

int main()

{

int p,n,si;

float,si;

for(count =1; count <=3; count= count+1)

{

printf(enter the values for p.n,r\n”);

scanf(“%d %d %f”,&p,&n,&r);

si = p*n*r/100;

printf(“ simple interest + rs. %f\n”, si);

return 0

}

}

Fig 8.3: Program using for loop

143

School of Distance Education

‘C’ Programming for Mathematical Computing Page 115

sum = 0;

for (i =1 ;i<10 && sum< 19; ++i)

{

S = s+1;

printf(“%d %d \n”,i,sum):

}

Here the loop uses a compound test condition with the counter variable i and variable sum .The

loop is executed as long as both the conditions i<10 && sum < 19 are true. The sum is evaluated

inside the loop.

3. It is also permissible to use expressions in the assignment statements of initialization and increment

Sections. For eg. A statement of the type

for(x= (m + n)/2; x > 0; x = x/2)

is valid.

4. One or more sections can be omitted if necessary as in eg.,

Here, both initialization and increment sections are omitted in the for statement. The initialization

has been done before the for statement and the control variable is incremented inside the loop. Though

the sections remains blank, the semicolons separating the sections must remain. If the test condition is

not present, the for statement sets up an infinite loop. Such loops can be broken using break or goto
statements in the loop..

5.Time delay loops in for loop can be set up using the null statement as:

for (i = 100; i > 0; i = i-1)

;

m=5;

for (; m ! = 100 ;)

{

printf(“ %d\n”, m);

m = m+3;

}

144

School of Distance Education

‘C’ Programming for Mathematical Computing Page 116

Here this loop is executed 100 times without any output. The body of the loop contains only a

semicolon.

Known as null statement.

Nesting of For Loops

The way IF statements can be nested, similarly whiles and fors can also be nested; two loops can be

nested as follows:

………….

…………..

for (i =1; i <10; ++ i)

{

…………

for (j= 1; j! = 5: ++ j)

{

………..

}

………..

}

………..

The nesting may continue up to any desired level. To understand how nested loops work, we look at

the program below.

Inner loop
Outer loop

145

School of Distance Education

‘C’ Programming for Mathematical Computing Page 117

Here for each value of r, the inner loop cycles through twice, with variable c taking values 1and

2.The inner loop terminates when c exceeds 2 and the outer loop terminates when r exceeds 3.

include< stdio.h>

int main ()

{

int r,c,sum;

for (r =1; r < =3; r ++)

{

for(c=1; c<=2; c++)

{

sum = r+c;

printf(“r= %d sum = %d \n”, r,c,sum);

}

}

return 0;

}

output

r =1 c=1 sum=2

r =1 c=2 sum=3

r =2 c=1 sum=3

r =2 c=2 sum=4

r =3 c=1 sum=4

r =3 c=2 sum=5

Fig 8.4. Program to explain nested for

146

School of Distance Education

‘C’ Programming for Mathematical Computing Page 118

2.5 Jumps in loops

We often come across situations, where we want to jump out of a loop instantly, without waiting to

get back to the conditional test. The keyword break allows to do this. When break is encountered

in a loop , control automatically passes to the first statement after the loop. A beak is usually

associated with an if. The key word break, breaks the control only from the while in which it is

placed. As an example we have :

2.6 The continue statement

The keyword continue, allows us to take the control to the beginning of the loop, by passing the

statements inside the loop, which have not yet been executed. That is , when the key word continue is

encountered inside any loop, control automatically passes to the beginning of the loop .A continue is

usually associated with an if. The syntax is:

include < stdio.h>

int main()

{

int num, i;

printf(“ enter a number”);

scanf(“%d”, & num);

i =2;

while(i < = num-1)

{

if (num% ! = = 0)

{

printf(“not a prime number\n”);

break;

}

i++;

}

if (i = = num)

printf(“prime number\n”);

}

Fig 8.5 use of break statement

147

School of Distance Education

‘C’ Programming for Mathematical Computing Page 119

Continue;

As an example consider the program of Fig.8.6. The use of continue statement in loops is illustrated in

fig 8.7.In while and do while loops, continue, causes the control to go directly to the test condition

and then to continue the iteration process. In the case of for loop, , the increment section of the loop is

executed before the test condition is evaluated.

#include < stdio.h >

main()
{

int i;
int j = 10;

for(i = 0; i <= j; i ++)

{

if(i == 5 Goods 1

)
{

continue; Goods 1

}
printf("goods %d\n", i);

}
}

Output

Goods 1

Goods 2

Goods 3

Goods 4

Goods 5

Goods 6

Goods 7

Goods 8

Goods 9

Goods 10

Fig .8. 6 .Use of continue statement

148

School of Distance Education

‘C’ Programming for Mathematical Computing Page 120

Jumping out of the program.

We have seen that we can jump out of a loop using either the break or goto statement. In the same

way we can jump out of a program by using the library function exit().. The use of exit() function is

shown in fig. 8.8 below:

2.7 Summary:

1.The three types of loops available in C are for, while, and do while.

2. A Break statement takes the execution control out of the loop.

3.a continue skips the execution of the statements after it and takes he control to the beginning of the

loop.

4. A do while loop is used to ensure that the statements with in the loop are executed at least once.

5 when we need to choose one among number of alternatives, a switch statement is used.

6.The switch key word is followed by an integer or an expression that evaluates to an integer.

7. the case keyword is followed by an integer or a character constant.

8. the usage of goto keyword should be avoided as it usually violates the normal flow of execution.

While (test condition) do for(initialization; test condition; increment)

{ { {

……………….. ……… ……………..

If (……………) if(………) if(…………..)

Continue; continue; continue;

……………… ……….. ……………..

……………… ………… ……………..

} } (while test condition); }

Fig.8.7 continue command in while, do while and for loop statements

…………..

………….

If (test condition) exit (0);

……………

……………

Fig.8.8. use of exit () function.

149

School of Distance Education

‘C’ Programming for Mathematical Computing Page 121

Module IV: Introduction
This module is designed as an introduction to Data structures. It is about structuring and organizing data as

a fundamental aspect of developing computer application. The standard data structures which are often

used and which forms the basis for complex data structures is the array. An array is a homogenous data

structure in which all elements are of the same type. In the first unit of the module, we describe different

types of arrays in general. The next unit is devoted to a useful introduction to User defined functions.

Unit 1 :Arrays
Structure
1.1 Introduction

1.2 One dimensional Arrays.

1.3 Declaration of one dimensional Arrays

1.4 Initialization of one dimensional Array.

1.5 Two dimensional Arrays.

1.6 Initializing 2-D arrays

1.7 Multi dimensional Arrays

1.8 Dynamic Arrays

1.9 Summary:

1.1 Introduction

An array is a collection of similar elements. These similar elements could be all integers, or all
floats, , or all characters, etc. Usually, an array of characters is called a ‘ string’, where as an array of
integers or floats is simply called an array. All elements of any given array must be of the same type.
That is, we cannot have an array of 10 numbers, of which five are of integers and five of float type.

C supports a rich set of derived and user defined data types, in addition to a variety of fundamental
data types.as detailed below:

Arrays Integral types Structures

Functions Float types Unions

Pointers Character Types Enumerations.

Data Types

Derived
Types

User defined TypesFundament
al Types

Unit 10

Arrays

150

School of Distance Education

‘C’ Programming for Mathematical Computing Page 122

Arrays and structures are referred to as structured data types because they can be used to

represent data values that have a structure of some sort. Structured data types provide an

organizational scheme that shows the relationship among the individual elements and facilitate

efficient data manipulation. In programming language such data types are known as data structures.

1.2 One dimensional Arrays.

As already discussed, an array is a collective name given to a group of similar variables .The values

in an array is called as elements of array, and are accessed by numbers called subscripts. The array

which is used to represent and store data in a linear form (or accessing its elements involve only a

single subscript) is called as single or one dimensional array. As an example consider the C

declaration:

int number [5];

Here in this declaration, the array variable number contain 5 elements of any value available to the

int type .and the computer reserves 5 storage locations. The values to the array elements can be

assigned as:

number [0]= 12;

number [1]=13;

number [2]=15;

number [3]=20;

number [4]=25;

This would cause the array number to store the values as shown below:

12

13

15

20

25

These elements may be used in programs just like any C variable

number [0]

number [1]

number [2]

number [3]

number [4]

151

School of Distance Education

‘C’ Programming for Mathematical Computing Page 123

1.3 Declaration of one dimensional Arrays

To begin with, like other variables an array needs to be declared before they are used so that the

compiler will know what kind of an array and how large an array we want. The general form of array

declaration is:

type variable-name [size];

The type specifies the type of element that will be contained in the array, such as int, float or char and

the size indicates the maximum number of elements that can be stored inside the array .For example,

int marks [10];

Declares the marks as an array to contain a maximum of 10 integer constants. This number is often

called the dimension of the array .The bracket ([]) tells the compiler that we are dealing with an

array.

The C treats character strings simply as array of characters. The size in a character string represents

the maximum number of characters that the string can hold. For instance,

char name[13];

Declares the name as a character array(string) variable that can hold a maximum of 13 characters.

Suppose we read the following string constant in to the string variable name

“GOOD MORNING”

In this, each character of the string is treated as an element of the array name and is stored in the

memory as:

‘G’
‘O’
‘O’
‘D’
‘ ‘

‘M’
‘O’
‘R’
‘N’
‘I’
‘N’
‘G’
‘\o’

152

School of Distance Education

‘C’ Programming for Mathematical Computing Page 124

When the compiler sees a character string , it terminates with an additional null character \o. Thus the
element name[13] holds the null character ‘\o’. Remember that, while declaring character arrays, we
must allow one extra space for the null terminator.

1.4 Initialization of one dimensional Array.
After an array is declared, its elements must be initialized. If they are not given any specific value,

they are supposed to contain garbage values. An array can be initialized at either of the following
stages:

• at compile time
• at run time

Compile time initialization

Whenever we declare an array we can initialize it directly at compile time. In this type of
initialization, we assign certain set of values to array elements before executing program The general
form of initialization of arrays is:

type array-name[size] = [list of values];

the values in the list are separated by commas. The type size can be specified directly as :

int num [5] = { 2.3,4,5,6};

Here the size of the array is specified directly as 5 in the initialization statement. The compiler will
assign values to the particular elements of the array. i.e., At the time of compilation all, the elements
are at specified positions as shown below.

num [0] = 2

num [1] = 3

num [2] = 4

num [3] = 5

num [4] = 6

Also the type size can be specified indirectly as in:
int num [] = { 2.3,4,5,6};

The compiler counts the number of elements written with in the braces and determines the size of the
array.
Character arrays may be initialized in the same manner. Thus the statement

char name [] = { ‘j’, ’o’, ’h’, ’n’, ‘\o’};
Declares the name to be an array of five characters, initialized with the string ’john’ ending with the
null character. Alternatively, we can assign the string literal directly as :

char name [] = ‘john’;

153

School of Distance Education

‘C’ Programming for Mathematical Computing Page 125

Run time initialization

An array can also be explicitly initialized at run time usually; .this approach is applied for
initialization of large arrays. For example, consider the following program segment;

for (i = 0; i < 5; i++)

{

scanf (“% d “’ & x [i]);

}

The above segment will initialize the array elements with the values entered through the keyword .In
this type of initialization (run time initialization) of the arrays. looping elements are almost
compulsory. Looping statements are used to initialize the values of the arrays one by one by using
assignment operator or through the keyboard by the user. we can also use read function such as scanf
to initialize an array as in example below.

int x [2] ;

include < stdio.h >
void main ()
{

int array [3], i;
printf(“ enter 3 numbers to store them in an array\n”);
for (i =0; i < 3; i ++)
{

scanf (“ % d “, & array [i]) ;
}
printf (“ elements in the array are: \ n”);
for i =0; i < 3; i ++)
{

printf (“ elements stored at a [%d] = %d\n”,i, array [i]);
}
getch ();

}

output
enter 3 elements in the array : 2 3 4
elememts in the array are :
element stored at a[0] = 2
element stored at a[1] = 3
element stored at a[2] = 4

Fig 9.1: program to illustrate an array

154

School of Distance Education

‘C’ Programming for Mathematical Computing Page 126

scanf (“ %d % d”, & x[0], & x[1]);

will initialize the array elements with the values entered through the key word. Here is a sample

program (Fig.9.1) to store the elements in the array and to print them from this array.

Searching and sorting are two operations performed on arrays. Searching is the process of arranging

elements in the list according to their values, in ascending or descending order. An ordered list is a

sorted one. The three simple and important sorting methods are:

Bubble sort

Selection sort

Insertion sort.

Other sorting methods include, Merge sort, quick sort and Shell sort.

Searching is the process of finding the location of the specified element in a list. The specified

element is often called the search key. If the process of searching finds a match of the search key

with a list element value, then the search is sad to be successful. Otherwise it is unsuccessful. Two

most commonly used searching methods are ;

Sequential search

Binary Search.

1.5 Two dimensional Arrays.

So far, we have explored arrays with only one dimension. It is also possible to have two or more

dimensions. The 2-D array is also called a matrix. The 2-D arrays are declared as :

type array-name [size of row] [column size];

2-D arrays are stored in memory as shown below. In memory, whether, it is single or two

dimensional array, the array elements are stored in one continuous chain .Each dimension of the array

is indexed from zero to its maximum size minus one: the first index selects the row and the second

index selects the column within that row,

155

School of Distance Education

‘C’ Programming for Mathematical Computing Page 127

110 205 130

214 270 370

20 180 310

300 345 380

Column 0

Column 0
Column 2Column 1

[2] [0] [2] [2][2] [1]

Column 0
Column 2Column 1

[0] [0] [0] [2][0] [1]

Column 0
Column 2Column 1

[1] [0] [1] [2][1] [1]

Column 0
Column 2Column 1

[3] [0] [3] [2][3] [1]

Row 2

Row 1

Row 0

Row 3

Fig 9,2 : Representation of 2-D array in memory

156

School of Distance Education

‘C’ Programming for Mathematical Computing Page 128

Here is a sample program:

This program stores the roll number and marks obtained by a student side by side in a matrix. In the

first part of the program, i.e., in the first for loop, we read in the values of roll number and marks,

where as in the second for loop, we print out these values. Also, in the first scanf , the first subscript

of the variable student is row number which changes for every student. The second subscript tells

which of the two columns are we talking about- the zeroth column which contains the roll number or

the first column which contains the mark. The counting of rows and columns begins with zero.

Remember that two dimensional array is a collection of a number of one dimensional arrays placed

one below the other .In this program, the array elements have been stored row wise and accessed row

wise. Although it is possible to access the elements column wise, row-wise strategy is accepted

widely.

include< stdio.h>

int main()

{

int students [4] [2];

int i,j;

for (i = 0; i < = 3; i ++)

{

printf (“enter the roll no of student and marks\n”);

scanf(“ %d %d”, &student [i] [0], &student[i][1]);

}

for (i =0; i< = 3; i ++)

printf(“ %d %d “, student [i] [0],student [i] [1]);

return 0;

}

9.3. program to illustrate 2-D array

157

School of Distance Education

‘C’ Programming for Mathematical Computing Page 129

1.6 Initializing 2-D arrays

Like 1-D arrays, 2-D arrays could be initialized by following their declaration with a list of initial

values enclosed in braces as in ,

int table [2][3] = { 0,0,0,1,1,1};

which initializes the first row to zero and second row to one. Equivalently one can write the above

statement as:

int table [2][3] = {{ 0,0,0} ,{ 1,1,1}};

We can also initialize a 2-D array in matrix form as:

int table [2][3] = {

{0,0,0},

{1,1,1}

};

More over, the declaration

int table [][3] = {

{ 0,0,0},

{1,1,1}

};

Is perfectly valid.

If the values are missing in the initatializer, they are automatically set to zero. For instance, the

statement

int table [2][3] = {

{1,1}

{2}

};

will initialize the first two elements of the first row to one, the first element of the second row to 2

and all other elements to zero.

In situations where we have to initialize all the elements to zero, a short cut method as in,

int m [3] [5] = { { 0}, { 0},{0} };

158

School of Distance Education

‘C’ Programming for Mathematical Computing Page 130

may be used. Here the first element of each row is explicitly initialized to zero, while all other

elements are automatically initialized to zero. the following statement would also work.

int m [3] [5] =- { 0,0};

1.7 Multi dimensional Arrays

The general form of a multidimensional Array is:

Type array-name [s1] [s2] [s3] …….[sm] ;

Where si is the size of the ith dimension. A 3-D array can be thought of as an array of arrays of array.

The outer array has three elements, each of which is 2-d array of four 1-D arrays., each of which

contains two integers. That is, a 1-D array of two elements is constructed first, followed by placing

four 1-D arrays placed one below the other. So that a 2-d array containing four rows is obtained.

Thereafter, three 2-D arrays are placed one behind the other to yield a 3-D array containing three 2-D

arrays.

1.8 Dynamic Arrays

In C it is possible to allocate memory to arrays at run time. The arrays created at run time are called

dynamic arrays .Dynamic arrays are created using memory management functions like malloc,

calloc, realloc, that are included in the header file< stdlib.h > The concept of dynamic arrays is used

in creating and manipulating data structures like lists, stack and queues.

1.9 Summary:

1,An array is similar to an ordinary variable except that it can store multiple elements of similar type.

2.The array variable acts as a pointer to the zeroth element of the array. In 1-D array, zeroth element

is a

single valued one, whereas in a 2-D array this element is a 1-D array. During multidimensional

initialization, omission of array size other than the first dimension may result an error.

3. While initializing character array, enough space is to be provided for the terminating null

character.

4. The subscript variables in a array need to be initialized before they are used.

159

School of Distance Education

‘C’ Programming for Mathematical Computing Page 131

Unit 2:User Defined Functions
Structure
2.1 Introduction

2.2 Need for User defined Functions

2.3 A Multi function Program

2.4 Elements of User defined Functions

2..5 Definition of Functions

2.6 Return Values and their types

2.8 Function Declaration

2.9 Category of Functions

2.10 Functions with no arguments and no return values

2.11 Function with Arguments but no return value:

2.12. Arguments with return values

2.13 Functions with no arguments but returns a value

2.14 Functions that return multiple values

2.15 Recursion

2.16 passing arrays to function

2.17. Passing strings to functions

2.18. Summary

2.1 Introduction
The C language is similar to most modern programming languages in that, it allows the use of

functions (i.e., a self contained block or module of program code), to get its tasks done. In

general, C functions contain a set of instructions enclosed by braces’{ }’ , that can perform a
coherent task of same kind. They are easy to define and are reusable. That means, it can be executed

from as many different points in a C program as required. Broadly speaking, the two categories of

functions in C are (1) Library functions and (2) user defined functions. Library functions are in

built functions that are grouped and placed together in a common place called ‘library’, and are
capable of performing specific operations. The main difference between a library and user defined
function is that library functions are not required to be written by the user where as a user
defined function has to be developed by us at the time of writing a program. In fact, a user defined
function later becomes a part of the C program library. main is a specially recognized function in C

and is an example of user defined function while the functions printf and scanf belong to the

category of library function.

Unit 11

160

School of Distance Education

‘C’ Programming for Mathematical Computing Page 132

2.2 Need for User defined Functions

A function in C, is a module of a program code (or a block of code that takes information in,

does some computation, and returns a new piece of information based on the parameter information)

which deals with a particular task. In fact, every program can be thought of as a collection of these

functions. That is, functions groups a number of program statements into a unit and this unit can be

invoked from other parts of a program. This division approach clearly results in a number of

advantages:

1.It results in high level modular programming, (Fig.10.1) wherein the high level logic of the overall

problem is solved first while the details of each lower level functions are addressed later.

2. By using functions at the appropriate places, the length of the source program can be reduced.

3. A function may be used by many other programs.

2.3 A Multi function Program

As was pointed earlier, a function is a self contained block of instructions that perform a coherent

task of some kind. Moreover, a function can be accessed from any location with in the C program.

Making functions is a way of isolating one block of code from other Independent blocks of code. A

function can take a number of parameters, do required processing and then return a value. When a

function is

Main Program

Function A Function B Function C

B1 B2

Fig.10.1 Top down Modular Programming using functions

161

School of Distance Education

‘C’ Programming for Mathematical Computing Page 133

Defined at any place in the program then it is called function definition. That means, once a function

is defined and packed, then it takes some data from the main program and returns a value. Actually,

we will be looking at two things - a function that calls the function and the function itself. Let us

consider the above chunk of program(fig.10.2).

And here is the output…..

this is function definition

this explains the use

Here we have defined two user defined functions- main () and message (). In fact, we have used

the word message at three places in the program. During the execution of the main, the first

statement encountered is

message();

which indicates that the function message is to be executed. At this point , the program transfers its

control to the function message. After executing the message function (here no value is returned as

was indicated by the key word void)., the control is transferred back to the main. Now, the execution

continues at the point where the function call (by definition) was executed. After executing the

printf statement, the control is again transferred to the function message () if being called by main (
). That means the activity of main () is temporarily suspended while the message () function

void message();

int main ();

{

message();

printf (“this explains the use\n”);

return 0;

}

void message()

{

printf (“this is function definition \n”);

}

Fig 10.2

162

School of Distance Education

‘C’ Programming for Mathematical Computing Page 134

wakes up and goes to work. When the message () function runs out of statements to execute, the

control returns to main (), which comes to be active again by executing its code at the exact point

where it left off. Thus, main () becomes the calling and message () becomes the called function.

Any function can call any other function, In fact, it can call itself. Further, a called function can call

another function. Also, a function can be called more than once in any program. Moreover, there are

no predetermined relationships, rules of precedence or hierarchies (except at the starting point),

among the functions that make up the complete program. The functions can be placed in any order

and the called function can be placed either before or after the calling function. The best practice is

to put all the called functions at the end. Figure 10.3 illustrates the flow of control in a multifunction

program

2.4 Elements of User defined Functions

So far we have discussed and used a variety of data types and variables in our programs

.Nevertheless, declaration and use of these variables were primarily done inside the main function.

We can therefore define functions and use them like any other variables in C program. Both functions

names and variables are considered as identifiers and therefore they must follow the rules for

identifiers..Further, Like variables, functions have type associated with them and the function names

and types must be declared and defined before they are used in program. Every user defined

functions has three elements.

• Function definition

• Function Call

• Function Declaration.

163

School of Distance Education

‘C’ Programming for Mathematical Computing Page 135

function 1 ();

{

………………..

}

function 3 ();

{

……………….

}

function 2 ();

{

………………..

function 3 ();

…………………

}

main ()

{

……..

function 1 ();

……….

function 2 ();

……………

function 1 ();

}

call

call

call

return

return

return

Fig 10.3 Flow of control in a multifunction program

164

School of Distance Education

‘C’ Programming for Mathematical Computing Page 136

The function definition is independent program modules that is specially written or apply the

requirements of the function. To use this block or function, we need to call down it at the required

place in the program, known as the functions. A function is defined when function name is followed

by a pair of braces in which one or more statements may be present. The program that calls the

function is referred to as the calling program or calling functions. The calling program should declare

any function that is used later in the program. This is termed the function declaration or function

prototype.

2..5 Definition of Functions

The function definition which is the heart of function, is an independent program module that is

specially written to suit to the requirements of the function. A function definition shall include the

following elements

• Function name

• Function type

• List of parameters.

• Local variable declarations

• Function statements

• A return statement

All the six elements are grouped in two parts namely,

1. Function header (first three elements)

2. Function body (Second three elements)

A general format of function definition to implement these two parts(Fig.10.4) is:

Fig.10.4

function_ type function_name (parameter list)

{

local variable declaration;

executable statement1;

executable statement2;

…………….

…………….

return statement;

}

165

School of Distance Education

‘C’ Programming for Mathematical Computing Page 137

The first line function_ type function_name (parameter list) is known as the function header

and the statements within the opening and closing braces constitute the function body.

Function header

The function header consists of three parts: function type, function name and the function

parameter list. Semicolon is not used at the end of the function header.

Function name and type

Function type may specify the data type that one may use (like float ,int or double whatever

according to ones needs) .If data type is not specified then C will assume it as int type and if the

function does not return any value then void is used.

Function name may consist of any variable that is suitable for users understanding. That means, it

is any valid C identifier that must follow the same rules of formation as other variable names in C. A

function gets called when the function name is followed by a semicolon.

Parameter List

It declares the variables that are to be used in the function and that are going to be called in the

program. Actually, they serve as input data to the function to carry out the specified task and are also

be used to send values to calling programs. They are often termed as formal parameters(or

arguments). The parameter list contains declaration of variables separated by commas and enclosed

in parentheses with no semicolon after the closing parentheses. Note that combined declaration of

parameter variables is invalid. That is, int sum(int a,b) is not a valid declaration of parameter list. To

indicate an empty parameter list, usually we use the key word void between the parentheses as in

void printline (void)

{

………..

}

Many compilers do accept an empty set of parentheses, without specifying anything as in

void printline ()

Again, its nice to have void to indicate a nill parameter list.

Function Body

The function body contains the declarations and statements necessary for performing the required

task. The bodies enclosed in braces contain three parts:

166

School of Distance Education

‘C’ Programming for Mathematical Computing Page 138

• Local declaration that specify the variables needed by the function

• Function statements that perform the task of the function

• A return statement that returns the value evaluated by the function.

If the called function is not going to return any meaningful value to the calling function, the use of

return statement can be omitted. Nevertheless, its return type should be specified as void. But it is

better to have a return statement even for void functions.

2.6 Return Values and their types

As pointed out earlier, a return statement is a statement that returns the value evaluated by the

function to the calling program. If a function does not return any value, one can omit the return

statement. When a return is encountered, the control is immediately passed back to the calling

function. A function can return only one value at a time per call and the return statement can take

one of the following forms:

return;

or

return (expression) ;

Here, the first ‘plain’ return does not return any value (or it acts as the closing brace of
function).The second form of return returns the value of the expression. For example, the function

int mul (int x, int y)

{

int z;

z = x* y;

return (z);

}

Returns the value of z . It is possible to have more than one return statement for a function as in:

if (x < = 0)

return (0);

else

return (1);

167

School of Distance Education

‘C’ Programming for Mathematical Computing Page 139

All functions by default return int type data. We can force a function to return a particular type of

data by specifying the type specifier in the function header. For functions that use doubles, yet returns

ints, the returned value will be truncated to an integer as in:.

int product (void)

{

return (2.5* 3.0);

}

Will return the value 7, only the integer part of the computation.

2.7 Function Calls .

In order to use functions user need to call on it at a required place in the program. This is

known as the function call. A function can be called by simply using the function name followed by a

list of actual parameters, if any, enclosed in parentheses. For example,

main ()

{

int y;

y = mul (10, 5); /* function call * /

printf (“ %d\n”,y);

}

Here in the main() program the mul(10, 5) function has been called. The C compiler, when it

encounters a function call, the control is transferred to the function mul (). This function is then

executed line by line and a value is returned (which is assigned to y) , when a return statement is

encountered.

A Function that returns value can be used in expressions like any other variable.

e.g; y = mul (p,q)/(p+q);

Of course, a function cannot be used on the RHS side of an assignment statement. Thus, the

statement

mul (a,b) = 15;

Is wrong. Moreover a function , that does not return any value may not be used in expressions; but

168

School of Distance Education

‘C’ Programming for Mathematical Computing Page 140

can be used to perform certain tasks specified in the function. Such functions may be called in by

simply stating their names as independent statements. For example,

main ()

{

printline ();

}

2.8 Function Declaration

The program or a function that called a function is referred to as the calling function or calling

program. The calling program should declare any function that is to be used later in the program. This

is known as the function declaration (also known as function prototype). Like variables, all the C

functions must be declared, before they are called on. A function declaration involves four parts. viz,

• Function type

• Function name

• Parameter list

• Terminating semicolon.

The general format is:

Function- type function –name (parameter list);

The format is similar to the function header line except the terminating semicolon. Further, when a

function does not take any parameters and does not return any value, its proto type , written

as:

void display (void);

A proto type declaration may be placed in two places in a program:

1. Above all functions including main (also called Global prototype);

2. Inside a function definition.(also called local prototype).

Global declarations are available for all the functions in the program where as local prototype type

declarations are used by the functions containing them. The place of declaration of a function defines

a region (also called scope of the function) in a program in which the function may be used by other

functions. It is nice to declare prototypes in the global declaration section before main so that the user

gets a quick reference to the functions used in the program thereby enhancing the documentation.

169

School of Distance Education

‘C’ Programming for Mathematical Computing Page 141

2.9 Category of Functions .

A function depending on whether arguments are present or not and whether a value is returned or

not, may be categorized into:

• Functions with no arguments and no return values

• Functions with arguments and no return values

• Functions with arguments and one return values

• Functions with no arguments but return a value

• Functions that return multiple values

Let us have a look category of functions one by one.

2.10 Functions with no arguments and no return values

When a function has no arguments, the called function does not receive any data from the calling

function and it does not return any data back to the calling function. Hence there is no data transfer

between the called and calling function. This is pictorially represented in Fig. 10.5.Let us understand

this with the help of a program (Fig 10.6)

Control

No Input

No output

Control

function 1 ()

{

……………….

function 2 ()

………………..

}

function 2 ()

{

……………….

……………….

……………….
.

}

Fig 10.5

170

School of Distance Education

‘C’ Programming for Mathematical Computing Page 142

2.11 Function with Arguments but no return value:

Here the called function receives the data from the calling function but the called function does not

void main ()

{

read_value ();

}

read_value ();

{

char name [10];

printf(“enter your name\n”);

scanf(“%s”, name);

printf(“your name is % s, name”);

}

output
enter your name

salu

your name is salu

Fig.10.6

171

School of Distance Education

‘C’ Programming for Mathematical Computing Page 143

include < stdio.h>

include < conio.h>

void main ()

{

int a,b;

printf(“enter the value for a and b\n”);

scanf(“%d %d”, &a, &b);

largest (a,b);

largest (c,d);

int c,d;

{

if (c > d)

{

printf(“ largest = % d\n”);

}

else

{

printf(“ largest = % d\n”);

}

return ();

}

output
enter the value for a and b

5

3

largest = 5

Fig 10.7 Program to find largest of two numbers

172

School of Distance Education

‘C’ Programming for Mathematical Computing Page 144

return any value back to the calling function. This is depicted in Fig 10.8.The dotted lines in Fig 10.8

Indicates that there is only transfer of control but not data.. A sample program to illustrate this is

shown in Fig 10.7

2.12. Arguments with return values

In this type of functions, functions accepts arguments and returns value back to the calling

program That means, a self contained and independent function receives a predetermined form of

input and outputs a desired value. Thus it is a two way communication between a calling function

and a called function (fig.10.9)

Fig 10.8

function 1 ()

{

……………….

function 2 (a)

………………..

}

function 2 (f)

{

……………….

……………….

……………….
.

}

Values of
arguments

No return value

Fig 10.9

function 1 ()

{

……………….

function 2 (a)

………………..

}

function 2 (f)

{

……………….

……………….

……………….
return (e).

}

Values of
arguments

Function result

173

School of Distance Education

‘C’ Programming for Mathematical Computing Page 145

For example, the program (Fig.10.10) illustrates the use of two way data communication

between calling and called functions.

#include < stdio.h >

float calculate_ area (int);

int main ()

{

int radius;

int area;

printf (“ enter the radius:\n”);

scanf(“%d”, & radius);

area = calculate_area(radius);

printf(“ area of circle :”, area);

return (0);

}

float calculate_ area (int radius);

{

float area of circle;

area of circle = 3.14 * radius * radius;

return(area of circle);

}

output
enter the radius: 1

area of circle = 3.14

Fig 10.10: program to show functions with argument and return value

174

School of Distance Education

‘C’ Programming for Mathematical Computing Page 146

2.13 Functions with no arguments but returns a value

In this type, the called function does not receive any data from the calling function. It is also a one

way data communication between the calling function and the called function. To understand this

following program (fig 10.11) will help.

include < stdio.h >

include < conio.h >

void main ()

{

float sum;

float total ();

clrscr ();

sum = total ();

printf (“ sum = % f \n”, sum);

}

float total ()

{

float a,b;

a = 2;

b= 8;

return (a+b);

}

output

sum = 10.000000

Fig 10.11: function with no arguments but returns a value

175

School of Distance Education

‘C’ Programming for Mathematical Computing Page 147

2.14 Functions that return multiple values

Using a return statement, a function in C can return only one value. If we want the function to

return more than one value of same data types, we could return the pointer to array of that data types.

We can also make the function return multiple values by using the arguments of the function. That is ,

by providing the pointers as arguments. In fact, when a function needs to return several values, we

use one pointer in return instead of several pointers as arguments. Here, the mechanism of sending

back information through arguments is achieved by using what are known as address operator (&)

and indirection operator (*).For e.g., consider the program code:

In this code, in the function call, when we pass the actual values of x and y to the function, we pass

the address of locations where the values of s and d are stored in the memory. When a function call I

s passed, the following assignments takes place.

Value of x to a

Value of y to b

Address of s to sum

Address of d to diff

The indirection operator * (The name indirection means that it gives indirect reference to
variable through its address) in the declarations sum and diff in the header indicates these variables

are to store addresses and not the actual values of variables. That means, the variables sum and diff
point to the memory location of s and d respectively. In the body of the function, the statements

*sum = a + b;

* diff = a - b;

void mathoperation (int x, int y, int *s, int *d);
main ()
{

int x =10, y = 8, s,d;
mathoperation (x, y, &s, &d);
printf (“ s = % d \n d = % d\n”, s,d);

}
void mathoperation 9 int a, in b, int * sum, int * diff)
{

*sum = a+b;
*diff = a-b;

}

176

School of Distance Education

‘C’ Programming for Mathematical Computing Page 148

Imply that the value stored in the location pointed to by sum is the value of s and the value of a-b is

stored in the location pointed to by diff is the value of d. The variables * sum and * diff are pointers

and sum and diff are pointer variables..Since they are declared as int , they can point to locations of

int type data. The use of pointer variables for communicating the data between functions is termed

call by reference (or call by address/ pass by pointers).

2.15 Recursion

In C programming, it is possible for the functions to call themselves or the process of defining.

#include < stdio.h>

int sum (int n);

int main ()

{

int num, add;

printf(“ enter a positive integer:\n”);

scanf(“ %d”, & num);

add = sum (num);

printf(“ sum = %d “, add);

}

int sum(int n)

{

if (n = = 0)

return n ;

else

return n+ sum (n-1);

}

output
enter a positive number

3

6

Fig.10.12 program code for the sum on n natural numbers

177

School of Distance Education

‘C’ Programming for Mathematical Computing Page 149

Something in terms of itself is known as recursion. A very simple example to find the sum of n natural

numbers using recursion(or call a function inside the same function) is shown in Fig 10.12.In this example,

the function sum () is invoked from the same function. If n is not zero then the function calls itself by passing

argument 1 less when the previous argument it was called with. When n becomes equal to zero, the value of n

is returned .In this example, a better visualization of recursion for n = 3, assumes the form:

sum (3)

= 3+ sum (2)

= 3+2+sum(1)

= 3+2+1+sum(0)

= 3+2+1+0

= 3+2+1

= 3+3

= 6

That is, every recursive function must be accommodated with a way to end the recursion. when n is zero, there

is no recursive function call and the recursion ends here.

2.16 passing arrays to function

In C programming it is possible to pass a single array or an entire array to a function. Also, both one and

multidimensional array can be passed to function as argument. To pass a 1-d array to a called function, listing

the name of the array without any subscripts, and size of the array as argument is sufficient. That means, while

passing arrays to the argument, the name of the array is passed as an argument. Also, Single element of an

array can be passed in the same way as passing variables to a function. For example, the following code

#include < stdio.h>

void display(int a)

{

printf(“%d”,a);

}

int main() {

int c [] = {2,3,4};

display (c[2]); /* passing array element c[2] */

return 0;

}

178

School of Distance Education

‘C’ Programming for Mathematical Computing Page 150

Explains the passing single element of an array (that is c[2]) to a function. The output of this

program is 4.In C, the name of the array represents the address of its first element. By passing the

array name in fact deals with passing the address of the array to the called function. The array in the

called function refers to the same array stored in the memory. That is, any changes in the array in the

called function will be reflected in the original array. Remember that one cannot pass a whole array

by value, as we do in the case of ordinary variables. Also, when we deal with array arguments, care

should be taken to incorporate the changes made to the original array that passed to the function, if

the function changes the values of the elements of an array.

Two dimensional arrays

Like simple arrays, to pass two dimensional array to a function as an argument, the starting address of

memory area reserved is passed .An example, to pass 2-D arrays to function is shown below.

include < stdio.h>

void function(int c[2][2]);

int main(){

int c[2][2],i,j;

printf("enter 4 numbers:\n");

for(i=0;i<2;++i)

for(j=0;j<2;++j){

scanf("%d",&c[i][j]);

}

function(c);

return 0;

}

void function(int c[2][2]){

int i,j;

printf("displaying:\n");

for(i=0;i<2;++i)

for(j=0;j<2;++j)

printf("%d\n",c[i][j]);

}
179

School of Distance Education

‘C’ Programming for Mathematical Computing Page 151

The output of this program is:

Enter 4 numbers

1

2

3

4

Displaying

1

2

3

4

The function defined in the program can be used in the main function to display 4 numbers in the

array .

2.17. Passing strings to functions

The strings are treated as character arrays in C and therefore the rules for passing strings to

functions are same as those for passing arrays to functions .The rules are as follows:

1. The strings to be passed must be declared as a formal argument of the function when it is

defined.

2. The function prototype must show that the argument is a string. eg., void display (char str []
);

3. A call to the function must have a string array name without subscripts as its actual argument.

eg. display (names);

2.18 Summary

1. Function declaration specifies the return type of the function and the types of parameters it

accepts. A function can return only one value at a time.

2. There is no restriction on the number of return statements that may be present in a function.

Also return statements need not always be present at the end of the called function.

3. A return statement is needed if the return type is anything other than void. If a function does

not return any value, return type must be declared as void

180

School of Distance Education

‘C’ Programming for Mathematical Computing Page 152

4. Any number of arguments can be passed to a function being called. However, the type, order,

and the number of actual and formal arguments must be same .If the value of the formal

argument is changed in the called function, the corresponding change does not take place in

the calling function.

5. Where more functions are used, they may be placed in any order.

6. If a function has no parameters, the parameter list must be declared as void .Functions return

integer value by default.

7. Functions cannot be defined as assignment.

8. A function with void return type cannot be used in the RHS of an assignment statement.

9. Function definition defines the body of the function .it may be placed either after or before the

main function.

10. Variables declared in a function are not available to other functions in a program.

11. A function can be called either by value or by reference.

12. Recursion offers a better solution than loops.

13. If a function is to be made to return more than one value at a time, then return these values

indirectly by using a call by reference.

10 Use parameter passing by values as far as possible.

181

POST GRADUATE DEGREE PROGRAMME (CBCS) IN

MATHEMATICS

SEMESTER III

SELF LEARNING MATERIAL

PAPER : MATA 3.4
(Applied Stream)

• Block - I : Mathematical Biology
• Block - II : Dynamical System

Directorate of Open and Distance Learning
University of Kalyani

Kalyani, Nadia
West Bengal, India

Course Preparation Team

1. Mr. Biswajit Mallick 2. Ms. Audrija Choudhury
Assistant Professor (Cont.) Assistant Professor (Cont.)
DODL, University of Kalyani DODL, University of Kalyani

November, 2019

Directorate of Open and Distance Learning, University of Kalyani

Published by the Directorate of Open and Distance Learning

University of Kalyani, 741235, West Bengal

All rights reserved. No part of this work should be reproduced in any form without the permission in writing
form the Directorate of Open and Distance Learning, University of Kalynai.

Director’s Massage
Satisfying the varied needs of distance learners, overcoming the obstacle of distance and reaching the un-
reached students are the threefold functions catered by Open and Distance Learning (ODL) systems. The
onus lies on writers, editors, production professionals and other personnel involved in the process to overcome
the challenges inherent to curriculum design and production of relevant Self Learning Materials (SLMs). At
the University of Kalyani a dedicated team under the able guidance of the Hon’ble Vice-Chancellor has in-
vested its best efforts, professionally and in keeping with the demands of Post Graduate CBCS Programmes
in Distance Mode to devise a self-sufficient curriculum for each course offered by the Directorate of Open and
Distance Learning (DODL), University of Kalyani.

Development of printed SLMs for students admitted to the DODL within a limited time to cater to the
academic requirements of the Course as per standards set by Distance Education Bureau of the University
Grants Commission, New Delhi, India under Open and Distance Mode UGC Regulations, 2017 had been our
endeavour. We are happy to have achieved our goal.

Utmost care and precision have been ensured in the development of the SLMs, making them useful to the
learners, besides avoiding errors as far as practicable. Further suggestions from the stakeholders in this would
be welcome.

During the production-process of the SLMs, the team continuously received positive stimulations and feed-
back from Professor (Dr.) Sankar Kumar Ghosh, Hon’ble Vice-Chancellor, University of Kalyani, who kindly
accorded directions, encouragements and suggestions, offered constructive criticism to develop it within
proper requirements. We gracefully, acknowledge his inspiration and guidance.

Sincere gratitude is due to the respective chairpersons as weel as each and every member of PGBOS
(DODL), University of Kalyani, Heartfelt thanks is also due to the Course Writers-faculty members at the
DODL, subject-experts serving at University Post Graduate departments and also to the authors and aca-
demicians whose academic contributions have enriched the SLMs. We humbly acknowledge their valuable
academic contributions. I would especially like to convey gratitude to all other University dignitaries and
personnel involved either at the conceptual or operational level of the DODL of University of Kalyani.

Their persistent and co-ordinated efforts have resulted in the compilation of comprehensive, learner-friendly,
flexible texts that meet the curriculum requirements of the Post Graduate Programme through Distance Mode.

Self Learning Materials (SLMs) have been published by the Directorate of Open and Distance Learning,
University of Kalyani, Kalyani-741235, West Bengal and all the copyright reserved for University of Kalyani.
No part of this work should be reproduced in any from without permission in writing from the appropriate
authority of the University of Kalyani.

All the Self Learning Materials are self writing and collected from e-book, journals and websites.

Director

Directorate of Open and Distance Learning

University of Kalyani

Elective Paper
MATA 3.4
Block - I

Marks : 50 (SSE : 40; IA : 10)
Mathematical Biology (Applied Stream)

LTPJIT 8 SLNGLE SPECIES POPULATION
MODELS

Structure * . Page No.

8.1 Introduction
Objectives

8.2 Fundamental concepts 3 1

8.3 Exponential Growth Model
Formulation
Solution and Interpretation
Limitations

8.4 Logistic Growth Model
Formulation
Solution and Interpretation
Limitations

8.5 Extension Of The Logistic Model 40

8.6 Summary 42

8.1 INTRODUCTION

Ecology has attracted attention of scientists and philosophers from the early
ages of human civilisation. Some of the writings of great Greek philosophers
like Hippocrates, Aristotle, etc. dealt wit11 ecological materials although the
term "ecology" was not know to them. The word L'ecology" was first coined
by the german biologist Ernst Haeckel in 1869 to define "the science of the
interrelations between living organisms and their environment". The word
"ecology" owes its origin to the Greek: word "oikos" meaning L1house" or
"place to live". Because of growing environmental awarencss now-a-days,
ecology has become a branch of science that is most relevant to everyday life.

The fact that ecology is essentially a mathematical subject is becoming more
widely accepted. Population biology or mathematical ecology deals with the
increase and fluctuations of populations (e.g. plant popdlation, animal
population, or other organic population). The matllematical study of the
problems in ecology is not of recent origin. In fact, Lotka (1924) and
Volterra (1926) werk early pioneers developing foundation,work in this field.
They established their works on the expression of predator-prey and
competing species relations in terms of differential/integral equations.

In this unit we shdl first define some fundamental concepts used in
ecological studies and then develop mathematical models of some basic
principles in ecology dealing with the growth of single species biological
populations. We shall talk about two species biological population in Unit 9.

Objectives
After reading this unit, you should be able to

express population growth processes in a mathematical framework.

apply your knowledge of differential calculus, integral calculus and differen-
tial equations in building mathematical models of population dynamics.

1

@ to solve mathematical models or population aynamics. single species

e analyse inathematical relations obtained to understand how the change of
a population can be predicted

8.2 FUNDAMENTAL CONCEPTS

In naturc, an individual living organism of any species does not live in
isolation - the organis!ns live in groups which are called populations. The
term population ill(>:.fi IS n group of iridividuals of any one kind of living
organism. Ecological studies start at the population level.

The basic characteristic of a population is iiidicated by its density. The
density of a population is its size. in relation to some unit of space; it is
generally expressed as the number of individupls or biomass per unit
area or volume. For example, 300 trees per acre of land or 2 quiritals of fish
per acre of water surface or 20,000 bacteria per cubic metre of a test tubc,
etc..

Since a population changes over time, we are interested in knowing how it is
changing or more precisely, what is its time-rate of cliange which we call the
growth-rate. The growth-rate of a population is tlie rate of change of its
density or size per unit time; it is determined by the birth-rate and the
death-rate. The birth-ralv .F a population is the ~naxiinum production of
new individuals per unit timc .~lider ideal conditions (i.e. without any
ecological limiting fnctoi. : reprcduction being limited by physiological
factors only). Death-rase may .tc vxpressed as the nuinber of individuals
dying per unit time.

With these few definitic r L ::T r!ow j hrocecd to develop an exponential growth
population model.

B.3 EXPONENTIAL GROWTH MODEL

The principle of exponential growth for human populaiiior~s was first
propounded. by Thomas R. Malthus (1 766-1834) an English clergyman and
political economist in the first edition of his famous book entitled A n Essay
on t h e Principle of Populatioli published j11 1798. Malthus achieved
notoriety through this work for publishing that huma~i population grows at a
(geometrical) rate that is faster than tlie (arithrnotical) rate of growth of the
supply of commod.itieu necessary for life. He predicted famine and wars as a
consequence.

Let us now discuss the exponential growth model propounded by Malthus.

8.3.1 Formulation of the Model
How does one predict the growth of a popnlation? If we are interested in a
single population, we car1 thinlc of species aa being contained in a
compartment (a Petrie dish, an island, a country etc.) and study the growth
process as one-compartment system. While the population say x(t) is always
an integer, it is usually assumed to be large enough so that very little error is
introduced in assuming that x(t) is a continuous function. In fact, to avoid
this problem, x(t) is often taken to be the population density or to be
biomass rather than the number of indivicluals.

Malthus, while formulating the population growth model ~nade the following
three assumptions

2

Biological
El~vironment

i) The po:pulation is su%ciently large

ii) Popula,Lion is homogeneuims el-lal; is, it is evel~lj. spread over the living
spa,r:e.

iii) There are no lirnjtntions to growth, i.e., rw limitations of food, space and
so on. Popu'latio~~ changes only by the occu~:r.(?nce of hirths and deaths.
Let us now discuss the model fcrmu1:ited iln.der thcse conditioils.

Let x (t) (> I]) be the size of the popnl;2tion at time t and x(0) -- xo. Suppose
.that thc. popu1d;ion changes only by the occurren.ce, of births and
dea,ths-there is no immigration or emigratio~~. Let B(t) and l3I.b) tieizote,
rr?spectiv&l;y, the n~xnlbers of hirths and deaths 'that 11;lv.u occ.rnrred by time 1;.
Then the per capita birth rate b a,nd, the death rate 1.n are give11 by

1 dD
In = ----.

x(t) dl;

and the per capita grovrtb rate of tlie p~1puIati011 at a'wy t i~ne t is given by

1 dx(t)
OF, --.- - -.-- =: b -- ni .= r (constant) say

x(t) dt
dx(t)

or, -- = m(t), where x(C1) = xo
dt

where consl;anl represents the net growth rate.

Eqn. (4) is thc niodel equation for the po~>-nliztisn growth as given by
Maltl~hns. Let us now solve this equation aid see what it repl*eserll,:g.

The simple ordinary differential Xqrl.(Li) Carl be solved by t l~e rl~ettlotl of
separation of variables,

We have I

Tntc:g~at;ing this eqiiation, we obtain

In x(t) = C + rt, C being a constant

To obtaivl C we use the illitid condition x(0) - xo, arld get

In xo = c (6)

Solution to Eqn.(5) then reduces to
X(t)

In - = rt -- ln e rt
xo

or, ~ (t) = xoert. , (7)
, Eqn. (7). gives the poprrlation size at any time t. If the net growth rate

I r > 0, x(t) grows exponentially without any bound as shown in Fig: 1 For
Fig. 1 r '< O,x(t) -+ 0 as t -+ oo, implying that the populatioll is ultimately driven

to extinction. Both these outcomes are extreme and are not found to occur
in the nature. In this sense the Maltllus model has severe limitations which

32
we shall discuss now, but before khat, let us solve this example.

3

Example 1: In a population of birds, the proportionate birth rate ,and the
death rate are both constant, being 0.45 per year and 0.65 per

year respectively. Formulate a model of the population and discuss its
long-term behavionr.

Solution: Let x(t) denotes the size of the population at any time t > 0. The
per capita birth-rate b = 0.45 and,per capita death-rate m = 0.65. Hence

Integrating Eqn. (8) we get

x(t) == xoe -0.2t

where xo is the initial size of the bird population.

Eqn.(B) gives tlie size of the bird population a;t any time t. Since e-0.2t ---+ 0
as t -k oo, x(t) -) 0 whatever (finite) value is assigned to xo . This shows
that the bird population goes to extinction in the long run.

8.3.3 Limitations
Under ideal conditions when the avhilability of space, food and other
resources do not inhibit growth, Inany biological populations are observed to
grow initially at an approximately exponeni;ial rate After some time, when
the population size becomes considerably lasge, there is lack of food, space
and other resources; also there is pollution due to overcrowding. All these
consequences are collectively called "crowding effects". The crowding
effects force the growth rate to decIine. These considerations make it clcar
Chat the growth rate r cannot. be conutant, but must depend on the size or
density of the populalion. This is where the !imitations of the Malthus
model precisely lie.

The above discussioii suggests that Eqr~(4) should be modified as

where r(x) after certain stage decreases as x increwes.

When r(x) is a decreasirlg function of x, the model is said to describe a
process of "feed back" or LLcompensation". The natural biological
population9 usually exhibit compensatory growth processes.

It is thus clear that Eqn.(4) does not provide a very accurate model for the
population growth when the population itself is very large. Therefore, there
is a need to improve this model. In the next section we shall develop a model -.

called Logistic model which takes care of the lwge population.

And now some exercises for y ~ u .

El) In a population of birds, the proportionate birth rate and death rate
are both constant, being 0.48 per year and 0.65 per year respectively.
Immigration occurs at a conatant rate of 2000 birds and emigration at
a con'ktant rate of 1000 birds per year, Use these assuinptions to
formulate a model of the hopulation. Solve the model and describe the
long-term behaviour of the population in the two cases when the initial

?.\population is 3000 or 8000.

E2) The population of fish in a reservoir is affected by both fishing and
restocking. The proportionate birth rate is constant at 0.6 per year and
the proportionate death rate is constant at 0.65 per year. The reservoir

Single Species

4

Biological
Environment

is restocked at a constant rate of 4000 fish per year and fishermen are
allo-ived to catch 3500 fish per year.

Use these assum2tions to derive a model for the population. Solve the
rnodel and describe the loqg~terrn behaviour of the fish population in
the two cases when the initial population is 5000 or 15000.

We shall now discuss the Ilogistic Model based on a density dependent,
comper~atory growth process.

8.4 LOGISTIC MODEL

If you, look at the shape of the curve in Fig.2 you will notice that the curve
consists of three different patterns AB, BC and CD. From A to I3 the curve
gradually rises, from B to.C it is almost; an.exponentia1 increase and from C
to D it gets flattened. This curve is found t,o represent adequately t l ~
popula,tion growth which has steady growth initially until the growth ratc. is
reduced due to various factors like mowding effects, epidemics etc. and
ultimately tending almost to zero. In other words, we can say tliat
ultimately the population gets stabilized/reaches an equilibrium value
without any appreciable increase or decrease. We now take up mathematical
formulation of the logistic model.

8.4.1 Formulation

A
0

Assumilig r(x) to be positive and putting r(x) = rr (1 - $) in Eqn.(9) where,
constants rl > 0 and K > 0 we get the Verhulst's f i ~ ~ o u s '?ogistic equation".

--.-------

-;f: When a ~opulation is growing in a limited space, the density gractually rises
until eventually the presence of other organisms reduce the fertility and
longevity of the population. This reduce the rate of increase of the

B population until eventually the population ceases to grow. The growth curve
1 defi~ied by such a population follows sigmoid, or S-shaped pattern when

Since rf(x) = --% < 0 for all x > 0, the per capita growth rate r(x) declines
as the density x increases. This decrewe in r(x) is broughl; about by
environlnent a1 resistance term $ which is linearly proportional to the
density. [Since r(x) FZ r l for sniall x, r is called the "intrinsic growth rate"
i.e,, growth rate free from environmental constraints.]

Note that Eqn.(lO) is non-linear, first order equation. It is easy to solve it by
the method of separation of variables. Before we do that let us discuss the
qualitative behaviour of the solution by using geometric reasoning.

density is plotted against tiale (see Fig. 2). This curve was first suggested to
Fig.2 describe the growth of human populatioiis by PF. Verhulst in 1838. The

sigmoid curve arises due to greater and greater action of detrimental factors
(environplental resistance) as the density of populaltion increases. The
simplest, case that can be conceived is the one in which the detrimental
factors are linearly proportional to the density. Such sirriple or ideal growth
form is call(?d 'Llogistic" and the corresponding growth equation is called
the LLlogis t i~ equation".

, ,

The graph of $f against x, where 3 is given by Eqn.(lO) gives the graph of 1
the logistic mowth function as show11 in. Fig.3. The graph i~ a parabola wit11

I

I . 34

i 1
-

5

intercepts at (0,O) and (K, 0) and with vertex at T, r~
&/dl (" "1 Single Species I

Fig.3: The logistic growth function

h h e n 0 < x < K, > 0 so that x increases towards K. When

/x > K, < 0 so that x decreases towards K.

This shows that the populatiun level x(t) always approaches K.

We can infact, express this by writing

lim x(t) = I< provided xo* > 0.
t+ca 9 (I1) A constant solution of

If x = 0 or x = K, then 3 = 0 and x(t) does not change. The constant a differential equation is
called an equilibrium

solutions x = 0 and x = I(: axe called equilibrium solutions. solution.
Corresponding to them the points x = 0 and x = K are called equilibrium
points or critical points. You would notice in Unit 9 when we discuss the
stability of the critical points in detail that the constant I< defined by
Eqn.(ll) is an asymptotically stable equilibrium. It is a "saturation
level" or 'Lupper limit" of the population. It is called the 'carryifig
capacity' of the population- the maximum number of individuals that can
persist under the conditions specified.

In many situations it is sufficient to have the qualitative information about
the solution x(t) of Eqn.(lO). However, if we wish to have a more detailed
description of logistic growth - for example, if we wish to know the
population at some particular time, then we must solve Eqn.(lO). Let; us now
do that.

8.4.2 Solution and Interpretation

Consider Eqn. (lo), viz.,

It can be easily solved by the method. of separation of variables, by writing it
in the form

Kdx
= rldt,

x(K - x)
We can write Eqn.(l2) in the form [: + &] dx = rldt: (13)

If we assume that x < K, then Eqn. (13) on integqation yields
I

lnx - ln(K - x) = r l t + C, C being a constant
X

(14)

or, ln- = rlt +C.
K - x (15)

6

Biological Using the initial condition x(0) = XQ, we obtain C = In&.
Environment Therefore,

X xo In- = 1nerlt + ln------
K - x K -x0

xOerl
= In-

K - xo
X xO erl

o r , = -
K - x K - xo

Therefore, x(t) = K
1 + Cle-rt

' K-xo
where C1 = --- is a constant.

xo
You may observe here that we made the assumption that x < K in order to
derive Eqn.(l9). But this restriction is unnecessary, because you can easily
verify that Eq11. (19) gives the solution of the logistic equation whether x < K
or x 2 K. We are leaving it for you to verify

E3) Verify that solution of Eqn.(lO) for x 2 K is given by Eqn.(l9).

Thus the solution of Eqn.(lO) as given by Eqn.(l!J)represents t h e size of
t he population at any t ime t. It is evident from Eqn.(lS) that x(t) + K

I
I

as t + m. Thus a population that satisfies the logistic equation is not like a ,

naturally growing population; it does not grow without bound: but instead
approaches the finite limiting population K as t + m. But because $ > 0 in

I

this case, we see that population is steadily increasiiig. 1
I

Moreover, differentiating Eqn.(lO) with respect to t , we have I I
d2x - r - dx --- 2~ dx
dt2 - [dt K d t l

If (K - 2x) > 0, we have K - x > x > 0. Then a (ili) dx > 0. SO that the
ra te of increase increases with time. This shows that there is an
accelerated growth of the population in the range 0 < x < $.
0 n t h e o t h e r h a n d , i f ~ < x < ~ , t h c n ~ - 2 ~ < 0 a n d ~ - x > 0 , s o t h a t ~
is a decreasing function of time. Thus there is a retarded growth of the
population in range 5 < x < K.
We have shown the two typical solution curves x(t) of the loghtic Eqn.(lO)
in Fig.4.

The graphs1 of solution of Eqn.(lO) must have the general shape shown in
Fig.4, regardless of the values of r and K. The horizontal lines are the
equilibrium solutions x(t) = 0 and x(t) = K. If the initial population level i
XQ > K, x(t) monotonically decreases towards K; the upper curve depicts this 1
situation. The lower curve, with its characteristic "sigmoid" or "ogive"
shape, is usuaUy referred to as the "logistic growth curve". 1

i 1 I

i ' 7

Single Species

Fig.4: The solut ion curves of t h e logistic growth equation

The logistic curve rises at an increasing rate to start with, like an
exponential curve, and then gradually slows down and finally flattens out to
approach the horizontal line x = K as t becomes very large, The time-period
before the population reaches half its equilibrium value (K/2) is a period of
"accelerated growth". Thereafter, the rate of growth diminishes and
gradually becomes zero.

If you compare Fig.1 and Fig.4, you would notice that solutions of the
non-linear Eqn.(lO) are strilrillgly different from those of the linear Eqn.(5),
at least for large values of t. Regardless of the value as K, that is, no matter
how small the non-linear term i11 Eqn.(lO), solution of the equation approach
a finite value of t + rn, whereas solution of Eqn,(5) grow (exponentially)
without bound as t - ; 1-0. Thus, even a tiny izan-linear term in the
differential equation las a decisive effect on the sohtinn for large t .

Let us now consider the followirlg examples,

Example 2: the logistic model has beell applied to the nat,ural growth of
the halibut population in certaiu areas of the Pacific Ocean. Let x(t),
measured in kilograms he the total mass, or biomass, of the halibut
population at time t. The parameters in the logistic equation are estimated
to have the values rl = 0.71 / year and K = 80.5 x lowKg. If the initial
biomass is xo = 0.25K, find the biomass two years latter. Also find the time
T for which X(T) = 0.75K.

Solution: We can rewrite Eqn.(l9) in the form

Using the data given in tohe problem we find that

Hence x(2) 2 46.7 x 1 0 6 ~ g .

To find T , we solve Eqn.(23) for t and obtain

8

Biological
Environment

Using r l = 0.71, 9 = 0.25 and 2 = 0.75, we find
1 (0.25)(0.25) 1

7 = --In = ----ln9 E 3.095 years.
0.71 (0.75)(0.75) 0.71

Example 3: The poplation of fish in a large lake has been stable for some
time. Prior to this situation the population was decreasing from an initially
relatively high level. When the population was 4000, the proportionate birth
rate was 10% and tbe proportionate death rate was 70% . When the
population was 3000, the proportionate birth rate was 30% and the
proportionate death rate was 60%.

A model of the population is based on the follo~l~lng assumptions:

(i) there is no exploitation and no restocking;

(ii) the proportionate birth rate is a decreasing linear function of the popu-
lation;

(iii) the proportio~~ate death rate is an increasing linear function of the pop-
ulation.

Show that the rnodel based on these assumptions and the above data
predicts that population falls according to the logistic model; find the
equilibrium population size.

Restocking of the lake now takes place at a rate of 20%) of the population per
year. Find the equilibrium population in this case.

So1ution:Let x(t) denotes the size of the fish population at any time t > 0.
By the given conditions, the proportionate birth rate is

b(x) = A1 - pix (24)
and the proportionate death rate is

m(x) = A2 + p2x (25)
where Xi, pi(i =.I, 2) are all positive constants.

Then the net proportionate growth rate is

b(x) - m(x) = A1 - A2 - (PI + PZ) x (26)
= A- px (27)

where X = XI - X2 and p = p1+ pp are constants. Here X may have ally sign
but p is always positive. i
Using the given conditions,

3 6
and X - 3000p = - - - - 3

10 l o - - - 10
Subtracting, -1000p = -&
Therefore,

= 3 10-~
.3

and X = 3000 x p - - = 0.6.
10

Hence, b(x) - m(x) = X - ux = 0.6 - 3 x 1 0 - ~ x
This implies that

9

This is the 1ogi.stic growth equation with carrying capacity A for the
IJ

population. As we hare seen in the 'logistic grov~th model', this carrying
capacity is the stable equilibrium population.

Hence the equilibrium popnla!tion level is " IJ a--_ = 2000.

When restocking of the population is allowed, the governing Eqn. (31) is
rnod.ified to the form

This also represents the logistic law of growth with l;fie new carrying
capacity .= 3,";:-F 2227 approximately.

Hence the new equilibrium level of the fish population afi;er ~restoclting is,
2667.

And now a few exercises for you.

E4) A colony of birds has a stable population. Prior t;o this situation tlie
population iucreasod from an initially low I.evel. When the population
was 10:000 the proportionate birth rate was 50% per year and .the
proportionate death rate was 10% per year. When the population was
20,000 the proportionate birth rate was 30% a i d the prbporticlrlate
death rate was 20%.

A model of the population is based on the following assumptions:

(i)there is no migration and no exp1,oitation (sudl as shooting);

(ii)the proportionate birth rate is a decreasing linear func1,ion of the
population;

(iii)the proportionate death rate is an increasiilg liiiear funcl;ion of pop-
ulation.

Show that a lriodel hasecl on thcse assurnptionu and above ciatn preclicks
that the population grows according to the logistic niodel and iind the
stable population size.

Shooting of the birds is now allowed at a rate of 20% of tihe population
per yeas. Find the new equilibrilinl popul a t ' 1011.

E5) For the model

where rl , E and 'K are constaiit , determine x(t) explicitly. Verify froni
the form of the solution that for x > lc(1 - f) if E 5 rl, then
x(t) + K(l - E/rl) as t -+ oo whereas if E > rl, then s(k) 3 O
exponentially as t + oo.

We shall now discuss several Jimitations of the logistic model.

8.4.3 Limitations

(i) The logistic model is not suitable for a population of small size. The
reason is obvious; for small x, rlx. (1 - $) NN r lx neglecting the
shcond-order small quantity x2. The logistic equation reduces Lo that of
Malthus for'srnall x.

Single Species

10

Biological
Environment

(ii) It has been observed in both laboratory and natural population that the
growth of mani populations (of microorganisms, plants and anirnals)
exhibit a sigmoid pattern, although such populations do not increase
according t o t h e logistic equation. Almost any equation in which
the negative factors increase in some hsnner with density will yield
sigmoid curves. The S-shaped logistic curve isIan adequate description
for the laboratory growth of paramecium, yeast and other organisms
wiih simple life cycles. Population growth in organisms with more
complex life cycles seldom follows the logisttic very closely.

(iii) The basic assumption in the logistic model that, "the environmental
resistance increases linearly with demlsity" is violated in many growing
populations when tested through direct experirneilts. 'This holds for
populations with siniple life histories, as for example, yeast growing in a
limited space.

(iv) Some populations, fluctuate periodically between, two values. These
fluctuations occcr when certain populations reach a sufficiently high
.density, they become susceptible to epidemics. The epidemic brings the
population down to a lower value where it again begins to increase, u$il
when it is large enough, the epidemic strikes again. Eut any llriild of
fluct~a~tion is ruled out in Ez logistic curve.

In addition to the above, the following limitations pertain to both the
population models considered in this unit.

The models of population growth operato in a closed system, without
input or output. Only self-crowding or other internal factors are
modeled. The real world consists of open systems i11 which the input
and output enviroilmeiits play major roles in the behaviour of the
component considered. This short coming is especially apparent, when it
comes to modelling the growth form of human populations. Clearly, the
technological developmenis, pollution camlsideratiorl and sociological
trends have significant influence on the coefficients r and K.

(2) We have considered the population as made up of one homogeneous
group of individuals. Wc should subdivide it into different age groups,

1 iiii;o males and females since tlie reproduction rate in a population
usualy depends more on the number of females than ou the number of

I

I

males.

8.5 EXTENSION OF THE LOGISTIC MODEL I -
In the logistic model just discussed the fuilction r(x) is positive a,nd linear.
We shall now consider a simple extension of this model with an assumption

I

of r(x) being a non-linear function of x. Three types pf deiisily dependent
r(x) are depicted in Fig.5.

Fig.5 (a) shows that logistic growth decremes linearly with density i.e.
r(x) = rl (1 - t) which corresponds to the model discussed in Sec.8.4.1 (ref.
Eqn.(lC))

Fig.S(b) corresponds to the function which has a maximum at an
intermediate point. The function r(x) corresponding to this case is of the

. form

r(x) = a1 + a2x + a3x2 (34)
with a2 > 0 and a3 < 0. This represents a situation in which a population
has a maximal intrinsic growth rate a t intermediate density. This is known

11

.as the Allee effect.

The general character of this density dependent function r(x) can be
summarised by the inequalities r(x) >'O.(x < 71) and r(x) < O(x > rl) (where
q is the density for optimal reproduction) 0 < q < k, where k is the carrying
capacity.

Fig.5 (c) corresponds to r(x) = -1nx. You may observe that this is a
non-lineax curve vhich becomes uegative for x > 1 and not defined at x = 0.
This represents a situation in which there is a, negative logarithmic
dependence of growth rate on population size. This relation is not valid for
very small populations since function is not defined at x = 0. This modei is
known as the Gompertz law, which is used mainly for depicting the growth
of solid tumors. Let us consider a, simple example of an Allee effect.

. .
Fig.5

Example 4 Discuss the Allee effect .givcnq'that
'

where ro and q axc positive constaxlts. Can you relate r(x) corresponding to
this situation with Fig.Fi(b).

Solution: Here r(x) = ro - a(x ;-,rl)2. Comparing this with Eqn.(34) we
get a1 = ro - c q 2 , a2 = 2aq > 0, as = -a < 0. As in Fig.5 (b) this would be
an inverted parabola which intersects the axis at r(x) = a1 = ro - aq2 it has
a maximum of ro when x = q and drops below zero when x > xo = q t @. -
Thus for densities above xo, the population begins to decline. x - - xo is a
stable equilibiium for the population. .-"-

You may now try this exercise.
I

E6) A solid turner usually grows at a declining fate because its interiar has
no access to oxygen and other necessary substancls that the circulation
supplies. This has been modeled empirically by the Gornpetz growth -
law

dN ' dy
- = ryN where - = dt dt lay

. y is the effective tumor growth rate, which will decrease exponentially

Single Species

12

Biological

I
Environment

by this assumption. Show that equivalent ways of writing this are
dN . -= N = (-a1nN)N
dt

We now end this unit by giving a summary of what we have covered in it.

8.6 SUMMARY

In this unit, we have covered the following:

(1) Mathematical.study of the problems in ecology deals with the increase
and fluctuations of populations. (e.g. plant: populal;ion, animal popula-
tion or other organic population).

(2) Maithus model and Logistic model deal with the growth of a single
species biological populations.

(3) F G ~ a population of size x(t)(> 0) at any time t, the Malthus model is
given by the equation

where r > 0 is a constant and is the growth rate of the population.

(4) Malthus model works well only for small populations. For large popula-
tions the growth rate r cannot be constant, but'depends on the size or
density of the population.

(5) For large populations the logistic model give11 by the equation
I

(the constant K > 0 being the saturation level of the population) gives
a type of growth which follows an S;shaped or sigmoid pattern when
density is plotted against time.

(6) In nature, growth of many populations of plants and animals exhibit a
sigmoid pattern though they do not increase according to the logistic
equation.

El) The differential equation describing the growth of the population is

x(0) = xo
This can be written as

Integrating, l n l (1 0 ~ - 0 . 2 ~) I = -0% + lnlC1 I
Therefore, 1000 - 0 . 2 ~ = cJe-Oa2"

13

Using the initial condition and finding the value of C, we obtain
x(t) = 5000 - xoe-0q2t

As t -+ oo, e-0*2t -+ 0 and hence x(t) + 5000 = R (say). Thus the
stable population level is 5000 whatever (finite) value the initial
population level xo may have.

Hence, if the initial population be 3000, it rises upto 5000; if the initid
population be 8000, it ultimately drops to 5000.

E2) Proceeding exactly as above obtain the stable population level as
10,000.

E3) Eqn.(13) can be written as

Using initial condition x(0) k xo, we obtain

x xOerlt or, - = --
X- K xo - K

E4) Using the same notations as in Example-2, we have

3 2 ' -- - and X - 20, OOOp = - - - -
10 10 10
4 1 1

Subtracting, 10,000p = - - - - -
10 10 10

Therefore, p = 3 x lo-'
4

Therefore, X = - + 10,000
10

Therefore X - px = (0.7 - 3 x 10-~x)

IJence the equation governing, the growth of the population is

This represents logistic law of growth with carrying capacity

Hence the equilibrium population level is equal to 23333. When
shooting of the birds is allowed, the Eqn. (26) is modified into the form

.I

This also represents a logistic law of growth with carrying capacity
- 0.5 - ,,?,-s = 16667. Hence the new equilibrium poplilation level after
shooting is allowed is 16667.

Single Species

14

Biological .
Environment

Integrating and using the boundary condition x(0) = k, we get for
. x>k(l-:)

k (1 - H)
x(t) =. . rl- 1 - $e-(n-E)t

a E6) Hint: Use the fact, a = $- (l n ~)

15

I UNIT 4 SINGLE SPECIES POPULATION
MODELS

Structure Page No

3.1 Introduction
Objectives

4.2 Basic Concepts of Mathematical Modelling in
Population Dynamics

4.3 Discrete Population Models
ExponentialIConstant Growth Model
Logistic Growth Model
Delay Model

4.4 Continuous Population Models
4.5 Summary
4.6 Solutions/Answers

Appendix

4.1 INTRODUCTION

Ecological studies have assumed greater significance in view of human
concern for environmental degradation witnessed during the last four decades
or so. Ecological modelling has been revived with great interest in the recent
years due to the following:

i) Measurements in ecosystems are beeoming more accurate and precise
due to instrumental facilities.

ii) Satellite data has the potential to provide estimates of vegetation in the
water body.

iii) Present capability of models to deal with a large system of non-linear
equation due to improving computing facilities.

Mathematical ecology can be described as the study of inter dependence of
several species in a variable eco-system. The approach based on modelling
pre-supposes certain degree of idealization so that mathematical techniques can
be brought into play. Although the so-called idealized models might not
capture the full diversity of dynamic environmental landscape, they promise to
provide an insight into growth pattern of various populations. This knowledge
has been exploited fruitfully in management of renewable resources, ecological
control of pests, evolution of pesticide resistant strains, etc. The prospective
application of studies on bacteria and viruses to various bio-medical sciences
has attracted many researchers to this area.

In this unit, we shall discuss some discrete and continuous models of single
species population growth, In Sec. 4.2, we give some basic concepts of
modelling population growth. Many species have no overlap between
successive generations and so population growth for such species is in discrete
steps, Some discrete population models are discussed in Sec. 4.3. For

16

4 : >+,:? essential. We have given these details in an appendix at the end of the unit.
\rTou tnust go through the appendix while reading this unit.

Aticy studying this unit, you should be able to:

o apply the knowledge of calculus, analysis, differential equations and
difference equations in building mathematical models of population
dynamics both for discrete as well as continuous population growth;

anal) se the models both quantitatively and qualitatively;

* c.:irr) out the stability analysis ofmodels of population growth.

Si.2 B,\SIC CONCEPTS OF MATHEMATICAL
MtIDELLING IN POPULATION DYNAMICS

i n:',~ j:~~natic:41 model in population dynamics represents the pattern of growth
7 ,: gi\ cn population in the presence of various environmental factors. Real

;:I(: ct:,:-s;~stcm consists of many species, which interact with each other in
tn;rn> :lif!crent ways. In addition, various environmental factors like migration.
rcrriturial hehaviour and climatic fluctuations also play important role. But all
rhi.5~ fictors cannot be accommodated in one model since otherwise the modcl
~ u u l c l become too complex for solution by known mathematical techniques.
Thc c r t~c i~ l decision. while modelling a given eco-system, lies in the choice of
most relevant variables. 'The simplest approach is to include one factor at a
time and subsequently modify the model by adding another factor.

'Thus. a good mathematical model in population dynamics relies on thorough
understanding and appreciation of biological problems, mathematical
description of the relevant biological phenomena and subsequent derivation
and interpretation of mathematical results for the use of biologists. It acts like
a bridge in the description of theoretical details of a population and their
mathematical abstractization.

We shall now discuss in brief some of the concepts which we shall be using l'or
the study in this unit.

Classification

The mathematical models in population dynamics can be classified based on
various factors like nature of growth rate, its fluctuation, environmental factors.
size of the population and so on.

On the basis of growth rate, the population models can be further classified as
follows:

1) The deterministic models which presuppose a fairly large population
size and ignore random fluctuation in the environmental factors with
time.

2) The stochastic models which are more appropriate when populations are
small or when there is significant randbm fluctuation in the parameters.

17

The deterministic models are further subdivided into two subclasses: Single Species
Population Models a) Continuous deterministic models which are employed when population

is very large and its growth rate is also fast so that variables can be
modelled by continuous functions and the growth rate by their
derivatives. These models lead to differential equations. (Their typical
examples are those dealing with insect population, grass and
zooplanktons).

b) Discrete deterministic models which are applicable to the cases when
moderately large populations such as humans, large animals like lions,
elephant are modelled. In such models the variations in population are
studied by means of difference equations.

Analysis of Models

The models in population dynamics can be either quantitative or qualitative.
Quantitative analysis of models involves consideration of actual parameters
and prediction in terms of numbers. On the other hand, qualitative analysis
concentrates on study of the nature and pattern of growth and their dependency
on parameters relevant to the model. Thus while a quantitative study may
require the knowledge of numerical analysis, the qualitative study of a model
needs comprehensive knowledge of stability analysis techniques of
differenceldifferential equations.

Stability Analysis

Consider a system involving a number of variables x , , x 2 , x 3 , . . . , x,
denoting the densities of species composing the system. The state of the
system can then be represented by a point in n-dimensional phase space. To
each point in this space we can attach a vector or an arrow indicating how the
system moves. These vectors can be joined to form trajectories which show the
long term behaviour of the system.

A stationary point or an equilibrium point of a system is one which has
associated with it a vector of zero length. That is, if a system is at a stationary
point at an instant it will remain at that point at the next instant.

Fig 1: system with A stable and B as unstable equilibrium ~ o i n t s . - 18

Models in Biology and The equilibrium point may be stable or unstable. If a system slightly disturbed
Economics from equilibrium point returns to that point, then, the equilibrium point is said

to be stable. More precisely, it is said to have neighbourhood stability. On the
other hand when a system disturbed slightly from an equilibrium point
continues to move further away from that point, then the equilibrium point is
said to be unstable. Fig. 1 on previous page shows the trajectories and
equilibrium points A and B of a system.

If a system moves to a particular equilibrium point irrespective of the point
from where it started that equilibrium point is said to have global stability.
You may note that in Fig. 1 the equilibrium point A has neighborhood
stability but not global stability.

The stability of equilibrium point can well be understood by the analogy of a
landscape in which troughs represent stable points and peaks represent unstable
ones and the behaviour of the system is represented by a rolling ball.
Mathematically speaking the neighborhood stability analysis is the easiest one.
By considering only small displacements from an equilibrium point, it is
possible to linearize the equations and discuss their behaviour. We shall be
using this technique for the discussion of the models considered in this unit.

In the next section we shall discuss various discrete population models of
single species.

4.3 DISCRETE POPULATION MODELS

In many species, the populations do not overlap. There is a fixed interval of
time between successive generations and so population grows in discrete steps.
The size of steps can vary from species to species. In general the population of
a given generation depends on that of the preceding generations. Thus if we
scale the time step to be 1 and denote the initial population by xo and the

population of nth generation at time n by x, then population of next
.

generation x,,, at time (n + I) can be written in the form of following
difference equation:

where f(x,) is, in general, a non-linear function of x, . Thus, study of
discrete population models is equivalent to the study of difference equations of
the form given by Eqn. (1).

The efficiency of a model representing a specific population growth lies in
determining the appropriate form of F(x,) to reflect the factual situation of the
species in question. The b c t i o n F(x ,) is called recruitment function.
Taking various forms for F(x ,,) , we can construct different models of
population growth. We shall now discuss them one-by-one.

4.3.1 ExponentiaVConstant Growth Model

In the simplest of the cases, we consider the species for which the birth and
death rates are constant. For example, many insects and annual desert plants
reproduce once and then they fade away. The surviving offspring forms the

19

basis for the next generation. Thus, the population increases or decreases by
the same amount each year. In such a situation we can take the recruitment
function as constant and arrive at linear or exponential model of discrete
population. This model was first propounded by Thomas R. Malthus
(1 766- 1834), an English clergyman and political economist and hence is also
called Malthusian growth model,

Single Species
Population Models

Formulation

Let us assume that the population is closed i.e., it changes only by births and
deaths and there is no migration into or out of the region. We hrther suppose
that the birth rate b and death rate d are constants. This means that the birth
and death of individuals in a given population are proportional to the
population size.
Then

x,+, -x , =(b-d) X,

Substituting r = (1 + b - d) in Eqn. (2) we get the following linear
homogeneous difference equation

where constant r represents the net growth rate, also called net reproductive
rate. Eqn. (3) together with the prescribed initial population size x,

determines the population size in each generation.

Solhtion and Interpretation

By a solution of the difference equation with initial value x,, we mean a .

sequence {x, } such that x ,+, = rx, for n = 1, 2, . . . with x, as prescribed.
The difference Eqn. (3) can be solved iteratively by substituting

x, = r xn-, , xn-, = r x , -~ , ..., X , = r x0

Thus unique solution is given by

x, = r n x , , n = l , 2, ...

In general, we can say that if I r I < 1 then x, + 0 as n -+ oo implying that the

population is ultimately driven to extinction and for j r 1 > 1 , x, grows
unbounded as n -+ a,. In the present situation the case r < 0 is ruled out.
Therefore, if 0 5. r < 1 then x, decreases monotonically to zero and if r > 1,
then xn increases to + a, .

If r > 1 , the growth of population over each time interval of length n occurs by
the same rate but not by the same amount as shown in Fig. 2.

20

Models in Biology and
Economics

Time (n)

Fig. 2: Discrete Population Model

In case of species which reproduce annually and death occurs throughout the
year, the population growth curve resembles a jagged saw blade with a sharp
increase, resulting from births followed by gradual decrease from death during
the rest of the year. The overall curve will rise exponentially, because the
growth rate is positive. The size of each tooth in the growth curve will increase
year after year because same proportional increase will add more individuals to
a large population. If the time interval between reproductive periods reduces,
the occurrence of teeth on the graph gets closer. Finally if the time interval is
infinitesimally small the curve is no longer jagged but smooth and resembles
the corresponding curve for exponential model of continuous growth.

This simple model of population growth is not very realistic for most
populations nor for long times but, even so, it has been used successfully with
some justification for the early stages of growth of certain bacteria. Another
variation of the exponential growth model can be considered by incorporating a
constant migration rate m per generation which we shall consider.

Formulation

Let the positive value of m represents immigration and negative value denotes
emigration. Then the difference Eqn. (3) becomes

Solution and Interpretation

Eqn. (4) can be solved iteratively by considering
X, = r x0 + m

: and so on;

21

Then by induction method we can prove that,

X, = rn x0 +m(rn-' +rn-2 +...+ r+1)

Now, if r > 1, then x, grows unbounded for m > (1 - r) xo but x, reaches

zero if m < (1 - r) xo; thus sufficiently large emigration will wipe out a

population that would otherwise grow unbounded. If 0 < r < 1 , then as
n + a, X, tends to the limit m /(I- r) > 0 for m > 0 , while x, tends to zero
for m < 0 . Thus, immigration may help survival of a population that would
otherwise become extinct. Even this model is not very realistic. We now list
the limitations of this model.

Limitations

The model has constant per capita birth and death rates and generates
limitless growth. This is highly unrealistic.

The model ignores lags. The growth rate does not depend upon the past.
Moreover the population responds instantaneously to change in the
current population size. .

There is no consideration of temporal variability.

In the next sub-subsection we shall discuss a model which is an improvement
over this model but let us first consider some applications of this model.

Example 1 (Fibonacci Sequence): Fibonacci, in the 1 8th century, set a
modelling exercise involving an hypothetical growing rabbit population. Start
with a pair (male and female) of immature rabbits which after one reproductive
season produce two pairs of male and female immature rabbits after which the
parents stop reproducing. Their offspring pairs then do exactly the same and so
on. The question is to determine the number of pairs of rabbits at each
reproductive period. If we denote the number of pairs of rabbits by x, at the
nth reproductive period then we have the model equation as

x , + ~ = x,+, + x,, n = 1, 2, . ..
with xo =0, x, =1
what is known as the Fibonacci sequence, namely

1 ,1 ,2 ,3 ,5 ,8 ,13 ,.,.

To find the number of pairs of rabbits at the nth reproductive period consider
the equatipn

Xn+2 = X n + l + *n

The equation Cn be written as

(E' -E-1) x, = O where, EPxk = x ~ + ~ ,

whose roots are given by

Single Species
Population Models

22

Models in Biology and 2 m - m - 1 = 0

1 Economics
Solving we obtain

I The solution of the above model can be written as

I After applying the'conditions xo = 0, x, = 1 we get ,

which gives the number of pairs of rabbits at the nth reproductive period.

Example 2: Suppose that a population.of yeast satisfying exponential growth
model increases by 10% in an hour. If the initial population of yeast is 100,000
then find the population of yeast after four hours. How much time is required
by the population to grow to double of its initial size?

Solution: The population of yeast satisfies the equation

Pn+, = (1 + 0.1) Pn with Po = 100,000.

The population after one hour is P, = 1.1 Po = 1 10, 000 . After two hours,

P, = 1.1 P, = (l . l) 2 ~ o =121,000. Thus, after 4 hours,

P4 = (I . ~) ~ P ~ =146, 410.

For the population to double, it must reach 2Po = 200, 000. Thus, we must

solve 2P0 = (1. I)" Po or 2 = (1.1) " .

By taking the logarithms of both sides we have
ln(2) = ln(l.1)" = n ln(l . 1) or n = ln(2) / ln(l.1) = 7.27 hours as the required
time.

You may notice that the discrete Malthusian growth model is closely related to
compound interest problems. If interest is compounded annually, then the
amount of principal in-any year n satisfies the discfete Malthusian growth
model. The general formula for determining the amount of principal when
interest rate is r (annual), which is compounded k times a year for n years,
given an initial amount of Po satisfies:

P, = (~ + r / k) ~ " p0,

I where Pn is the amount of principal after n years.

23

.In population studies, one can use this concept to examine growth rates for a
population growing according to the Malthusian growth model for differing
periods of time.

You may now try the following exercise.

El) Suppose that a business is started with constructing a cow shed for 85
cows and a decision is taken that there will be an addition of 38 cows
every year. Now, if mortality rate of cows is 5 percent per year then what
is the population size of the cow shed after 15 years.

Before proceeding further, we give you a graphical method called
cobwebbing of solving the models of discrete population growth.

Cobwebbing

Cdnsider the difference Eqn. (I) viz.,

Xn+, = ~ n F (x n) = f (x n) .

Generally, in a population when the population size becomes very large, there
is lack of food, space and other resources and pollution due to overcrowding.
We expect f (x ,) to have some maximum at x, say, with f as a function of
x, decreasing for xn > x, . A typical growth form of f is as'shown in Fig. 3. '

Fig. 3: Typical growth form in the model x,,, = f(x,).

The steady states of Eqn. (I) are solutions x' of

X* ~ (x *) = x * F(x*)

so that x = x* is a constant solution of Eqn. (1).
Thus, the steady states are given by x* = 0 or F(x*) = 1 .

Single Species
Population Models

Graphically the steady states are points of intersections of the curve
x ,+, = f(x,) and the straight-line x,+, = x, as shown in Fig. 4.

24

Models in Biology and
Economics

u4 fig 4

Fig. 4: Graphical determination of the steady-states of x,,, = f(xn)

We begin by drawing the point x,, as shown in Fig. (4). Then x, is given by

simply moving vertically to the curve x ,+, = f (x ,) . Then we go horizontally
to the line x,,, = x, . We can then employ x, to get x, in similar fashion and
proceed to arrive at points x, , x, , . . . and so on. The arrows show the path

sequence. The path is simply a series of reflections in the line x,,, = x, . We

observe that x, -t x* monotonically as n + m as illustrated in Fig. (5). This
behaviour has already been obtained analytically for the case f (x ,) = rx , .

Fig. 5: Continuous curve showing populations at different time-steps for more clarity.

The Cobwebbing method can be applied to any difference equation of the form
x,,, = F(x,) . It gives information about the behaviour of the solution and is
particularly useful for difference equations whose analytic solutions are
complicated.

25

You may now try the following exercise. Single Species
Population Models

E2) A discrete model for a population N, consists of

where t is the discrete time and r and b are positive parameters. What
do r and b represent in this model? Show, with the help of a cobweb,
that after a long time the population N, is bounded by

Prove that, for any r , the population will become extinct if b > 4 .

In the long run there must be some adjustment to such exponential growth. P.
F. Verhulst in 1838 proposed that a self-limiting process should operate when a
population becomes too large and suggested a model called logistic growth
model which we shall discuss now.

4.3.2 Logistic Growth Model

As we have already mentioned the exponential growth model is applicable for
early phases of population growth. As the population grows it faces crowding
effects due to factors like toxic buildup, self-regulation or space and resource
limitations, etc. In order to incorporate such factors, a negative quadratic term
is added to the recruitment function reflecting consequent decrease in the
growth of the population. This leads to the Logistic Growth Model.

Formulation

Assuming that the population size is large and the growth rate decreases with
the increase in population on account of crowding effects, a difference equation
model can be formulated as

where r > 0 represents intrinsic growth rate i.e., growth rate free from
environmental constraints and K denotes the carrying capacity of the
population which physically means the maximum sustainable population size
that a particular environment can support over a long period of time. Eqn. (5)
is called the logistic difference equation.

Let us analyze the model qualitatively. For the background needed for the
qualitative analysis of the given model refer to the appendix given at the end
of this unit.

Stability Analysis

The logistic growth model given by Eqn. (5) can be rescaled by substituting
X

u, = 2, so that the carrying capacity is 1. The Eqn. (5) thus takes the form
K

26

Models in Biology and
Economics

where we assume that 0 < uo < 1 and we are interested in solutions un L 0 .
The steady states of Eqn. (6) are given by

r-1 Here ~ (u *) = r (l - u *) so F(u*)=l=u =-
r

thus

U ; = O andu;=- (r - are the two steady states of Eqn. (6).
r

Further, u; = O gives h, =f f (0)=r-2m . = r *I" 1 0

r-1 r-1
and u, = - r gives h2=f f [T))=2- i ,

Thus, the eigen values corresponding to u; and u; are given by h, = t and

h, = 2 - r respectively. If 0 < r < 1, the steady state u; is stable since

0 < 3L1 < 1 . AS r increases and crosses the value 1, the steady state u:

becomes unstable while the positive steady state u; becomes stable as long as
- 1 < h, < 1. Hence the first bifurcation occurs at r = 1. The second

bifurcation occurs at r = 3, where the positive steady state u; undergoes a

qualitative change. If r lies between 2 and 3 the equilibrium u; is stable and
as soon as r exceeds 3, it becomes unstable. Fig. 6 shows a schematic
diagram of stable solutions of Eqn. (6) as r passes through bifurcation values.
At each bifurcation the preceding steady state becomes unstable and has been
represented by the dashedlines.

Fig. 6: ~chernakd@pw&wt&tab~it~ of Eqn. (6).

To see what is happening when r passes through the bifurcation value r = 3,
we introduce the iterative procedure as follows:

27

Thus for Eqn. (6) the first iterative is simply Eqn. (6) while the second iterative
is

It can be easily shown that there are two more equilibria u; and u; for the

second iterative u , + ~ = f2(un, r) when r exceeds 3 and that both these steady
states are stable. This means that there is a stable equilibrium of the second
iterative which results into a stable periodic solution of period 2 of Eqn. (6).

As r continues to increase, the eigen values at u; and u; .again undergo a
qualitative change and so these 2-period solutions become unstable. At this
stage we consider the steady states of fourth iterative of Eqn. (6) and a 4-cycle
periodic solution is obtained. Fig. 7 shows a 4-cycle periodic solution
schematically.

Fie. 7: A Ccycle periodic solution
- -

'Ilks as r increases the solution passes through a series of bifurcation,
doubling the period of periodic solution each time. There is a limiting value rc
at which instability sets in for all periodic solutions and a chaotic or aperiodic
solution occurs. This critical value in the present model as given by rc = 3.828
[ref. 'Mathematical Biology' by J. D. Murray]. The solutions in this case
oscillate randomly. The fluctuations in a chaotic solution do not arise by
chance factor or randomness. Once the parameters are specified, the same
erratic population track will be obtained. The main property of chaotic
solutions is that a very small change ininitial conditions can lead to very
different population behaviour. There is widespread W e s t among scientists
regarding chaotic behaviour. The research in this direction has resulted in
many different applications of chaos.

Single Species
Population Models

28

Models in Biology and
Economics

Sigmoids are tilted
S-shaped curves that
resemble trends in the
life-cycle of many
living organisms and
phenomenon.

The discrete logistic model is very significant from biological as well as
mathematical point of view, because of the fact that such a simple model is
capable of predicting an apparently unpredictable behaviour. However, there
are limitations of this model too which we list below.

Limitations

The logistic model is not suitable for a population of small size.

Although many populations exhibit the sigmoid pattern of growth still
they do not increase according to the logistic equation eventually.

The carrying capacity of the population has been taken as constant
whereas in view of the changing environmental factors, it keeps varying.

The population has been considered as a homogeneous group of
individuals where death and birth take place simultaneously. Hut in real
populations. there may be some delay on account of development time,
breeding seasons and other environmental factors. Further, the intensity
of these processes is different for different age groups.

Let us now consider some applications of this model.

Example 3: Consider the model given by Verhulst

In this case we have
a n r f(x,) =- and F(x,) =-

X, + A X, + A '
Hence the equilibrium points are given by x, = 0 and x,, = r - A . Thus. if
r < A the only equilibrium corresponding to a non negative population size is
x, = 0 . Since fl(0) = r / A < 1 , at this point system is asymptotically stable
and every solution tends to zero (see Appendix). If r > A there are two steady
states at x, = 0 and x, = r - A . Since, f '(0) = r / A > 1, the equilibrium at

A
x, = 0 is unstable and since f '(r - A) = - < 1 the equilibrium x,, = r - A is

r
asymptotically stable.

* * *

Example 4: Consider an example of the Ricker model given by the equation

The dynamics of this model is similar to the continuous time logistic model if
population growth rate is small (0 < r < 0.5) . However, if the populatio~l
growth rate is high, then the model may exhibit more complex dynamics
including damping oscillations, cycles or chaos. It can be shown that Ricker's
model is stable if 0 < r < 2 . When r assumes the value 2 the first bifurcation
occurs leading to a 2-cycle periodic solution. If r further increases these
solution become unstable and at r = 2.6, a 4-cycle periodic solution appears.
Thus with increasing values of r the solution passes through a series of
bifurcations, eaeh time doubling the period. When r reaches near the critical

29

value 3 then an aperiodic or chaotic solution exists. There are simulations of
bopulation dynamics using Ricker's method with different .values of r , as
shown in Fig. 8.

Single Species
Population Models

r = 0.5 Monotonous increase in numbers.
K = 200

r = 1.9 Damping oscillations.
K=200

r = 2.3 Limit cycle with period = 2.
K = 200

r = 2.6 Limit cycle with period = 4.
K = 200

Fig. 8: 'solutions N, of the Model (7) for various r.

In the upper two figures the model has a stable equilibrium, only the patterns of
approaching the equilibrium are different. In the lower three figures there is no
stable equilibrium. Non-equilibrium dynamics may be of 2 types: a limit cycle
when the trajectory repeats itself, and chaotic when the trajectory does not
repeat itself.

Chaos dynamics looks like stochastic noise, however the model is absolutely
dekrministic. Chaotic models are widely used for random number generation
'in computers;

You may now try the following exercises.

E3) Find the two equilibria u; and u; of the second iterative given by
Eqn. (8) and verify that they are stable.

, E4) Consider a population of peacock modeled by the equation
* * * P,,, =Pi + r h Pi (1-Pi / K) - h * ~ , i=0, 1,2, 3, ... where H isthe

harvesting rate.

The removal of
members of a
population at a
specified rate is
as harvesting.

La PbzlOO, to =o, r=0.0987, h-1.0 year md K=194.6; all

populations are expressed in thousands.

30

Models in Biology and
Economics

In general the harvesting
rate depends on time and
is represented by the
function H(t). If H(t) is
constant then harvesting
is called constant yield
harvesting. If H(t) is a
linear function of
population size then it is
called proportional or
constant effort
harvesting.

a) Determine and graph the populations of peacocks for a period of 50
years using the harvesting rates H = 0, 2,4, and 6 . For each value
of H describe the trend of the peacock population. Does it appear
to approach a stable state? If so, what is that value?

b) What is the first value of H (to the nearest tenth) that does not
produce a steady state population?

E5) Determine the non negative steady state and discuss their linear stability
of the following discrete time population models:

In earlier models of discrete population growth, a common assumption was that
all the members of a generation contribute to the growth. This is not true in
general because for most of species the individuals reproduce only after
attaining a certain degree of maturity in age. We shall now discuss a model
that incorporates the effkct of this delay.

433 Delay Model

For most of the animals and other species there is a substantial maturation time
to sexual maturity. Such a delay can also be caused by delayed response to
environmental changes. If the delay is observed to be m time steps then the
basic difference equation of the model takes the form

Now we study such a model.

Formulation

We assume that the growth rate of a populatian reduces with the increase in
population due to crowding effects. Further, unlike the logistic model, the
population x,+, at (n + 1)th generation remains positive. Thus the model can
be formulated as

when r > 0 is the intrinsic growth rate and K > 0 is the carrying capacity.
Rescding the model by substituting u, = x , / K , it can be written as

As a simple ease we consider the delay to be of one time step. Then Eqn. (1 0)
can be written as

The steady states of the difference Eqn. (1 1) are given by

u ; = ~ a n d u ; = l .

31

We now discuss the stability analysis of the steady states.

Stability Analysis

Let us discuss the stability of the equilibrium states u; = 0 and u; = 1 .
Since (f '(u :) I = er > 0 .
The steady state u: = 0 turns out to be unstable.

Next we linearize the equation about the steady state u; = l by substituting

u, = l + ~ , , w h e r e (E , I <<I .

We obtain
1 = (1 + E,) exp (-IE,-,)

Omitting higher powers of E, because I E, I << 1.
We have

I+&,+' = (I+&,) (1 - r ~ ,)

or, 1 + En+, = 1 + E n - r En-'

Hence the difference equation to determine the steady state is given by

Substituting E, = zn Eqn. (12) takes the form

z 2 - z + r = ~

If r < 1 / 4 then the roots of Eqn. (13) are real and are given by

ahd ~ ~ = 1 / 2 [1 - (1 - 4 r) " ~]
if r > 1 / 4 then the roots of Eqn. (1 3) are imaginary and are given by

z2 = l / 2 [l - i (4r-1)1'2]
The complete solution of Eqn. (13) is given by

En = c,z; + c2z;
I

where c, and c2 are arbitrary constants.

If 0 < r < 114 then both z, and z, lies between 0 and 1 and hence E, + 0 as

n + oo . Therefore the state u* = 1 is linearly stable equilibrium state.

1
If r > - then the two complex roots of quadratic Eqn. (13) can be written as

4
r ie -ie - z1 = pe z2 = pe with z2 = z,

where p = r1l2 and 9 = tan-'(4r - 1)'12

Single Species
Population Models

2 2 I and z,z2 =Iz, I = p = r .
1

Thus for - < r < l , Iz, I (z 2 I <1.
4

32

Models in Biology and In this case solution (14) is
Economics

E n = C , Z ~ + c2qn
-

and since it is real we must have c, = c, .
If we now let c, = aeiy then c, = ae-jy then for complex roots Eqn. (1 5) can
be written as

n i(ne+y)
E, =a [p e + pne-i(ne+r) 1

or, E, = 2apn cos(n8 + y) where y = tan-' 5 and 8 = tan-' (4r - I)",.
c2

Hence E, + 0 as n +m and the state u* = 1 is stable.

As r passes through the critical r, = 1 i.e. r > 1 then 1 z, 1 > 1 and E, given by

Eqn. (15) grows unboundedly with n + m and u* = 1 is then unstable. Since
8=7~:/3 for r = 1 and E, =2acos(n7~:/3+y),whichhasaperiodof 6 we
expect the solution of Eqn. (1 I), at least for r just greater than r, (= 1) to
exhibit 6 cycle periodic solution.

Limitations
0

In the model discussed above, the discrete delay due to development time
of the species has been incorporated. But this model does not accurately
model populations with continuous growth and time lags.

Sometimes the delay can be caused by the factors limiting the species.
This is generally the case when the limiting factor itself is a species
subject to delay due to prolonged development.

Let us consider the following example.

Example 5: An animal may feed on the number of plants which is annual, so
that the total food available depends on the number of the plants in the previous
year and thus in turn is a function of the number of animals present in the
previous years. The logistic equation can then be written as a time delay
equation of the form.

with a delay of one period, equal to T $nits of time.

We can easily find out that the equilibrium value of n(Tm) in terms of N . To
find out how n(Tm) is going to behave near the value N we will use the
expression given below in the place of above equation for small y ,

where we have neglected the quadratic term in y.
The general solution of an equation of the form (1 6), which is called a
recurrence relation, is

33

where A and B are constants which can be determined by using the initial
conditions and z, and z, are the roots of the quadratic equation

T
z2 - z + - = o .

7
(18)

Solving Eqn. (1 8) we obtain
1

Z, = - (1 + ,/=) and z2 =I (1 - ~1-4~/s)
2 2

T 1
z,, z, are both real if - 1 - and then the usual logistic behaviour occurs.

z 4

T 1
When - > - , the two roots z, , z, are complex conjugate and can be written

t 4

in the form re"' where, r = E, cOsO=,&. (0106:).

The solution of Eqn. (18) can then be written as

y(Tm) = C rm sin (Om + D)

where C and D are constants determined by the initial conditions in the same
way as A and B . In these conditions n(Tm) oscillate about its equilibrium
value with a period 2nT / 0 . When T / t > 1 the oscillation get larger with m ,
so that Eqn. (1 7) is not valid in this case. When T / t < 1 the oscillation gets
smaller, so that n(Tm) converges to its equilibrium value N . This shows that
a time delay makes the population less stable.

You may now try the following exercise.

E6) The population n(m) of a certain species after the mth breeding season
t is related to n(m - 1) by

where a is a number greater than one, and N is a constant. Find the
equilibrium value of n and show that n approaches this value
monotonically.

single Species
Population Models

In the next section we shall consider various models of continuous population
growth.

i
t 4.4 CONTINUOUS POPULATION MODELS

As mentioned earlier, if the population size is very large and births take place
continuously we may assume the population growth to be continuous.

The continuous models of exponential growth or Malthusian model and logistic
model .which are analogues of discrete models given by Eqn. (3) and Eqn. (5)
respectively, have been dealt exhaustively in Block 3, MTE-14 of
mathematical modelling course of our Bachelors Degree programme. We shall .

34

Models in Biology and assume that you are familiar with these models. In case you are not, then you
Economics can go through Unit 8, Block 3 of MTE- 14.

You may observe that both the logistic and exponential models of continuous
growth, share the assumption of absence of no migration, genetic variation or
age structure in a given population. In addition logistic model assumes constant
carrying capacity, limited resources and density dependent growth. This means
that when an individual is added to the population the per capita growth rate
decreases immediately. But this is not the case in general. In many population
the density dependent response assumes some time lags. Individuals do not
immediately adjust into their growth and reproduction. Seasonal availability of
resources and age structure can also cause time lag in population growth. These
delays can affect population dynamics of a given species significantly. We
shall now study the effect of such delays.

Delay Model

Consider the logistic growth model which is given by the following equation

where u(t) is the population at time t and the positive constants r and K
denote the intrinsic growth rate and the carrying capacity of the population
respectively. In this model we now incorporate the effect of time delay in
growth and reproduction of individuals in the population and formulate the
delay model.

Formulation

Let us assume that there is a time lag of length T > 0 between the change in
population size anid its effect on population growth rate. Consequently, the

du
growth rate - of the population at time t , depends on the size of population

dt
at time (t - T) . Thus, in the logistic growth mode1 incorporating the effect of
delay, Eqn. (1 9) takes the form

where r, K and T are positive constants. Eqn. (20) is the differential delay
equation. The behaviour of Eqn. (20) depends on the length of time lag T as
well as the response time which is inversely proportional to the growth rate r
[Gotelli, 19951.

The Analytical solution of Eqn. (20) cannot be obtained in general so we have
to analyze it qualitatively.

Stability Analysis: Periodic Solutions

The steady states or the equilibrium points of Eqn. (20) are given by

35

For computational convenience we rescale the model by substituting

, t = rt, T* = rt . Thus the model (20) becomes N(t) = -
K

I For the sake of simplicity we drop the asterisks h m the above model and
I

t write the delay model in the form

I The equilibrium points of Eqn. (21) are N1 = 0 and N, = 1.

Let us first consider the linearization about equilibrium point N, = 0 .
I

We assume

N = N, + n(t) , where 1 n(t) 1 << 1.

Using Eqn. (22), Eqn. (21) reduces to

-- dn(t) - (N, + n(t)) [I - (N, + n (t - T))]
dt

l
or, - &(') = n(t) [l- n(t - T) 1

dt
I Omitting higher powers of n(t) in the above equation we get

which on integration yields

where A is a constant. This implies that n(t) + oo as t + a.
I

Hence, the steady state N, = 0 is unstable with exponential growth.

Next we consider, perturbation about the steady state N, = 1.

Using Eqn. (22), Eqn. (21) in this case reduces to

-= dn(t) (1 + n(t)) [l- (1 + n(t - T))] [N, = 11 dt

or, - dn(t) = (1 + n(t)) [-n(t - T)]
dt

Omitting the higher powers of n(t) , we obtain

We now look for solutions of Eqn. (24) in the form

where c is a constant.

Substituting the value of n(t) from Eqn. (25) into Eqn. (24) we obtain
ch eh' = -c eh('-T)

Single Species
Population Models

36

Models in Biology and or, h = - e -hT

Economics (26)

You can thus see that the eigen values h of n(t) are the solution of Eqn. (26)
which is a transcendental equation and it is not easy to solve it analyhcally.

However, from a stability point of view we are interested to know whether
there are any solutions with Re h > 0 for which Eqn. (25) implies instability
since n(t) grows exponentially with time. That is, if we set h = p + io then
does there exists a real number p, such that all solution h of Eqn. (26) satisfy

Reh < po . To see this, we have from Eqn. (26)

Thus, if I h 1 + a, then e-pT + a, provided C(+ -a,.
Thus there must exist a real number p, so that Re h i.e., p is bounded above

by PO.

If we now introduce z = 1 / h and o(z) = 1 + z e-T'z then z = 0 is an essential
singularity of o(z) . By Picard's theorem o(z) = 0 will then have infinitely
many complex roots in the neighborhood of z = 0 . This means there are
infinitely many roots h (ref. Sec. 65, Page-232, of Brown and Churchill).

-Let us now consider the real and imaginary parts of Eqn. (26), namely

p = -e-pT cos oT

o = e-PT sin oT

We want to determine the range of T such that p < 0 . That ii, we want to find
the conditions such that the upper limit p, on p is negative. Here we consider
two cases viz., o = 0 and o # 0.

Case I: o = 0

When o = 0, h becomes real. You can see that for o = 0, Eqn. (28) is
satisfied and Eqn. (27) becomes

p = -e-pT (29)

whch has no positixe roots p > 0. Since e-" > 0 for all pT .

Case 11: o # 0.

If o is a solution of Eqns. (27) and (28) then - o also satisfies these equations.
Thus, without any loss of generality, we can consider o > 0 . From Eqn. (27)
you may observe that

p c O requires o T < n / 2 since -e-P <O VpT.

Since Eqns. (27) and (26) defines g(T) and w(T) , we are interested in finding
that value of T when p(T) first crosses from p c 0 to p > 0.

I

37

As T increases from zero then p first becomes zero only when o T = n: 12 .
Now we see, that for p = 0 Eqn. (28) has the only relevant solution o = 1
occurring at T = n: / 2 . Since this is the first zero of p as T increases this
gives the bifurcating value T = Tc = n: 12.

Single Species
Population Models

Alternately, we can use the argument that
e-pT sin o T = o
* T e - p T s i n o ~ = o ~ < n / 2

' T e - p T s i n o ~ < n : / 2

O < T < x / 2 (SincesinwT<l a n d e - p T > l i f p < O) .

which gives the condition on T for the stability of N, = 1.

Returning to our Eqn. (20) we can thus say that the steady state
u * (t) = ~ is stable if O<rT <n:/2 andunstableif rT > ? / 2 .

In the latter case we expect the solution to exhibit stable limit cycle behaviour.
The critical value rT = 7~ / 2 is the bifurcation value, that is the value of the
parameter, rT here, where the character of the solution of Eqn. (20) changes
abruptly or bifurcates from stable steady state to a time varying solution. The
effect of delay in models is usually to increase potential for instability. As T is
increased beyond the bifurcation value Tc = n: / 2r, the steady state becomes
unstable.

Let us now obtain the first estimate of the period of the bifurcating oscillatory
solution. Consider Eqn. (21) and let

7t
For T = -, Re h is largest and the solution h = p + i o of Eqns. (27) and (28) is

2
p = 0, o = 1 . We would then expect that for E small, p and o also differ
from p = 0 and o = 1 by small quantities. Accor$ngly, we let

where a and p are to be determined. Substituting these values of p and o in
Eqn. (28) and expanding for small a , P and a , we get

to the first order of a, p and E . Similarly Eqn. (27) gives

Thus on solving Eqns. (32) and (33) we obtain

E - EX as-
X2 '

P a
1 + -

4 2 (l + f)

and hence, near the bifurcation, using Eqn. (25), N(t) = 1 + n(t) reduces to

38

Models in Biology and
Economics

~ (t) = 1 + ~ e (c exp [at + i (1 + p) t]}

This shows that the instability is by growing oscillations with period
2x = 2n

EX
1 -

2 (1 + n2 /4)
for small E . Now since rT = n / 2 , the period of oscillation is then 4T.

The model discussed above is also not perfect as it has its limitations which we
are stating below.

Limitations

This model incorporates the delay due to maturation period but ignores
the age structure. Further the sex ratio also plays an important role in
determining the birth rate which is not considered. The sex ratio may be
different in different species.

In addition to the term corresponding to the crowding effect the absolute
death rate should be considered. The age structure also affects the death
rate. .

There are models with age distribution which incorporates the effect of age
structure of the population for both discrete and continuous growth but we shall
not be discussing these models here.

Let us consider the following application of the delay model.

Example 6: Consider a laboratory population of the blowfly Lucilia Cupriva
kept in a cage and given a limited supply of food. Along with the adult
blowflies the cage contains larvae also, which are supplied with unlimited food.
Let x(t) be the number of adult blowflies at time t, c be the constant mortality
rate per unit time and z be the time taken by the egg to develop into an adult.
Assuming that the laying of eggs be proportional to the initial population. The
growth equation of blowflies can be written as

where k is the constant of proportionality and s is the probability that an egg
will grow into an adult and m is the mass of the blowflies.

msk
Putting - c = a and - = b Eqn. (35) can be reduced to the fonn

2

where, a < 0 and b > 0 are real constants.

Model (36) is known as the Nicolson's model and its solution is to be obtained
under the initial conditions x(t) = 0 for t < 0 and x(0) = z .

39

Taking the Laplace transform of both sides of Eqn. (36) and using the given
initial conditions we obtain

Hence,

The only singularity of the integrand are at the zeros of s - a - b e - k d the
solution is the sum of the residues of the integrand at these poles. To calculate
the zeros, we put s = a + ip where a and p are real. This gives

Equating real and imaginary parts of Eqn. (37), we obtain the simultaneous
equations

p = -be-a sin p (39)

Clearly, one solution of Eqn. (39) is f l = 0, and then Eqn. (38) becomes

When b 2 0, Eqn. (40) has just one real root which is positive if a + b > 0 and
negative otherwise, If a, is a real root of Eqn. (40) then the corresponding

contribution to x(t) fiom the residue has a form exp(aOt) . Hence the

condition for exponential divergence are a + b > 0 or a > r and b > -ea-' .

If p z 0 then the stability boundaries for the oscillatory solutions are given
parametrically by

a=pcotp, b=-- , p > O .
sin p

You may now try the following exercises.

E7) Consider the budworm population dynamics to be governed by the
equation

Single Species
Population Models

where r, is the linear birth rate of the budworm and KB is the carrying
capacity. The p(N) term is predation generally by birds. Find out the
stedy states and do the stability analysis of Eqn. (41).

E8) An animal may feed on the number of plant which is annual, so that the
total food available depends on the number of the plants in the previous
year and thus in term is a function of the number of animals present in
the previous years. Thus the logistic equation can be written as a time
delay equation of the form

40

Models in Biology and
Economics

Discuss the steady state and carry out the perturbation analysis.

E9) A continuous time model for the baleen whale is the delay equation

dN - = -pN(t)+pN(t -T) [l+q{l-[N(t -T)/K]Z)]r
dt

Here p > 0 is a measure of mortality and q > 0 is the maximum increase
in fecundity the population is capable of, K is the unharvested carrying
capacity, T is the time of sexual maturity and z > 0 is the measure of
density of the population. Discuss the steady states and carry out the 1

1
perturbation analysis.

I

We now end this unit by giving a summary of what we have covered in it.

4.5 SUMMARY \ 1

In this unit, we have covered the following:

1. Mathematical ecology can be described as the study of inter dependence
of several species in a variable eco-system employinn mathematical
modeling.

2. A mathematical model in population dynamics represents quantitatively
the pattern of growth of a given population in the presence of various
environmental factors.

3. The mathematical models in population dynamics can be classified on
account of various factors like nature of growth rate, its fluctuation and
environmental factors, size of the population and so on.

4. On the basis of growth rate, the population models can be classified as
i) Deterministic models
ii) Stochastic models

5 . The models can be analyzed in two ways i.e., quantitatively and
qualitatively. The quantitative analysis of models involves consideration
of actual parameter and prediction in terms of numbers. On the other
hand qualitative analysis concentrates on study of the nature and pattern
of growth and their dependency on parameters relevant to the model.

6 . The discrete deterministic models are applicable to the cases when
moderately large populations such as humans, large animals like lions,
elephant are modelled. In such models the variations in population are - -

studied by means of difference equations.
I

7. Continuous deterministic models are employed when populations are
very large and their growth rate is also fast so that variables can be
modelled by continuous functions and their growth rate by their
derivatives. These models lead to differential equations. .

41

Single Species
Population Models

42

Models in Biology and
Economics

For r > 1, N, is unstable and N2 is stable.

b) Proceed as in a) above.

E6) Proceed as in Example 5 and get the solution.

E7) In the given model put right hand side equal to zero to find out
equilibrium state i.e.

Then to do the stability analysis use perturbation i.e.
dN dn

N = N * + ~ , and -=l then
dt- dt

expanding the above expression and applying Taylor's series we get

2
"1 " (N*)+-p 2! (N*)

C J

Neglecting the higher order terms and rearianging we get

After integrating we get

-At+c ~ B N * n, = e where A = -- + r~ - P(N*)
K B

if t -, oo then nl + zero.
So we can draw the conclusion that when time tends to infinity at that
time species n, tends to zero i.e., it will go to extinct.

E8) This problem can be converted into delay logistic equation by
n e t t

substituting N* = -, t = - , T* = - and then solved.
N 'c 'c

E9) First of all we will find out steady states for that we will do the
perturbation n(t) about the positive equilibrium and we will get

and hence that the stability of the equilibriums is determined by Re h .
3c = -p - p(qz - 1) e-XT

After this we can perform the stability analysis and find out its stability
condition and oscillating conditions.

-X-

43

APPENDIX Single Species

Population Models
The stability of a population relates to its persistence for a large number of
generations. For this, we wish to know if our model possesses any stable
steady state or equilibrium. You already h o w that steady-state or an
equilibrium of a difference equation of the form

is a
X* such that x* = f(x*) SO that x = x* is a constant solu~ion ,,f the

difference equation. In other words, x = x* is a fixed point of the

Y = f(x*) . Knowing the equilibrium points of Eqn. (1) the next step is to
investigate the nature of these equilibrium points.

Stability Analysis

The behaviour of sol~t10Il near an equilibrium can be by using
process linearisation analogous to that used for differential equations.

To investigate the linear stability of x*, we write

x, = x * + s , , JE, , / < < I

Substituting this in Eqn. (1) and expanding for small E, , using Taylor
expansion, we get

x* + = f (~ * + E,)

= f(x')+c,, fl(X*) + o (E ~)

Since x* = f (x*), the equation for determining the linear stability of x* is
given by

&,+I = E, fl(x*) + - - a , n = 0, 1, 2, ... (2)

Let A = f '(x *) be the eigenvalue of the first iterate at the steady-state point x*. Eigenvdues are the
Then Eqn. (2) can be written as scalar values for which

the nontrivial solution
En+, = En of the system exists.

and its solution is given by

E" = A"&(,

le gives En +O n + m if (h i <1 and E, +h as n-*m i f l h l ' l ' h ' h '
Thus x* is smble if - 1 < f J (r*) < 1 and unstable if I f' (x') 1 > l -

The steady state x* is stable if any Small perthation
this

state decays to zem monotonically when 0 < f '(x') < ' and
dsressing

oscillations when - I < < 0. On the other hand X* is if any

-., -'\ ./ -1.
44

Models in Biology and If 1 f '(x') 1 < I then the equilibrium has the property that every solution of
Economics

Eqn. (1) with initial value xo close enough to x* , remains close to it and as n

tends to infinity, the solution approaches to x' . This property is called
asymptotic stability of the equilibrium. In biological applications the
asymptotic stability is more important than stability, because an asymptotically
stable equilibrium is not significantly affected by perturbations.

Bifurcation and Chaos

The population models of single species involve at least one parameter say r .
As this parameter varies the solution of the general model

usually undergoes some qualitative changes at specific values of r resulting in
so called bifurcation. Such bifiucation can lead to periodic solutions. The
frequency of periods increases with the increasing value of the parameter r and
when the value of r exceeds some critical value say r, , chaotic solutions are
obtained; the term reflecting their random oscillations. From the graphical
analysis by Cobwebbing method, it can be concluded that bifiucation occurs
when the eigenvalues of the system pass through h = 1, 0 and h = -1.

45

UNIT 9 TWO-SPECIES POPULATION
MODELS

Structure

9.1 Introduction.
Objectives

9.2 Types of Interactions Between Two Species

9.3 Prey-Predator Model
Formulation
Solution and Interpretation
Limitations

9.4 Competing Species
Formulation
Solution and Interpretation
Limitations

9.5 Summary

9.6 Solution/Answers
Appendix

Page No.

9.1 INTRODUCTION

In Unit 8, we discussed two mathematical models on the growtli of a single
species biological population. In reality, any ecosysteill coilsists of several
species which atre interrelated amongst themselves. 11 is, therefore, necessary
to study multi-specics population models to understand the nature and
diversity of natural e'cosystem. For the s a l ~ of simplicity, we shall confine
our discussions in this unit lo two species only. We shall develop simple
mathematical models for the growth of twb populations having inte~relations
in the form of pre-predator or competition. But, $0 s t a t with in Sec 9.2, we
have discussed diflerent types of interactions between two diffcrcnt species
living in the same ecosystem. The prey-prcdator model developed by
Vito-Volterra is discussed in Sec 9.3. Tlle population gl'owth model for tyo
competing species is discussed in Sec 9.4. For uxldersta,nding the discussion
in this unit the knowledge of the critical points of a system of differential
equations and their stability is essential. For those who are not lamiliar with
the stability of the system of equations we are giving the details in the
appendix. You must go through the appendix carefully while reading this
unit this will provide you with the necessary background.

Objectives

After reading this unit, you should be able to
o identify different types of interactions between the populations of two species.

0 get acquainted with the fundamental mathematical model of a pre-predator
system developed by Lotka-Volterra.

identify some of the major limitations of prey-predator model,

learn the different features of the basic model for two competing species.

46

I Biological
I

' I Environment
, I

I

o pinpoint some of the major drawbaclcs of the competitiorl model.

-

9.2 TYPES OF INTERACTIONS .BETWEEN
TWO SPECIES

There may exist various types of interactions between two different species
living in the same habitat. Theoretically, the interaction between populations
of two species may be described by combinations of neutral organism (0),
,positive organism(+) and a negative organism (-) in the following patterns:

00, --, C + , S O , -0, and + -.

Note that the number of combinations of the three symbols 0, +, -, taken
two at a time is 3CCz = 6.

Three of these combinations (+ +, --, and + -) are Further subdivided to
get riine types of iilteraction,s. These interactions are as follows:
(1) When neither population is affected by association with the other, the

type of interaction is called Neutralism(00).

(2) When both the species actively inhibit the growth of each other, the
type of interaction is Mutua l Inhibition Competition(--).

(3) When both the species compete for a common source of food, they
adversely affect each other if the supply of that food is very limited:
This type of interaction is Resource Use Competi t ion (--).

I (4) When the growth of one species is inhibited by association with a
second species and that of the second species is not a t all influenced by
the first one, the type of interaction is called Amensalism(- 0).

(5) When one population adversely affects the other by direct attack and is
dependent on the other, the type of interaction is predat ion or
Parasitism (I--).

(6) When one species is benefited by association with second species and
the second species remains unaffected, .the type of interaction is called
Commensalism (+ 0).

('7) Wlien both populations benefit by the association but the relations
between them are not obligatory, the type of interaction is called

1 Protocooperation(+ +). ~ (9) When growth and survival of both the species are strengthened and
1 neither of theni can survive under natural conditions without the other,
I > the type of interactions is called Mutualism(+ +). ~ We sum up the above discussion and give the analysis of the interaction

between two-species population in the form* of Table 1-2 below.
I

Table 1
Analysis of two-species interaction.

I (negative term added to growth equation).
-

O
+

benefited(p0sitive term added to growth equation)
Indicates population growth or other attributes inhibited

indicates no significant interaction.
indicates growth, survival or other populatioil attribtltes

47

Table 2
Analysis of two-species population interachion.

I NO. 1 Tvnes of 1 s~ecies 1 General nature of
interactior,

Direct interference species by the otlier

conlinon re::ource is in short

aEected -------- + - Population 1, the pi~rmitc,
ge11erall.y smaller than 2, the
host

Predation .+ -- Populati~n I, the predator,
generally larger than 2, the

0 Population 1, the corrinleilssll
benefits while 2, the host,
is not affected

+ Interaction favourable to both
but not obligatory

+ lnteractiorl favourable to both
and obfirratorv

And now a word of caution. Care sllould be taken in using the various
1;erms. It is secn thal; tlm term Symbiosis which literally means living
together is sometimes used in tlle Hams aense as mutualism; i t is also used
at times to cover c~rnrnernsalism and parasitism,

From the above discussion it is clear Lhat iiitcractioii between, species may
have positive or negative results, For example, mutudism and comrnensalisnr
are positive interactions arid conlpetition and predation are negative
interactions. Ecologi~ts have studied negative interactions involving
competition and predation rnuch m.ore than positive interaction. The impact
of positive interactions or1 population growth has rarely been demonstrated,
and until more quantitative analyses are done, we cannot evaluate the
impact of positive interaction on population abimdancc.

In this unit we shall discuss the two rlegative iutcraction viz., tllose involving
predation and compgtition. The best known rriodels of these pliei~omena~ are
the Lo tka-Volterra equatio~ls, which were dcrived inclependently by Lotka in
1925 in tJie United States and by Volterra in 1926 in Italy. Lotkn
(1880-1949), an American biophysicist was born in what is now the Ukraine,
and was educated mainly in Europe. 13e is remeinbered mainly for his
formulation of the Lotka-Volterra equations. Vito-Volterra (1860-1940) was
born in Ancona, Italy. He gave his theory of interacting specie8 when he was
motivated by data collected by a friend, the Italian biologist, Umberto .
DIAncona, who was unable to explain the causes of increase of both the
selachians (predator shwlc species) and food fish (prey) in the Mediterranean
at the time of first World War when the level of fishing was greatly reduced.

We start with the mathematical model for the prey-predator relationship

Two-Species

Parasite is a small ,

orgauism that lives oa or
i11 another organism,
irrespective of its effects
being positive(+),
negative(-) or neutral (0).

Vito-Volterra !

(1860-1940) I

48

Biological

Environment

between two species.

9.3 PREY-PREDATOR NIODEL

In the predator-prey situation involving two species, one species-the
predator-feeds on the other species - the prey - which in t m n feeds on
some third food item readily available in the environment. For example,
population of foxes and rabbits in a woodland; the foxes (predators) eat
rabbits (the prey), while the rabbits eat certain vegetation in the woodland.
Other examples are sharks (predator) and food fish(prey), bass(predator)
and sunfish(prey) , ladybugs(predat0r) and aphids(prey) , beetles(predat0rs)
and scale insects(prsy) etc.

We now give the mathematical formulation of the prey-predator model.

9.3.1 Formula t ion

To construct a mathematical model, let the first species, the number of prey
(or host) at any time t be talten as x(t) and the second species, the size of
predator .(or parasite) be taken as y(t) . Let us assume furt,ller the followirlg
simplifying assumptions:

1) In the absence of predators, the prey population would grow at a
d x

natural rate, with - = ax, a > 0.
dt

2) In the absence of prey, the predator population would decline at a
dy natural rate, with - = -cy, c > 0.
dt

3) When both predator and prey are present, there occurs, in combination
with these natural rates of growth and decline, a decline in the prey
population and a growth in the predator population, each at a rate
proportional to the frequency of encounters between individuals of two
species. We assume further that the frequency of such encounters is
proportional to the product xy, reasoning that doubling either
population alone should double the frequency of encounters, while
doubling both populations ought to quadruple the frequency of
encounters. Consequently the effect of.predators eating prey is an
interaction r a t e of decline -bxy in the prey population x(t) , and an
interaction rate of growth mxy of tb? predator population y(t), with b
and m being positive constants.
W11en we add the natural and interaction rates described above, we
obtain the predator-prey equations

dx - = x(a - by)
dt

-. where a, b, m, n are positive constants; a and n are the growth rate of the
prey and death rate of the predator respectively, and b and m are measures
of the effect of the interaction between the two species.

Eqn.(l) along with the initial conditions x(0) = xo and y(0) = yo are known
as Lot ka-Volterra equations.

, Let us now find the~solution of the system of differential Eqns. (1).
1

48

49

9.3.2 Solution And Interpretation

Volterra argued that if the size of the prey population x (food fish) be
sufficiently large, the predator population y (selachians) has an abundant
supply of food and hence y increases. As y goes on increasing, more arid
more of the prey x is consumed as food and this leads to a rapid dccrea.se of
x. As thc prey x becomes scarce, y stops increasing due to lack of food, thus
allowing the rernaining x to increase again. This cycle of phenomena is
repeated over and over again.

,
When y(t) = 0 and x(t) > 0, the first equatiorl of system (1) becomes

.j,:J.'.

This corresponds to Eqn.(5) of Ur:it 8, i.e., the exponeiltfal growth model.
' \.

The solution, as you have seen in Eq11.(7) of Unit 8, is x(t) e: xoeat, where'
,x(O) = xo. ,.I$. .

This shows that, in the absence of the predators, the prey grows
exponentially according to the Malthusian law of population growth.

On the other hand, when x(t) = 0 and y (t) > 0, second equation of
system(; j becomes

. This is again similar to Eqn,(5) of Unit 8, the only difference being the
coefficient of y is negative. This as you will see now will change the nature of
the solution, i.e. instead of an exponentially increasillg solution, we get an
exponentially decaying solution of the form @

y(C) = yoe-nt where y(0) = yo .
This relation implies that, in the, absence of the prey, the predator
population dies out exponentially (due to lack of food).

Agairi if you consider the system of Eqns. (I), you would see that

and

Hence the critical (or equilibrium) points of the system given by
dx dy -- = 0 = - are O(0,Q) and P(n/in, a/b). Here 0 is a trivial steady state
dt dt
and P is a nun-trivial one. The critical point P is of interest, it specifies a

n a constant population - of prey and - of predator that call coexist with one
m b

another in the environment.

Before actually solving the system (4 let us analyse yhat the system
represents geometrically.

Geometrical Interpretation

dy dx If y = 0 and x > 0 at some instant, we find - = 0 and - = ax > 0. This
d t dt

means that the predator population continues to remain at the zero level

A critical point of the
syfltenl of equations

= W, Y), 5 = G(x,Y)
ie a point (x*, y*) 8.t.

F(x*,ym) = G(x', y*) = 0.
Also then the conatant
vdued Pdnctions
x(t) = x*, y(t) = y*
satisfying the system is
called an equilibrium
solution.

50

Biological
Environment

while the prey population goes on increasing. Geometrically this means that
'the positive x-axis (y = 0) is an orbit of the system.

dx
011 the other hand, if x = O and y > O at-any time, we have - = 0 while

, d t

a L
This implies that the preypopulation continrues to remain at the zero level
while the predator population goes on decrkaeing. Geornetrically this means
that the negative y-axis (x = 0) is an orbit of the system.
This analysis recorrfirms our previol~s observations that

(i) the prey g~ows expone~ltially in the absence of the predator and

(ii) the preda1;or dies out exponentially in the absence of the prey.

Thus the equilibrium solution x(t) = 0, y(t) = 0 corresponding to the critical
point (0, 0) describes simultaneous extinction of both species.

Since x(t) > 0 and y(t) 2 0 for all times, all other orbits of the system lie
entirely in the first quadrant of the x-y plane.

To get an idea of thc other orbits, we f i r ~ t note that y = a/b and x = n/m
divide the first'quadrant into four regularly shaped regions. We see that

This nleans that x increases in the regions I11 and IV, and decreases in the
regions I and I1 in Fig, 1.

dy n dy n Moreover, - > 0 if x > - and - < 0 if x < -. This implies that y
dt m dt m

iricreases in the regions I' and IV while decreases in I1 and 111 (Fig.1)

Fig. B
It is clear from Fig.1 that the orbit will follow a counter clockwise direction

n a
about the critical point (-, -) whatever be the initial sizes of the

m b
populations. For exhmple, if there are small numbers of prey and prerl~tor
initially, i,e. if the orbit begins in the region 111, then the prey ' increas~,~ :
the predator decreases. This is what is expected in reality. For, a small
number of foxes poses little threat to the rabbits so that the rabbits go on
increasing in number. On the other hand, scarcity of the rabbits forces the
fox population to decline. When the size of the rabbit population exceeds

n
the critical value-, the orbit is in region IV and then the fox population

m
also begins to increase due to availability of sufficient food (rabbits).

a When the fox population exceeds the critical value -, the orbits enteps the
E

region I. Now foxes being plenty in number to endanger the rabbits, the

51

rabl~it population begins to decreafle. Ultimately when the rabbit populatio~;
n

declines below the critical level -, the orljit enters the region II. As a result
m

Two-Species

111

of declining rabbit population, now the fox population also begins to decline
due to shortage in food supply. When tl-~e fox population declines below the

a
critical value ,, there is a small number of foxes to endanger tlle lives of the

1)

rabbits existing at that point of time. As n result, the rabbits 6rtart growing
and we are again in region IV. This cycle of phenomena continues to r ~ s e a t
again and again. Thus t h e fluctuation of the pop~ilat ions fdh-ss

n n
some kind of cyclical pattern about t h e critical point (- -). Let us

m113 .
denote this critical point as (x*, y*).

The above discussion gives you a qualitative description of ths growth of the
two species. In order to get the quantitative or accurate description, we need
to solve the system and get an algebraic relation between x and y,

Analytic Solution

To find the solutiorl of system of Eqns. (1) for x(t) > 0, y(t) > 0 with initial
conditiorls x(0) = xo, y(0) = yo we write

cly - y (mx - n) -- - -
dx x(. - by)

&-by . m - n
or, - dy = ---- dx

Y X

dy dx, or, a- -bdy = mdx-n.--
Y X

which on integration gives,

where K1 is the constant of integration to be determined using the initial
conditions.

We have,

~ n ~ ~ - l n e l - ' ~ - l n e ~ ~ ~ + l n x " , - lnICl

Thus Eqn.(2) which represents a family of closed curves gives the solution of
system of Eq~is. (1).

We may write Eqn.(2) in the form

where x* = n/m, and y* = a/b.

Using the transformation X = x / x * , Y = y/y*, we have

(s)=(g)" =

ex 1 * a *n
or, (K) (q)' = ~ , y x = ~ (s n y)

52

BioIogical where the consta~i K slid hencc C has to be determined using the initial

E ~ i v i r o m e n t conditions x[O) = xo and y(0) = yo. Using these conditions we obtain

Thus for a given value of (xo, yo) value of C is known. So' the final solution

can be obtained. We have already had a qualitative picture of this solution
through geometrical considerations (see Fig. 1) and hence we know what to
expect. in order to verify the findings of Fig. 1 we have to plot the curve
given by Eqn.(5). YOU may obscrve that Eqn.(5) does not represent a curve
with which you are a,hea,dy familiar say, ellipse or parabola etc. Without
going into the details we give below the plot of the curve (5) in Fig. 2. For

n a
each fixed value of C the graph is a closed curve enclosing the point - -

m' b '
It .may 11e observed that as C increasss, x and y show oscillations of
increasirig amplitude (Fig.2). At the minimal value, these curves shrink into
a point with coordinates (x*, y*).

critical point P is stable
if for initial population
(xo, yo) close to P, the
population (x(t) , y(t))
remain near it for dl
t > O

Fig.. 2

Note the direction of the arrows in Fig. 2:These are drawn based on our
earlier geometric considerations.

For a l i lear system, Stability

To check the stability of the critical point P - , and get an idea of the' (:If)
pattern of the orbits near the critical point, i.e. whether the orbits are
moving towards the critical point or moving away from it or exhibiting some
other type of behaviaur, we use the perturbation technique. The basic idea
of this tedinique is to perturb or disturb the equilibrium slightly and then to
see whether the system remains in the neighbowhood of the equilibrium or
deviates far away from it. Mathematically, we changr$the equilibrium values
of x and y slightly by adding to them very small quant ,I 't ies. '

n a
Let ,x = -(I + u),y = -(1 + v) m . b

where u, v are very small quantities. This transformation indicates small

departure from the equilibrium point

53

We have from Eqns.(l) and (ti), Two-Species

du - = -av -auv
dt
dv - = nu + nuv
dt

Clea,rly the system of Eqlls. (7) is almost linear system and has (0, 0) as the .
critical point corresponding to the critical point (k, t) of the system of
Eqns. (1).

In order to check the nature, and stability of the critical point of system (7)
we consider the related linienr system

The eigenvalues of system (8) are given by the equation

0 -a
where A = (n.)

We obtain from Eqn.(9)

Thus the eigerlvalues of the system (8) are pure imaginary. We thus conclude
that critical point (0, 0) of the system (8) is a center. Further differentiating

'

the two equations of the system (8) with respect to t , w!: obtain

Could you recognise Eqns. (I 1) and (12)?

Yes! both these equations represent a simple harmonic motion of periodic
2n

time T = - (Ref. Unit 4, Sec. 4.4).
(an)

Thus the trajectories of the system (8) are closed curve; exhibiting periodic

oscillations of period - 2n in the neighbourhood df point (0, 0). We can
(an11/2 I

further show that the&! dosed curves are ellipses in 'this case.

We multiply the firstaequation of system (8) by nu, and the second by av and
then adding together, we have

nudu + avdv = 0.

This gives on integration C

nil2 + av2 = A,
u2 v2

or, - + - = 1.
X/n X/a (13)

where X is an arbitrary nonnegqtive constant of integration.

54

Biological .

Environment

Thus the tra-jectories of the system'(8) are ellipses around the critical point
(0,O). Some of these ellipses are shown in Fig. 3.

r'ig. 3
We have shown that the critical point (0, 0) is a stable center of the linear
system (8). Wc now need to assess its character for the almost linear systern
('7). Here as we know, our theory for almost linear systems fails (ref. Table 1
of appendix). The effect of the nonlinear terms may be to change the center
into a stable spiral point, or into an unstable spiral point, or it rnay remain
as a stable center. Fortunately, in this case we have actually solved the
nonlinear Eqns.(l) and seen, what happens. We have shown in Fig. (2) that
the graph of this equation for a fixed value of C in Eqn. (5) is a closed curve

(not an ellipse bpt deformed ellipse) enclosing the critical point (i, :)a

Thus the predator and prey have a cyclic variation about the critical point (i, %) and the critical paint is also a center of the system (1).

Let us now consider the following examples.

Example-1: For the system of equations

verify that (0, 0) is a critical point. Show that the system is almost 1ine.m
and discuss the type and staability of the critical point (0, 0).

Solution: Clearly (0, 0) is a critical point of the system (14). System(l4)
can be written in the form

where f(x, y) = xy and g(x, y) = -xy

For checking the condition for almost linear system it is convenient to use
polar coordinates by letting x = r cos 0, y = r sin 0.

f (x, y.) r2 cos 0 sin 0
Now - = = rcosOsin0 -+ 0 as r + 0

r r
E;(x, Y) _ _-- r2 cos 0 sin 0 - ' dso --- - - -rsinOcosO -+ 0 as r + O

r r
Thus system (14) is almost linem; The relaled linear system in the
neighbonrhood of (0, 0) is

(15)

55

Eigenvalues of (15) are the =oats of the eqyation 1 3 ' 1 = 0

* -1+i& -1 - i d
:. A1 = 2

and X2 =
2

. Since the eigenvalues are conjugate

complex of the form X kip, A, p real. Critical point (0, 0) of the system (15)
is.a spiral. Also since X < 0, it is asymptotically stable point. Since the

.system (14) is almost linear, critical point (0, 0) of the system is also
s t i b l e spiral point.

Example- 2: Consider the sys tern of equations

Find the critical point of the system. Discuss the type and stability of the
critical point. Write down the general solution of the system (16) and sketch
the graph of its trajectories.

Solution: Clearly (0, 0) is the critical point of the system (16).

Eigenvalues of (16) are the roots of the equation

Eigenvalues are real, distinct and of the same sign so the critical point is a
mode. Also since X1 > 0, X2 > . O it is unstable.

To find the general solutio~l of system (16), we find tbe eigonvectors
corresponding to the eigenvalues X1 = 1 and X2 = 2.

Eigenvector corresponding to the eigenvalue X1 =, 1 is tihe solution of the
equation

We see that (:) is one possible eigenvector. Similarly () is one

possible kigenvector corresponding to the eigenvalue X2 = 2.

Then the general solution of system (16) can be written as

where ci, c2 are arbitrary constants.

For cl = 0, x = 0 and y = c2e2t. In this case the trajectory is positive y axis
when c2 > 0 and it is negative y axis when c2 < 0 and also since y + m as
t + co, each path approaches w as t + w.

For cz = 0,x = elet;y = clet. This trajectory is a half line y = x,x > 0 when
cl > 0-and the half line y = x, x < 0 when cl < O'and again both paths -+ oo
as t -+ co. '

Two-Species

56

Biological

Environment

When both cl and c2 are # 0, the trajectories are parabolas
y = x + (cz/c:) x2 which passes through the origin with slope 1. Each of
these trajectories also approach oo its t -+ do. The slcetch of the trajectories
is shown in Fig. (4). Y

Gig. 4

Example 3 : Dete~rnine the type and stability of the critical point (0, 0) of
the almost linear system

Find the general solution of the corresponding linear system and sketch its
trajectories.

Solution : The auxiliary equation of the assodiated linear system

The roots A1 = -4 and A2 = 5 are real unequal and have opposite sign. So I

1

the critical point (0, 0) is an unstable saddle point of tlze system (19) and
hence of the system (18). ,

Eigenvector corresponding to XI = -4 is (f4) and that corresponding to

Xz = 5 is [) . So the general solution of (19) can be written as I

X ., For cl = 0, x = 2 ~ ~ e ~ ~ , y = c2e5t. This trajectory is the half line y = -, x > 0 .".. X 2
when c2 > 0 and half line y = -,x < 0 when c2 < 0. Also x -+ w , y -+ oo as

2
t -+ m.

For c2 = 0, x = cl e-4t, y = - 4 ~ ~ e ' ~ ~ . This trajectory is the half line
y = -4x, x > 0 when cl > 0 and the half line y = -4x, x < 0 when cl < 0.
Both the trajectories approach and enter the origin as t -+ m.

57

1 . . /

I
I ,

j j 1

i If cl # Oc2 # 0, solution (20) represents curved trajectories none of which ~ w o - ~ ~ e c i e s
i '

approacl~es (0, 0) as t -t w. Fig. (5) gives a qualitative picture of this I I
I f

behaviour.
Y !

Fig. 5
And now a few exercises for you.

E l) I11 each of the folltiwing problems, verify that (0, 0) is a critical point,
show that the system is almost linear, arid discuss the type and
stability of the critical point (0, 0).

E2) Determine all real critical points of each of the following system of
equations and discuss their type anrl stability.

E3) One improvekent in the predatar-prey model is to modify the equation
for the prey so that it has the forrn of a logistic equation in the absence
of the predaior. What will be the form of system of equations
modelling this situation. Determine d l critical points of the system and
discuss their nature and stability.

E4) Consider the linear system
dx - =
dt -x + hy

Djscuss the nature; and stability of the critical point (0, 0) if

a) h = O b) h < O c) O < h < l

What do you conclude from the above t;lwee cases?

58

Biological

Environment
E5) Find the critical point of the system

dx - =
dt -Y

dy - = X
dt
and discuss its nature and stability. Find the general solution of the
system and sketch its trajectories.

Before taking up the model for 'the competing species let us discuss the
limitations of this model.

From the above discussion it is clear that Volterra system possesses no
mechanism to maintain its non-trivial steady state. It is seen from Fig. 2
that the prey-predator' system switches from one orbit to another for
arbitrary small changes in the phase coordinates (x*, y*) . In the
mathematical sense, we describe this behaviour of the system by saying that
Volterra orbiis lack "roughness"

We also observed that

(i) in the absence of predators, the prey population grow, unbounded
exponentially and

(ii) in the absence of prey, the predator population goes' to extinction due to
lack of food.

These phenomena arc not found to occur in reality. In the absence of
predators, the prey population is expected to increase rapidly to start with;
after considerable increase in its size, its growth must be retarded due to
crowding effects and ultimately, it cannot increase beyond a limiting level. I

On the other hand, when prey (food) is not available, the predator I

population is expected to decrease rapidly in the beginning; after some time,
I

the predators are likely to adjust themselves with the situation by finding I
alternative sources of food. 1
So far we discussed mathematical model foi two 'species in which one species
preyed upon the other. In contrast to this, we shall now consider two species

. which compete with each other for the food available in their common
environment.

9.4 COMPETING SPECIES

In the broadest sense, the term "competition" between two living organisms
refers to the interaction between them when they strive for the same thing.
As we have already seen in Table 2, this competitio~l rp*y be of two types -
indirect or resource competition and direct or i l~cerference competition,
Resource competition occurs when a number of organisms (of the same or of
different' species) utilise cn9n.mon resources that are in short supply.
Interference occurs when thk organisms seeking a resource harm one another ,
in the process, even if the resource is not in short supply. These competitions
or interactions between the populations of two or more species adversely
affects their growth'and survival. The tendency for competition to bring a ,

bout an ecological separation of closely related, or otherwise similar species
is known as the competitive exclusion principle.

N o t e that the competition may be interspecific (between two or more
58

59

,

differei~t species) or intraspecific (between members of the same species i.
Here we restrict c.~u.rselves to the study of populatiolls of two species whir.'":
are competing for a cornmoll resource (food, space, light, etc.).

Competition occurs over resources, and a variety of1resources may becolyc!
the center of competitive interactions. For plants, light, nutrients, and water
may be important resources, bllt plants may corn.pete for pollinators or for '
attachm.er1t sites. Water, food and males arc possible sources of competiti.on
'for a,nimals. Corlipetition for space also occ:~us ill sorile animals and may
involve r.ti.any typds of specific req,uj.rernerits, such as nesting sites, wintering
sites, i>r a,il;t:s t , hd are s ~ f k from predators. Thus resources are diverse and
cornpll..~.

Let us now formulaate the mathematical ~nodel for the interspecific
competition for a common resources.

9.4.1 Formulation

Suppose that there are two spclcies livirig in the same eilvironnlent and
having. a coninlcjn source bf food, At; ally time t , let x(t) and y (t)) de~ioke the
number of individuals in t;he popillations of t,he two species and xcO) - xu
and y(0) = yo be their' initial pop~.ilations. If rl (> 0) and rz (> 0) he theis
growth c:oefficients, the11 the differential equations for this competing syste11.1
may be written as

where a1 and a2 2~r~r.a I;wo positivc constants, These equations are also given
by Lotka-Volterra,

Since the competition beLween two species has .the effect of a rilte of decline
in each population proportiorial to their prorluct xy, the Germs alxy and
azxy in system (21) inclicate interaction bet,weee the x and y species. If you
compare the two systems (1) and (21), modelling the prey-predator and
competing species respectively what ,difference do you find between them?
You would notice that competition between two species for a commoil ,

resource has a'declining effect (xy term negative)'on the rate of growth of
both the species, whereas the ,interaction between the two species ha8 a
declining effect on the growth rate of prey and increasing effect (xy term
positive) on the growth rate of predator.

The coeffit:iellt;s ax arid a2 in Eqns.(2l) are c,allccl the caefIlcienl;s of
interspecific competition for the two spccies.

111 the absence of the second species (La. when y r: O), the first equation of
dx

system (23.) bccorne~ -. L= rlx of which the solution (w we have alretttly seen
dt

in Unit 8) is x = xoerlt, x, lleing {;he irxitiitl density of the first species. I

'l'hiu shows tlmt the first species glC~wS exponcn1;ially in the absence of the
' second species, being thc! sole user of' the food resource. We arrive at a
sinzilar collclusioil for tlic? second. species (i.e. when x =. I)). Thus each
species grows unbouizded in the absence of the'sthele.

When both the species are present, tlieir growth rates are bound to decreave
due to sharing of fc~od. To quantify ,this amount of decrease in th.e respective

, growth rate, we majr argue, ay follows:

Two-Species

60

The decrease in the giowth rate of x-species is proportional to x whenv is
constant, and is proportional to y when x is constant. Then the decrease in
the growth rake of x-species is proportional to the product xy when both x
and y vary. Similar'argnments holds for the decrease in the growth of

'

y-species. Based on these characteristics of the two species, the model bas
been form~ilated here.

We now t'ry to find the solution of the system of differential Eqns. (21) and
discus's. it .
9.4.2 Solution and I n t e r p r e t a t i o n

The equilibrium solution of the system of Eqns.(21) is given by

and

Thus the non-trivial steady-state or equilibrium point of the system is
(x*, y*) where x* = rz/az and y4 = rl/al .

It is interesting t o note that the eq.uilibriurn density of one species
depends on the prop6rtiond growth rate and the coefficient of inter-specific
coefficient of the other species.

Just as we did in the case of prey-predator model, we andyse the system of
Eqns. (21) ge0metricdI.y.

Geometrical Interpretation

dy dx If y = 0 and x > 0 at some instant, we find -- = 0 and - = r lx > 0. This
dt dt

means the population of second species continues to rerriain at the zero level
while the first goes on increasing. The positive x-axis (y = 0) is ail orbit of
the system in this case and we say that x-species outcornpetes the y-species.

dx dy
Similarly, if x = 0 and y > 0 at any time, we have - = 0 and - = ray > 0.

dt d t
This implies that the first species continues to remain ai the zero level while
the second goes on increasing. In this case, the positive y axis (x = 0) in an
orbit of the system and y-species outcornpetes the x-species. This sort of
phenomena in population Fidogy is known as the principle of competitive
exclusion.

This analysis recoqrms ,our previous observation that each species grows
unbounded in the absence of the other.

When x(t) > 0 and y(t) > 0, all other orbit8 of the system lie entirely in the
r l first quadrant of the x-y plane. Now x 2 and y = - divide the first

a2 Q 1
dx r l dx

quadrant into four regions. We see that - > 0 if y < - while - < 0 if
r.

tlt ' a1 d t
y > = .

a1

This mews that x increases in tho.111 and IV regions and decremes in I and
dy r2 dy r2 11 Regions. Similarly, - > 0 if x < - and - < 0 if x > - implying that
dt a 2 dt Q 2

y increaaeg in regions I1 and I11 and decreases in I and IV (see Fig. 6).

61

dv Region - --

Fig. 6
It is clear froan Fig. 6 that orbits do not follow any kind of cyclic pattern.
Thus the Ructuatir~ns of the populaiioras do not bllow any kind. of cyclic
pattern.

Stability

We now examir~e the stability of the stoady state (x * , y*) lhy nsing the
perturbation techniclue.

Let x - x*(l -{-n) and y =. y*(l 4-v) w>
where u and v are very said1 and indicate s~nall deviaticsilv from the
ccpilibrium.

Using Eqns.('L'E) in (211, wc: have

I System (23) is drnost linear and has (0, 0) as the critical point

of t l ~ e system (21). corresponding to the critical point

7'0 ex nlirie the st;z~hility of the crii;i~:i~X point (0, 0) of the system (731, we
consiLr tlio related Lii~ear system

fiigenvalues of khe systerrl (24) are X = d~m, i.e. oigenvillues are realzl,
distinct sncl of opposite sigrzu. Tllus the critical point is a saddle point.
Differentiating tho eq~~ations of the system (24) once again w.r.t. t and
elimii~ating the first derivative terms we obtain

d2.v
and - --

dt2
- l'1r2v

The general solution of Eqrr.(25) is of the form

u = Ale\/i;T;;it +

where A1 and Aa are arbitrary constants.

We thus and that u --+ OCI as t -+ m.

62

Biological Similar:y, on solving Eqn.(26), we find that v v cu as t'--+ CQ.

Environment Thus critical point (0, 0) is unstable saddle point of systezn (24) and hence of
the system (23) (ref Table-1 o j the appendixy.

It is, therefore, clear that the steady state (x*,y*) of the system (21) is
unstable. The point (x*, y*) moves on to either x-axis or y-axis in the
(x, y) -plane, depending on the initial conditions.

You may be wondering in this case why we did not we solve the systcnl of
Eqns.(21) analytically like we did for the prcy-predator model. Yes! you can
solve the system (21) and find its analytical solution in this case also. We are
leaving it for you to do it yourielf.

-- -

E6) Solve the system of Eqns. (21) analytically.

9.4.3 Limitations

The major limitation of this model lies in t,ile extreme outcome that olle
species may be such a strong conipetitor that it, may force the other species
to go extinct. In the natural environment, howevcr, populations are
distributed over space, and space is strongly inhomogeneous. A species that
is completely out-competed by another species, may fiud various refuges
where it can continue to survive, at least in small numbers.

It is also found in natural environment that two species competing for a
cornmon resource for their survival coexist. This model fails to exhibit such
coexistence of two competing species.

Another limitation of the rrlodel lies in the observation that each species
grows unbounded in the wbse~lce of the other. This can never happen in
reality -.there must be carrying capacity for the growing species.

We now end this unit by giving a summary of what we have covered in it.

9.5 SUMMARY

In this unit, we have covcred the following:

(I) Any ecosystem consists of several species which are interrelated amongst
themselves. It is therefore necessary to study multi-species population
models to understarid the nature and diversity of ecosystem,

(2) The prey-predator model due to Eotka-Volterra involves two species in
which, one species - the predator feeds 011 the other species - the prey.

(3) For a prey and predator population of sizes x(t) and y(t) respectively, a t
m y time t the Lotk&Volterra equations are

and - dy = y(mw - i), y(0) = yo
a t

where a, b, rn, n are positive constants.

(4) The above system of equations hm two critical points 0 (0,O) =and
P (i, E). The critical point 0 is a trivial steady state but point P is of
interest. It specifies a popillation of prey and predator that can coexist

62
with one anotlier in the environment.

63

I

(5) Geometrical analysis of the system in (3) shows that prey-predator Two-Sp ecies 1 ,
I

population follows an orbital path. Elliptic orbits are gbtained around I
the critical point (5 3. 1

(6) The prey-predator model has some limitations as it possess no
mechanism to maintain its non-trivial steady state. The prey predator t

system switches from one orbit to another for amall changes in the f I n a
coordinates (-, -) . Also, in the absence of predators, the prey grow

nz b I

unbounded while m the absence of prey, the predator population goes to
extinction. But such phenomenon are not found to occur in reality.

(7) Besides prey-predator relationship there is competition between two
living organisms in the nature. There is interaction between them when
they strive for the same thing. Model for two competing species having
population x(t) and y(t) at any time t, is given by

dy and - =
dt r2;Y - a2xy, ~ (0) = Yo

',
where r l > 0 and rz > 0 are their growth coGfficients and al, CQ are
positivt: constants.

(8) The non-trivial steady-state or the critical point (2,s) of the above
Q2 a1

system is unstable. An outcorrle of this model is that one species may
be such a strong competitor that ii; may force the otlier species to go
extinct,, which is tlle rnajor limitations of the model. Also, it gives that
one species grows un13ounded in the absence of the other. But these
things can never happen in reality in nature.

El) a) Spiral point, unstable

b) Sa,ddle point, unstable

a E2) a) Critical points are (0, 0) and (- 1, l) . Point (0, 0) is a node or
,spiral point, it is unstable.
To check the stability of (-1,l)
Let x = 4 - 1 a n d y = v + l
So the given system reduces to

dv --
dt

- u + v .
which has (0, 0) as the critical point corresponding to the critical
point (-1,l) of tho given system. Now verify that critical point is
unstable saddle point.

b) (1, 1) node or spiral point, iuymptotically.stable
(-1, -1) saddle point unstable.

E3) Equations modelling this situation are of the form
dx - = x(a - by - cx) I

dt
dy - = y(mx - n)
dt 63

64

13idogicd
. - Environment

w ! w e a,, 5, c, in, n are. a11 positivc constant. The critical points of this
am - cn

s~,stenk are (0 , ~) (1, O) (z., ..--.--.--- Where (0, 0) is a sa.ddle poink, . c . rn

nc 2.
nude if (;) -- 4nb (t - -!!,-) :3 -- O and an wyn~pC~tb:dly stable spiral

. c m.

c) :For 0 < Ia <[1 ,' (0,. 0) is nsyu~,ptotica~l,y stabln node.
Small :per.t.w!)&ion of tihe s;ys%exn x' =. -x, yY = y , can cha~~.ge
ihe.t;y~e oil the critical, poiqf; (0, 0) withont affecting i t s ijtiz1,ilit.y.

: ,I \
E5) Critical ~.,oint (8, 0) i s a cenl;er. t$.:'enera! solut.ion of the systcm is

x =: -c1 sit1 t I- c'2 ices t i

..--
y = (21 cos L +. cz sir! t

So I($) and yjt) are perivdic and, each ttra.j&t;ory is s clo!;ed cllrve
srursul-ading the origin.

cay x
Also vJe have, fsoxlz given sys tenn -.- =: .- -- 1v11ose gent.!ral solution. i s

&,
Fig.7 s2 -1 yZ 7 ic" this yields all thc curves which are circles (see Fig.'r'j.

.Also froxn theagivc7n differeniiat equations, for t'he region x :> 0. y . > 0,
dx dy

IW see tha.1; -.- < 0, mean >: clt.cteasas xwii!:~ t , - > 0, nneaus y increasss
d t d t

with 1;. Thils the tra,jectories asp ~inhicloclrwiw round the circle.,

E6) Prom Eqncj. (21;t w? have

dy ~ (r z - azxj --. .= -.------.
d~ x (r 1 - a i y)

- a1.y r2 -- u12x or, (" .---> dy = (--y---) dx
t

dy r2 m, rl- -. aldy =: ---dx - radx
Y X

Integrating
rl Iny - aly - ralnx + N ~ X -- lriK

f l e 0 2 X

or, In----- = lvI<
xrzea' Y

Hence, the genysd solution of Eq~ts.(21) is

where the conitant TC: has to be deter~uined using the ini tiitl condiiionu
x(0) = xe and'y(O) = yo. Using &?~t?se conditions we obtain

65

N APPENDIX

A systern of t2wo first order cqria.tioxas of the form

is said to be nui;onokrtaas when thr? ia.depcnderwi; variable t does EL': n.ppear
explicitly; We nssrune that; tktc fmctions 1h1nd @ are cualtintanus~g
di8eseni;iable in scirne region R in t,he xy-plallep which is C B E ~ ~ Z , ;he p l ~ w e
plane for the system (1). Then acco.sdi~;ig to the exiat;enc+i and ~cmiclueilens
thwreh, (ref: Unit 1 , Block 1 of ,hlTG-OS) &iven to and any poiut (xo,yo) of
R., there exists a u.n.iqale solution :.; = x,(t), y == y(t) of (I) tihat is defined 0x1
some Open internal aa .=' tAcl i: 'b and satisfies thr: initial conditions

The equatic~n x .--- x(t), y = j r (t) . then describes a nulartion in the phmc plane.
Any sl-~cln solution curve is called a k;riijecto.cy or the orbit of the ayatem
(1) and precisely one tri~jectar:~ p:~:$t:!c~ :L~:~uYY[<II sad1 poinl; of R,

A c!'iticaX poiant r ~ f the! syatt!m (1 j is a, polart (3'; y*) lobt,ai~ied by setting
b rr t 0, !$ == 0 and such tliat

F(x" y *) = 6 (,x", y") = 31 (3)

, Collversely, if (x*, y") is a critical poiYlt of the ny~tem, then the constant
vdued fu~unactions

x(t) = x*, y(t) = y* (4)
C

sa,tnsfy oystem (1) and are calld eyuillibritlnx fiolutioliv of the system.

Note that the tra,,jectory of the equilibrium saXutioll in Equ.(Y) 'consists of
the aingle point (x*, y*),

In p~gict~ictzl siturttiona, Cbe cquilibri~m solutior\:: a,nd llrajeclorir:a are of rhost
interest. For example, suppose that the sgs t~m EL' .= F(x, y) , y' == G(x, y)
moclels two po;;lula,tiox~s x(t) aild y(l) bf animals Lhst cohabit the same
environment, and conlpetc for bhe snzile fo'~)(~d or prey 011 cine mother. x(tj
miglzt denote the n ~ ~ m b e r of foxes and y(l;) Ght: rnimbcr of rabbits present at
time t. %'hen a crii.icd poiut (x*, y*) elf the sy~teln specifiev a canstalnt
population x* of foxes md a consta~~t pap~~lidiorz y* af rabbits that can
coexist with one another in the exlvironla.~ent. If (x*, y*) is not; a critical point
of t l ~ e system, it j~ not poasiblc for C O X J S ~ ~ L I P ~ populatiol~ cbf X* Tmes and y V
rabbits to coexist; one or bat-h must cl~~,rigc: wit11 Lima.

As yon know, it i s not always possible to oY3l;ajn the rewlal.y.yt,icnl wulution yp;T klt?~?.
system of the form (1). We thns ITPI~CB the qrtditn,tivtz ctuuly of system (31) to
learn as nlllch QS we can ri;bo~b the 8,ystcnl. Let 119 m5_~~1111~e that, the nonlinear
rsystem (1) is cif the fo~nl

66

Elective Paper
MATA 3.4
Block - II

Marks : 50 (SSE : 40; IA : 10)
Dynamical System (Applied Stream)

1 One-Dimensional ODE Dynamics

The first main objective in this section will be to outline the basic effects
in nonlinear ordinary differential equations (ODEs). The basic notation for
ODEs we are going to use is

x′ :=
dx

dt
= f(x), x = x(t) ∈ Rd, (1.1)

where t ∈ [0, T] = I for some T ∈ (0,+∞], f : Rd → Rd is a sufficiently dif-
ferentiable map, and the initial condition x0 = x(0) is given. In this context,
Rd is called the phase space, x : I → Rd is a trajectory (or anorbit),
and we shall also refer to f as the vector field; see Figure TODO. For this
section we shall take d = 1.

Example 1.1. Consider the linear population-growth model

x′ = x = f(x), (1.2)

which is linear since the vector field f : R → R is a linear map, and where
we could interpret x = x(t) as the size of a population at time t. One can
easily solve (1.2) by separation of variables, i.e., by (formally) re-writing
the original equation as

1

x
dx = dt,

re-labelling the variables and then integrating both sides, which yields

∫ x(t)

x0

1

y
dy =

∫ t

0
1 ds.

This just implies lnx(t)− lnx0 = t so that taking exponentials gives

x(t) = x0e
t. (1.3)

From this explicit formula we can easily plot a one-dimensional phase
portrait as shown in Figure TODO. Hence, any starting solution with
x0 6= 0 grows exponentially. The point x∗ = 0 is an equilibrium point,
sometimes also called steady state or stationary point. �

The concept of equilibrium points is evidently more general as the next
definition shows.

Definition 1.2. Consider (1.1), then a point x∗ is called an equilibrium
point if f(x∗) = 0.

4AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

68

For general nonlinear ODEs, i.e., if f is not a linear map, there are
no general explicit solution techniques available. Mathematically, this may
look unfortunate. But it is actually very fortunate from the viewpoint of
real-life considerations since a purely linear world would be really boring.

Example 1.3. Indeed, the population growth model (1.2) is not very re-
alistic as it assumes growth is just proportional to the current population
size. It is more natural to assume resource-limitations kick in for very large
populations. So we consider our first nonlinear ODE

x′ = rx

(
1− x

p

)
, (1.4)

where r, p > 0 are parameters interpreted as growth rate and carrying ca-
pacity respectively. The equation (1.4) is also known as the logistic equa-
tion or as the Verhulst model. We can actually eliminate one parameter
in (1.4) by a time re-scaling

t = t̃/r ⇒ dx

dt̃
=

dx

dt

dt

dt̃
=

1

r
x′,

so that we obtain that

dx

dt̃
= x

(
1− x

p

)
= f(x), (1.5)

where we can just drop the tilde to obtain an ODE in the usual notation.
The process we just went through was an example of the more general tech-
nique known as non-dimensionalization, which means scaling variables
such as t and/or x, to get remove parameters; it is actually possible to
use a scaling of x to also remove p (exercise!). Our next goal is to think
geometrically and analyze (1.5) without solving it. Equilibria are found by
the zeros of f , which gives

x∗ = 0 or x∗ = p.

We can plot f over the one-dimensional phase space R as shown in Fig-
ure TODO to determine the direction of the motion/flow. Hence, we see
that x∗ = 0 is unstable and x∗ = p is stable. �

More formally, we can define stability as follows:

Definition 1.4. An equilibrium point x∗ of (1.1) is (locally asymptoti-
cally) stable if there exists a neighbourhood U of x∗ such that all trajec-
tories starting in U converge to x∗ as t → +∞. If all trajectories leave U ,
then x∗ will be called unstable.

5AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

69

For nonlinear systems, it is usually not easy to check global stability
of an equilibrium, which just means we could extend the neighbourhood U
in Definition 1.4 to the entire phase space.

Example 1.5. (Example 1.3 continued) Clearly x∗ = 0 is not globally
stable, as it is unstable. Our phase portrait in Figure TODO shows that
all initial conditions with x0 < 0 escape to −∞, while all initial conditions
x0 > 0 satisfy

lim
t→∞

x(t) = p if x(0) > 0.

So if we view (1.5) purely mathematically on a phase space X := R, then
x∗ is not globally stable, while considering a phase space definition X :=
[0,∞), then x∗ is globally stable. This illustrates the key interplay between
modelling and analysis. �

Our geometric argument can also be formalized using an important
observation for one-dimensional ODEs.

Proposition 1.6. Consider the logistic equation defined on

x′ = x

(
1− x

p

)
, x0 > 0. (1.6)

Then x(t) → p as t→ +∞.

Proof. Let us first translate the equilibrium point x∗ = p to the origin by
y = x− p, which yields

y′ = (y + p)

(
1− y + p

p

)
= −y

(
y

p
+ 1

)
, y(0) > −p, (1.7)

and moves the equilibrium point we are interested in to y∗ = 0. Now observe
that any one-dimensional ODE can be written as a gradient system

y′ = −∇V (y) = −V̇ (y), ˙ =
d

dy
,

which holds by just finding the anti-derivative of the vector field and chang-
ing the sign. Applying this to (1.6) gives

V (y) =

∫
y2

p
+ y dy =

1

2
y2 +

1

3p
y3.

V vanishes at the equilibrium y∗ = 0 since V (0) = 0, and V (y) > 0 for
y > −p follows easily as well. Furthermore, we have using the chain rule

d

dt
V (y) = V̇ (y)y′ = −(V̇ (y))2 < 0

6AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

70

for y > −p and y 6= 0, so V is strictly decreasing along all trajectories we
are interested in. This allows us to conclude that y∗ = 0 is globally stable
for the transformed system (1.7) so x∗ = p is globally stable for (1.6).

The function V in the last proof is also known as a potential in anal-
ogy to a physical energy. Furthermore, V is a special case of a (strict)
Lyapunov function L for an equilibrium y∗ = 0 for y′ = f(y), which has
to satisfy the three conditions

(L1) L(0) = 0,

(L2) L(y) > 0 for y 6= 0,

(L3) dL
dt (y) < 0 for y 6= 0.

Arguments based upon energy/physical considerations and Lyapunov func-
tions can sometimes be useful but for general nonlinear systems such ar-
guments fail. Hence, we essentially have to give up the dream to always
understand global stability. Let us be more modest and try local analysis
for an ODE (1.1) near a given steady state x∗ and d = 1. Let us consider
a perturbation

x(t) = x∗ + εX(t), X(t) ∈ R, ε > 0,

where ε is assumed to be small. Plugging this into (1.1) and using Taylor
expansion gives

x′ = (x∗ + εX)′ = εX ′

= f(x∗ + εX) = f(x∗) + εf ′(x∗)X +
1

2
ε2f ′′(x∗)X2 + · · ·

= εf ′(x∗)X +
1

2
ε2f ′′(x∗)X2 + · · · ,

where we used that f(x∗) = 0 in the last step. Dividing through by ε and
then dropping all the terms, which are still multiplied by ε gives

X ′ = f ′(x∗)X. (1.8)

It is intuitive that the linearized system (1.8) is only valid as an approx-
imation to the dynamics in a neighbourhood U of x∗, and we were only
allowed to discard the higher-order Taylor terms if f ′(x∗) 6= 0.

Example 1.7. (Example 1.5 continued) Let us look at the two equilibrium
points again. We just calculate

f(x) = x(1− x/p) ⇒ f ′(x) = 1− 2x/p.

7AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

71

So for x∗ = 0, we find the linearized system

X ′ = f ′(0)X = X

and we know from the explicit solution in Example 1.1 that solutions are
going to diverge away from X = 0 so x∗ = 0 is unstable; see Figure TODO.
For x∗ = p we get

X ′ = f ′(p)X = −X
so small perturbations X modelled by X(0) 6= 0 are going to decay back
towards X = 0 so x∗ = p is locally asymptotically stable for the logistic
equation. �

The Taylor series argument above can be extended quite easily using
a d-dimensional Taylor series, so we shall give the following definition in
quite some generality.

Definition 1.8. Consider an ODE x′ = f(x), f : Rd → Rd, d ∈ N with
equilibrium x∗. Then the linearized system or linearization near x∗ is
given by

X ′ = [Df(x∗)]X, X ∈ Rd, (1.9)

where Df(x∗) is the Jacobian matrix (or just Jacobian) consisting of
all partial derivatives evaluated at the equilibrium, i.e., we have

Df(x∗) =
(
∂fi
∂xj

)

i,j

=:
(
∂xjfi

)
i,j

i, j ∈ {1, 2, . . . , d}.

8AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

72

2 Bifurcations of One-Dimensional ODEs

We have already seen in the logistic equation from Section 1 that it natu-
rally comes with parameters. In fact, essentially all mathematical models
are parametrized. Therefore, let us look at one-parameter families of one-
dimensional ODEs

x′ = f(x, p), x ∈ R, p ∈ R, (2.1)

where f has again sufficiently many derivatives. Suppose x∗ is an equi-
librium point at a fixed parameter value p∗. The local dynamics near
(x, p) = (x∗, p∗) is approximated using Taylor expansion

x′ = f(x, p) ≈ f(x∗, p∗) +∇f |(x∗,p∗) ·
(
x− x∗

p− p∗

)

+
1

2

(
x− x∗

p− p∗

)⊤ (
∂xxf ∂xpf
∂pxf ∂ppf

)∣∣∣∣
(x∗,p∗)

(
x− x∗

p− p∗

)
+O(3),

where O(3) denotes terms at least cubic in x− x∗ and p− p∗. Writing out
the different terms and using f(x∗, p∗) = 0 gives

x′ = ∂xf(x
∗, p∗)(x−x∗)+∂pf(x∗, p∗)(p−p∗)+

1

2
∂xxf(x

∗, p∗)(x−x∗)2+ · · · ,

where we have dropped cubic terms in (x − x∗), mixed quadratic terms
and quadratic terms in (p − p∗); to prove that this is indeed rigorously
possible under generic assumptions on f is a more advanced result. From
the calculation we see that it is quite cumbersome to always write p − p∗

and x− x∗ so it is more natural to set

x̃ = x− x∗, p̃ = p− p∗

to translate the point we are interested in to the origin. Dropping the tildes
and using the simplified notation (0, 0) =: 0 gives

x′ = ∂xf(0)x+ ∂pf(0)p+
1

2
∂xxf(0)x

2 + · · · . (2.2)

If ∂xf(0) 6= 0, then we expect that the dynamics near the equilibrium is
governed by the linearized system. This gives a natural definition.

Definition 2.1. An equilibrium point x∗ of an ODE x′ = f(x), x ∈ R1, is
called hyperbolic if ∂xf(x

∗) 6= 0.

9AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

73

How to deal with the hyperbolic case locally, we have already learned
in Example 1.1. However, we have now a free parameter p so it seems nat-
ural that generically we can expect that there exist distinguished isolated
parameter values, say wlog p∗ = 0, such that ∂xf(x

∗, 0) = 0. Then we have
from (2.2) that

x′ = ∂pf(0)p+
1

2
∂xxf(0)x

2 + · · · . (2.3)

Example 2.2. The ODE (2.3) motivates us to look at

y′ = q + y2. (2.4)

The vector field (2.4) can be analyzed graphically as in Section 1. Fig-
ure TODO shows the situation for different parameter values near q = 0.
For q < 0, we have two equilibria y± = ±√−q. One observes from the signs
of the vector field or checks from the linearization that y+ is unstable and
y− is unstable. At q = 0, the two equilibria coalesce into a non-hyperbolic
equilibrium, and for p > 0 there are no equilibria. �

Although we have not quite proven the next result fully, the main ideas
are clear from our previous discussion.

Theorem 2.3 (fold bifurcation). Consider an ODE (2.1) and let 0 =
(0, 0). Assume that the following conditions hold

(A1) f(0) = 0, ∂xf(0) = 0;

(A2) ∂xxf(0) 6= 0, ∂pf(0) 6= 0.

Then there exists (generic) fold bifurcation, i.e., there is a transition
from two to zero equilibria locally upon varying p near 0; see also Fig-
ure TODO.

Remark : To be precise, the conclusion of the last theorem just means that there
exists a homeomorphism h : (−p0, p0) → (−q0, q0) on parameter space such that
the general vector field (2.1) and (2.4) at h(p) = q are topologically equiva-
lent, which just means that the phase portraits are homeomorphic (preserving
the direction of time); see Figure TODO.

Definition 2.4. The ODE y′ = q ± y2 is called the normal form of the
fold bifurcation.

We shall encounter many different application models throughout this
course, which exhibit fold bifurcations. Although the fold bifurcation is
the one we expect most frequently, let us use an application-inspired view
to gain insight which other types of bifurcation we could expect for one-
dimensional ODEs.

10AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

74

Example 2.5. (Example 1.7 continued) Recall our logistic equation x′ =
x(1 − x/p). No matter, how we select the carrying capacity p of the pop-
ulation density x, there is always the equilibrium x∗ = 0. This makes
perfect sense from macroscopic population biology. In many other physical
situations, similar modelling assumptions have to be made, e.g., chemical
reactions are completely stationary if there are no reactants. �

So let us assume that we are now restricting to vector fields, which
always have the trivial branch of equilibria x∗ = 0 for any parameter
value p

x′ = f(x, p) = xg(x, p), x ∈ R, p ∈ R, (2.5)

where g is a sufficiently smooth function. We shall now derive another
interesting example in the form

Example 2.6. Suppose we want to model an infectious disease, e.g. think
of the flu. Consider a population with two types: susceptibles with den-
sity y and infected with density x. Suppose when infected and susceptibles
meet, the disease is transmitted at rate α > 0 and infected recover at rate
r > 0, then we get the susceptible-infected-susceptible (SIS) model

y′ = −αxy + rx,
x′ = αxy − rx.

If the population is constant and normalized to say x+y = 1, then it suffices
to just look at one of the equations, say the infected density x, which yields

x′ = αx(1− x)− rx = x(α− r − αx),

which almost has the form we considered in (2.5). Using a non-dimensionalization
we can just scale time by 1/α and set p := r/α to get

x′ = x(1− p− x). (2.6)

The model (2.6) can now be analyzed. There are two equilibria, x∗ = 0
and x∗ = 1− p; note that x∗ = 1− p is not biologically relevant for p > 1;
see Figure TODO. We check that the linearized problem is

X ′ = f ′(x∗)X = (1− p− 2x∗)X.

Therefore, x∗ = 0 is locally stable for p > 1 but unstable for p < 1, which
makes sense as the latter case corresponds to high infection rate relative
to the recovery rate; in epidemiology the threshold p = 1 is also referred
to as R0, which is the parameter value at which there are more secondary

11AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

75

infections than recoveries. The equilibrium x∗ = 1 − p has the associated
linearized system

X ′ = f ′(x∗)X = (1− p− 2(1− p))X = (p− 1)X,

so x∗ is locally stable for 0 < p < 1 and unstable for p > 1. This analysis
gives us the bifurcation diagram shown in Figure TODO. �

In general, bifurcation diagrams just depict parameter values together
with a representative phase portrait for each parameter value. The diagram
in Figure TODO is an example of a transcritical bifurcation, which has
normal form

y′ = y(q − y). (2.7)

Theorem 2.7 (transcritical bifurcation). Consider an ODE (2.5) and
let 0 = (0, 0). Assume that the following conditions hold

(A1) g(0) = 0;

(A2) ∂xg(0) 6= 0, ∂pg(0) 6= 0.

Then there exists (generic) transcritical bifurcation, i.e., there is an
exchange-of-stability between two equilibria locally upon varying p near
0; see also Figure TODO.

As before, the last theorem means that the dynamics is equivalent to
the normal form (2.7) using a homeomorphism of parameter space and then
one for phase space at each parameter. The next example shows that in
addition to trivial branches, additional modelling considerations may play
a role.

Example 2.8. Consider a beam with a load as sketched in Figure TODO.
If we increase the load by varying a parameter p, then it is intuitive from
mechanics that eventually the beam is going to bend suddenly; see Fig-
ure TODO. This is known as Euler buckling. Note that there is symme-
try in the problem, i.e., if we look at Figure TODO, there is no preference
for buckling left or right. A simple toy model for this mechanical system is

x′ = px+ x3 − x5 = f(x, p), x ∈ R, p ∈ R. (2.8)

Note that the vector field f respects the reflection symmetry x 7→ −x
as it remains invariant under this transformation since

f(γx, p) = γf(x, p) for γ = −1.

12AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

76

The last equation can be interpreted more abstractly by saying that there
is a group Z2 formed by the elements 1 and −1 under multiplication under
which the vector field is equivariant

f(γx, p) = γf(x, p) ∀γ ∈ Z2.

Of course, the more classical presentation of Z2 via addition modulo 2 and
elements 0, 1 is isomorphic to the group used here. The ODE (2.8) can be
analyzed as before and we obtain the bifurcation diagram in Figure TODO.
�

If we were only interested of the bifurcation in Example 2.8, we can
drop the fifth-order term and obtain the normal form

y′ = y(q + y2) (2.9)

of a subcritical pitchfork bifurcation. More generally, we have the
following theorem:

Theorem 2.9 (pitchfork bifurcation). Consider an ODE (2.1) and let
0 = (0, 0). Assume that the following conditions hold in a neighbourhood of
0, i.e., locally

(A1) f(−x, p) = −f(x, p), ∂xf(0) = 0;

(A2) ∂xxf(0) = 0, ∂xxxf(0) = β 6= 0, ∂pf(0) = 0, ∂xpf(0) 6= 0.

Then there exists (generic) pitchfork bifurcation; see Figure TODO.
The pitchfork is subcritical if for the normal form coefficient we have
β > 0 and it is supercritical if β < 0.

It is a good exercise to try to re-write the conditions (A1)-(A2) of The-
orem 2.9 for x′ = f(x, p) in the format used in Theorem 2.7, we we use the
formulation x′ = xg(x, p), and also do the exercise vice versa.

13AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

77

3 Stationary Two-Dimensional ODE Dynamics

We start with a motivating example and a little summary of linear ODEs.

Example 3.1. Consider a spring with spring constant k > 0 and with a
mass m > 0 suspended at one end; see Figure TODO. Then Newton’s Law
gives for the position y of the mass

m
d2y

dt2
= my′′ = −ky, with y(0), y′(0) given, (3.1)

which is the classical second-order ODE known as the harmonic oscil-
lator. Although (3.1) looks like a one-dimensional ODE at first, it is really
two-dimensional as we can reduce it via the trick

x1 := y, x2 :=
dx1
dt

to a coupled system of two linear first-order ODEs

x′1 = x2,

x′2 = − k
mx1,

(3.2)

with initial conditions implicitly understood from (3.1). Using a nondimen-
sionalization x = x̃1

√
m, x2 = x̃2

√
k, t = t̃

√
m/k, dropping the tildes after

the scaling, and re-writing the system (3.2) in matrix form leads to
(
x′1
x′2

)
=

(
0 1
−1 0

)

︸ ︷︷ ︸
=:A

(
x1
x2

)
or x′ = Ax. (3.3)

There are several views on finding the exact solution of the harmonic oscil-
lator. For example, one could make the ansatz y(t) = eλt for (3.1), or one
could use a matrix exponential technique x(t) = etAx(0), or one could just
guess that

x1(t) = x2(0) sin t+ x1(0) cos t, x2(t) = −x1(0) sin t+ x2(0) cos t (3.4)

solves (3.3) and then verify the solution. The phase portrait is shown in
Figure TODO. The equilibrium point x∗ = 0 is not locally asymptotically
stable, neither is it unstable. It is called a center. �

Centers are one reason for another definition of local stability. This
definition just means that starting near x∗, we stay near it.

Definition 3.2. An equilibrium point x∗ of (1.1) is Lyapunov stable
if given any ε > 0 there exists δ > 0 such that if |x∗ − x(0)| < δ then
|x(t)− x∗| < ε for all t > 0.

14AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

78

In the last definition we used the simpler notation | · | = ‖ · ‖2 for
the Euclidean norm, which is a convention employed from now on. Next,
observe that a general linear system

x′ = Ax, x(0) = x0, A ∈ Rd×d, (3.5)

can be solved using the matrix exponential so that we get

x(t) = etAx0 =




∞∑

j=0

(tA)j

j!


x0. (3.6)

In practice, this means transforming A to a simpler form,, e.g., Jordan
canonical form B, via an invertible linear transformation M ∈ Rd×d so
that A =M−1BM . This means we have to compute

x(t) =




∞∑

j=0

(tM−1BM)j

j!


x0,

where we can use the key observation (M−1BM)j = M−1BjM as well as
the fact that it is easy to compute the matrix exponential of a matrix in
Jordan canonical form (exercise!).

Example 3.3. (Example 3.1 continued) Although the center dynamics in
Figure TODO is mathematically correct, is obviously not what we see in
many experiments; see also Figure TODO. In the spring experiment, there
will be friction, which should induce damping of the oscillations. This is
modeled by the ODE

my′′ = −ky − cy′, with y(0), y′(0) given, (3.7)

for a viscous damping coefficient c > 0. Following a similar procedure as
in Example 3.1 (exercise!), we get the linear ODE system

x′ =
(

0 1
−1 −p

)
x, (3.8)

where p > 0 indicates (positive) damping and p < 0 negative damping.
Indeed, the eigenvalues of A should give us information about decay or
growth of solutions via formula (3.6) so we compute

det(A− λId)
!
= 0 ⇒ λ = λ± = −p

2
±
√
p2

4
− 1.

15AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

79

From this we easily conclude from (3.6) that for p > 0 we have

|x(t)| =
√
x1(t)2 + x2(t)2 → 0 for t→ +∞

as sketched in Figure TODO. For p ∈ (0, 2), the situation is called a spiral
sink. For p ∈ (−2, 0), we get a spiral source as sketched in Figure TODO.
�

We have seen in Example 3.1 that solutions of linear systems with purely
complex eigenvalues neither decay nor grow, while Example 3.3 indicated
that if the real parts of eigenvalues are non-zero, then we get growing
and decaying directions for linear systems. This motivates the following
definition:

Definition 3.4. Consider an ODE x′ = f(x) with equilibrium point x∗

and linearized system X ′ = AX, where A = Df(x∗) is the Jacobian. If
all eigenvalues λ of A satisfy Re(λ) 6= 0, then we say x∗ is a hyperbolic
equilibrium point.

For linear planar systems, there exists a very convenient general classi-
fication of equilibrium points.

Theorem 3.5 (trace-determinant plane). Consider a planar linear sys-
tem

X ′ = AX, for A ∈ R2×2. (3.9)

The stability of the equilibrium point X = 0 can be classified just using the
trace tr(A) and determinant det(A) as shown in Figure TODO.

Proof. Let λ denote an eigenvalue of A. We simplify the notation by writing

A =

(
a b
c d

)
⇒ 0

!
= det (A− λId) = (a− λ)(d− λ)− bc.

Simplifying the characteristic equation for the eigenvalues gives

0 = λ2 − (a+ d)︸ ︷︷ ︸
=tr(A)=:τ

λ+ ad− bc︸ ︷︷ ︸
=det(A)=:∆

= λ2 − τλ+∆.

Therefore, the eigenvalues of A are

λ± =
τ ±

√
τ2 − 4∆

2
.

If λ+ 6= λ−, and the initial condition is written as x(0) = c+v+ + c−v− for
eigenvectors v±, i.e., Av± = λ±v± then it is easy to check from (3.6) that
the general solution of the linear system (3.9) can be written as

x(t) = c+e
λ+tv+ + c−eλ−tv−.

16AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

80

Using this formula, we can verify most of Figure TODO easily, e.g., if λ±
are real then we have a saddle for det(A) < 0. If det(A) > 0, we get a
stable node for τ2 − 4∆ > 0 and τ < 0, while for τ2 − 4∆ > 0 and τ > 0
we get an unstable unstable node. Similarly, we can analyze spirals for
τ2 − 4∆ < 0. With a bit more work using the matrix exponential, we can
analyze several special transition regions, e.g., τ = 0 and ∆ > 0 corresponds
to a center as in Example 3.1.

We can also write the definition of the types of equilibria in a different
form for a general planar system:

Definition 3.6. Consider an ODE x′ = f(x), x ∈ R2, f ∈ C1, and suppose
f(x∗) = 0. Let λ1,2 be eigenvalues of the Jacobian Dxf(x∗). Then x∗ is

(D1) a saddle if λ1,2 ∈ R and λ1 < 0 < λ2,

(D2) a stable (respectively unstable) node if λ1,2 ∈ R and λ1,2 < 0
(respectively λ1,2 > 0),

(D3) a stable (respectively unstable) spiral if λ1,2 ∈ C\R and Re(λ1,2) <
0 (respectively Re(λ1,2) > 0),

(D4) a center if λ1,2 ∈ C \ R and Re(λ1,2) = 0.

There is also a nice geometry associated to equilibrium points. Let us
just illustrate this concept for a simple saddle point in a linear system

X ′ = AX, X ∈ R2, A ∈ R2×2 (3.10)

where A has eigenvalues λ− < 0 < λ+ and associated eigenvectors v− and
v+. Then we have two natural linear spaces

Es(0) := span(v−),

Eu(0) := span(v+),

called the stable and unstable eigenspaces; see Figure TODO. In these
spaces the solution of the linear system (3.10) converges in forward time
respectively backward time to the equilibrium zero. There is a natural
generalization for nonlinear systems

x′ = f(x), x ∈ R2. (3.11)

as shown in Figure TODO for a saddle in a nonlinear system.

17AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

81

Definition 3.7. Let x∗ be an equilibrium point of (3.11), let x(t) be a
solution of (3.11) starting at x(0) = x0, and define

W s(x∗) := {x0 ∈ R2 : x(0) = x0, x(t) → x∗ as t→ +∞},
W u(x∗) := {x0 ∈ R2 : x(0) = x0, x(t) → x∗ as t→ −∞},

which are called the stable and unstable manifolds.

Here we shall not deal with the existence of these objects or general def-
inition of manifolds; see [4]. Instead, it suffices to think of stable and unsta-
ble manifolds as points, curves, or surfaces as sketched in Figure TODO.
Having classified equilibria locally, we would like to use our results to a
concrete application.

Example 3.8. Consider an autocatalytic reaction given by four chemicals

P → Y, Y → X, Y + 2X → 3X, X → Z,

where X,Y are the main reactants, P is a ’pool’-chemical and Z is a prod-
uct. Standard mass-action kinetics and non-dimensionalization leads to the
system of ODEs

x′ = yx2 + y − x =: f1(x, y),
y′ = ε(p− yx2 − y) =: f2(x, y),

(3.12)

where f := (f1, f2)
⊤, p > 0 is a parameter, and ε > 0 is small param-

eter arising from widely differing reaction rates. Now we can simply use
the previous methods we developed to analyze the equilibrium points (or
chemically/physically: steady states) of (3.12). For example, suppose for
simplicity ε = 0, then y is fixed and can be viewed as a parameter so we
are left with a one-dimensional ODE

x′ = yx2 + y − x.

Equilibrium points of this ODE satisfy

0 = yx2 + y − x ⇒ y =
x

1 + x2
.

Therefore, plotting the equilibria and/or checking the conditions (A1)-(A2)
from Theorem 2.3 yields a fold bifurcation. Going back to the full two-
dimensional model (3.12), equilibria (x∗, y∗) satisfy

y∗ =
x∗

1 + x2∗
, 0 = p(1 + x2∗)− x3∗ − x∗.

Having solved the last system and computing the Jacobian A = Df(x∗, y∗)
one can then use Theorem 3.5 to classify the hyperbolic equilibrium points.
However, when hyperbolicity of equilibrium points is lost, we have to look
carefully for bifurcations. �

18AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

82

The last example shows that for a general nonlinear system the local
stability computations for equilibria might be difficult using pen-and-paper,
yet it is necessary to practice them for simple systems. Furthermore, it is
good to think (exercise!), how you would implement these operations on a
computer.

19AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

83

4 Periodic Two-Dimensional ODE Dynamics

In one-dimensional ODEs defined by sufficiently smooth vector fields, non-
trivial periodic trajectories cannot exist, which follows from standard unique-
ness theory of ODEs; see Figure TODO.

Example 4.1. (Example 3.1 continued) We have seen that the solutions (3.4)
of the harmonic oscillator are linear combinations of sin t and cos t. In par-
ticular, they are periodic with period 2π. So non-trivial periodic trajectories
can exist already for flows in R2. �

Definition 4.2. A trajectory {x(t)}t∈I defined for some time interval I is
called a periodic orbit if there exists a time T > 0 such that

x(t) = x(t+ T) ∀t ∈ I.

The minimal such T is also called the period.

Remark : The last definition excludes “trivial” periodic orbits with period zero,
e.g., we do not regard an equilibrium point as a periodic orbit.

Periodic orbits are already quite difficult to deal with since - in contrast
to equilibrium points - it is often highly non-trivial to prove that periodic
orbits exist, or to exclude their existence. For some special systems, the
latter task is possible.

Theorem 4.3 (no periodic orbits in gradient systems). Consider a gradi-
ent system

x′ = −∇V (x) V : Rd → R (4.1)

for V ∈ C1(Rd,R). Then (4.1) has no periodic orbits.

Proof. Note that if ∇V is constant, the result is trivial. So we assume that
|∇V (x(t))| for some t along the periodic orbit. We argue by contradiction
and suppose x(t) is a periodic solution with period T > 0. Clearly, we have
V (x(0)) = V (x(T)) by periodicity. So V is constant along x. Furthermore,
a direct calculation yields

V (x(T))− V (x(0)) =

∫ T

0

d

dt
V (x(t)) dt =

∫ T

0
(∇V (x(t)))⊤x′(t) dt

= −
∫ T

0
|∇V (x(t))|2 dt < 0,

which yields the required contradiction.

The next theorem gives another non-existence criterion, which is nicely
based upon one of the most important calculus results.

20AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

84

Theorem 4.4 (Dulac’s criterion). Consider x′ = f(x) with f ∈ C(Ω,R2),
where Ω is simply connected (i.e., simply connected means all closed loops
are continuously deformable to a point in Ω). If there exists g ∈ C1(Ω,R)
such that

∇ · (gx′) has one sign on Ω, (4.2)

then Ω contains no periodic orbit.

Proof. Again we argue by contradiction and suppose γ = γ(s) be periodic
say parametrized by arclength s; see Figure TODO. We recognize the
condition (4.2) as being related to contraction or expansion as ∇· = div
is the classical divergence. Denote the area enclosed by γ by Γ and the
outer unit normal to γ by ~n. Then Green’s Theorem (or more generally
a special case of Stokes’ Theorem) yields that

∫

Γ
∇ · (gx′) dA =

∫

γ
g x′ · ~n︸ ︷︷ ︸

=0

ds = 0.

However, the left-hand side is either positive or negative by assumption
and we have obtained a contradiction.

Example 4.5. Glycolysis describes the conversion of sugars into energy
in eukaryotes. It is a fundamental process in systems biology. One very
simple model for the interaction between important molecules in the process
is given by

x′ = −x+ py + x2y,
y′ = 1

2 − py − x2y,
(4.3)

where p > 0 is a parameter. We restrict phase space to (x, y) ∈ [0,∞) ×
[0,∞) One easily checks that there is a unique equilibrium point

(x∗, y∗) =
(
1

2
,

2

1 + 4p

)
. (4.4)

Furthermore, one calculates by linearization that this equilibrium is unsta-
ble for p sufficiently small p > 0. So how does the dynamics look like as
t → +∞? The phase portrait in Figure TODO suggests that we might be
able to find a periodic orbit in the positive quadrant in this case. �

Theorem 4.6 (Poincaré-Bendixson Theorem). Consider a planar ODE
x′ = f(x) with f ∈ C1(R2,R2) and let Ω be a compact set containing no
equilibrium points. If Ω contains a trajectory γ = γ(t) for all t ≥ t0, then
Ω contains a periodic orbit.

21AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

85

Proof. Let γ(0) = γ0 be the starting point of the trajectory trapped inside
Ω. Since {γ(t) : t ≥ 0} lies inside a compact set, the following set must be
non-empty

ω(γ0) := {x∞ ∈ R2 : lim
n→∞

x(tn) = x∞, x(t0) = γ0, tn > tn−1, tn → ∞} ⊂ Ω,

which is also called the ω-limit set of the point γ0. We aim to show that
any point Y ∈ ω(γ0) must lie on a periodic orbit. One may check that
ω(Y) ⊆ ω(γ0) and that ω(Y) is non-empty. Wlog we can assume up to a
translation of coordinates that (0, 0) ∈ ω(Y). Let V be a small neighbour-
hood around 0. Since (0, 0) cannot be an equilibrium point by assumption,
we may apply the flow box theorem (or rectification theorem) to put
the flow of the ODE inside V into the form

x′1 = 1,
x′2 = 0.

(4.5)

Let us consider the local section transverse to the flow given by part of
x2-axis

Σ := {x ∈ R2 : x1 = 0, x2 ∈ J }
for a sufficiently small open interval J containing zero. Since (0, 0) is in
ω(Y), there exists a trajectory x(t) starting from Y such that x(tn) →
(0, 0)⊤ as tn → +∞; see Figure TODO. Since there are infinitely many
x(tn) inside V by this argument, the flow-box structure (4.5) implies that
we can find times ta > tb such that x(ta), x(tb) ∈ Σ. The next claim is key:
we also aim to show that the solution starting from Y can intersect Σ only
once, i.e.,

{y(t) : t ≥ 0, y(0) = Y, y a solution} ∩ Σ = {one point}. (4.6)

If (4.6) holds, then we can conclude x(ta) = x(tb) so

x(ta − tb) = x(0), ta > tb

and since there are no equilibrium points, the result follows. The claim
(4.6) crucially uses the planar geometry. Indeed, suppose there are two
intersection points on the local section, say Y− = (0, y−) and Y+ = (0, y+)
in Σ, for a trajectory starting at Y ; see Figure TODO. We can assume wlog
y− < 0 and y+ > 0. Since Y± ∈ ω(γ0) there are infinitely many returns to
two sections

Σ+ := Σ ∩ {x2 > 0} and Σ− := Σ ∩ {x2 < 0}

of the orbit starting at Y . The intersection points Y1, Y2, Y3, . . . are or-
dered monotonically along the trajectory. However, the intersections are

22AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

86

not monotonically ordered along Σ as Σ+ and Σ− are disjoint; see Fig-
ure TODO. This turns out to be a contradiction; the argument is sketched
in Figure TODO. Let’s look at two points Y1, Y2 sketched in Figure TODO.
Let L ⊂ Σ be the line segment between them, denote by Γ the part of the
trajectory connecting Y1 to Y2, and denote by D the set enclosed by Γ and
L as shown in Figure TODO. Now we have two sets

D and Dc := R2 \ D.

Since we are in the plane, the Jordan Curve Theorem, says the two sets
partition the plane, i.e., any continuous curve starting in D and ending in
Dc must cross the boundary ∂D. Therefore, Dc = R2 \ D is positively
invariant in time, i.e., solutions starting in this set cannot leave it and
re-enter D. Indeed, it is impossible to enter via L considering the direction
of the vector field (4.5) while entering through Γ is not possible due to local
uniqueness of solutions. Hence, there cannot exist a point Y3 ∈ L between
Y1 and Y2, which occurs later along the trajectory. Hence, the intersection
points Y1, Y2, Y3, . . . must also be ordered along the section Σ, which is the
required contradiction.

The main problem with applying the Poincaré-Bendixson Theorem is
to find one, or more, trajectories, which are trapped.

Example 4.7. (Example 4.5 continued) From the numerical simulations
shown in Figure TODO, we expect that it is possible to define a region in
the positive quadrant within which all trajectories are trapped for t > 0.
We consider the points

P0 = (0, 0), P1 =

(
0,

1

2p

)
, P2 =

(
1

2
,
1

2p

)
.

Let L1 be a line through P2 with slope −1 and let

Nx := {(x, y) ∈ R2 : x′ = 0} =

{
y =

x

p+ x2

}

be the nullcline of the x-equation, i.e., on this curve, there is only move-
ment in the y-direction. Then define the points

P3 := Nx ∩ L1, P4 := L2 ∩ {y = 0},

where L2 is vertical line through P3 as shown in Figure TODO. Then let
U be the convex hull of P0 to P4, i.e., the smallest convex set containing
all five points as shown in Figure TODO. One can actually check that the

23AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

87

vector field is pointing inside U on ∂U so that trajectories are trapped inside
U if they start there. For example, we have on the axes

x′|{x=0,y>0} = −0 + py + 02y > 0,

so x is pointing right between P0 and P1, while

y′|{y=0,x>0} =
1

2
− p · 0− x2 · 0 =

1

2
> 0,

so y is pointing upwards between P0 and P4. This also shows that the quad-
rant {x ≥ 0, y ≥ 0} is positively invariant as required from the modelling.
We leave the remaining arrows in Figure TODO as an exercise. Now we
can almost apply the Poincaré-Bendixson Theorem as we have to exclude
the equilibrium point z∗ := (x∗, y∗) given by (4.4) from our region via

Ω := U \ B(z∗; ε), B(z∗; ε) = {w ∈ R2 : |w| < ε},

by excluding a small ball B(z∗; ε) for ε > 0 sufficiently small. If z∗ is
locally unstable, which holds for the parameter p being sufficiently small as
discussed in Example 4.5. �

24AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

88

5 Bifurcations of Two-Dimensional ODEs

In the last section, we have seen, how difficult it is to deal with global
trajectories, so we start with equilibrium points again.

Example 5.1. Consider the toy model

x′ = p− x2,
y′ = −y. (5.1)

For p > 0, we have two equilibrium points Z± = (±√
p, 0), one being a

saddle and one being a node; see also Figure TODO. The two points collide
at p = 0 and there are no equilibrium points in R2 for p < 0. Hence, we have
found the bifurcation diagram shown in Figure TODO of a fold bifurcation;
this example also explains, why the fold bifurcations is sometimes called
saddle-node bifurcation. Note that since the equations are de-coupled
and the x-axis {y = 0} is invariant for t ∈ R, we may directly apply
Theorem 2.3. �

The last example illustrates that the topological changes of the phase
portrait we know from the fold, transcritial and pitchfork bifurcation ba-
sically carry over as phenomena to higher dimensions. However, directly
applying one-dimensional theorems can be more complicated, which is a
topic discussed in [4].

Example 5.2. In classical nonlinear electrical circuit theory, which then
has key applications to neuroscience, one finds often planar systems in
Liénard form

x′ = y − g(x, p),
y′ = −x, (5.2)

where we can roughly think of x, y as variables describing voltages or cur-
rents in different parts of a circuit. One common example to study is a
cubic nonlinearity

g(x, p) = x3 − px, where p ∈ R is a parameter.

In this case, the only equilibrium point is (x∗, y∗) = (0, 0) =: 0. Calculating
the linearization at the origin gives

X ′ =
(

p 1
−1 0

)

︸ ︷︷ ︸
=:A

X.

The eigenvalues of A are

λ± =
1

2

(
p±

√
p2 − 4

)
.

25AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

89

Note carefully that for −2 < p < 0, there is a complex conjugate pair
of eigenvalues associated to a spiral sink. For p = 0, the eigenvalues are
on the imaginary axis in the complex plane C and the equilibrium at the
origin is not hyperbolic. For 0 < p < 2, we get a spiral source. A phase
potrait plotted for small positive p actually shows a periodic orbit, so we
have actually observed an example of Hopf bifurcation. �

What should a normal form of the Hopf bifurcation look like? Guess-
ing the simplest polynomial vector field seems difficult at first, until we
remember polar coordinates. Indeed, let us consider for r ∈ [0,∞) and
ϕ ∈ S1 = R/Z the vector field

r′ = r(q + l1r
2), (5.3)

ϕ′ = 1, (5.4)

where q is our main bifurcation parameter and l1 6= 0 is an important
auxiliary coefficient, to be described below. Note that r = 0 can be viewed
as an equilibrium point as it corresponds to (y1, y2) = (0, 0) for all times as

y1 = r cosϕ and y2 = r sinϕ. (5.5)

Linearization of (5.3) around zero easily gives that r = 0 is locally asymp-
totically stable for q < 0, it is non-hyperbolic for q = 0, and it is unstable
for q > 0. The other equilibrium of (5.3) is

r∗ =
√

− q

l1
(5.6)

and correspond to periodic orbits. In particular, we get the two bifurcation
diagrams in Figure TODO.

Remark : The formula (5.6) implies that the amplitude of the periodic orbits
locally grows like the square-root in the distance to the bifurcation in parameter
space.

Theorem 5.3 (Hopf bifurcation). Any smooth generic two-dimensional,
one-parameter ODE

x′ = f(x, p), x ∈ R2, p ∈ R, (5.7)

satisfying f(0, 0) = 0 and such that Dxf(0, p) has a complex conjugate pair
of eigenvalues

λ1,2(p) = µ(p)± iω(p)

with µ(0) = 0, µ′(0) 6= 0, ω(0) > 0, has the normal form
(
y′1
y′2

)
=

(
q −1
1 q

)(
y1
y2

)
+ l1(y

2
1 + y22)

(
y1
y2

)
, (5.8)

26AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

90

The bifurcation is supercritical if l1 < 0 and subcritical if l1 > 0 as in
Figure TODO.

We cannot give a general proof here, which will be outlined in [4].
Let us just motivate that if we had managed to get a system into the
form (5.8), then we can at least recognize the coefficient l1. Using polar
coordinates (5.5) in (5.8) gives for the first component

y′1 = r′ cosϕ− rϕ′ sinϕ,

y′1 = qr cosϕ− r sinϕ+ l1r
3 cosϕ,

and for the second component

y′2 = r′ sinϕ+ rϕ′ cosϕ,

y′2 = r cosϕ+ qr sinϕ+ l1r
3 sinϕ.

The last four equations give us a closed system, which can actually be solved
(exercise!) for r′, ϕ′. After a few trigonometric manipulations we obtain
precisely (5.3)-(5.4), which can thus be also viewed as a normal form.

Definition 5.4. l1 is called the first Lyapunov coefficient.

From the viewpoint of applications, it is not too difficult to validate the
eigenvalue conditions for the Hopf bifurcation. However, we may wonder
if there is a simple way to calculate the sign of l1? Clearly, it does make a
difference, whether we transition to a small-amplitude periodic orbit (su-
percritical), or there is only an unstable equilibrium left (subcritical) upon
increasing our parameter.

Theorem 5.5 (Lyapunov coefficient formula; [2]). For a planar system (5.7)
under Hopf bifurcation conditions at (x, p) = (0, 0) given already in simpli-
fied form at this value by

(
Y ′

Z ′

)
=

(
0 −ω
ω 0

)(
Y
Z

)
+

(
F (Y, Z)
G(Y, Z)

)
, (5.9)

with some ω > 0, the sign of the first Lyapunov coefficient can be calculated
from

l̃1 = ∂Y Y Y F + ∂Y ZZF + ∂Y Y ZG+ ∂ZZZG+ ∂Y ZF (∂Y Y F + ∂ZZF)

−∂Y ZG(∂Y YG+ ∂ZZG)− ∂Y Y F∂Y YG+ ∂ZZF∂ZZG

and all partial derivatives are evaluated at (0, 0), i.e., we have sign(l1) =
sign(l̃1).

27AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

91

Remark : The form (5.9) can be obtained at a Hopf bifurcation via a linear trans-
formation and a time-rescaling to get the matrix in (5.9). So one just has to
evaluate partial derivatives in the end without having to look at periodic orbits
explicitly.

So far, all the bifurcations we have studied have been local happening
near an equilibrium point. However, already in the planar situation, a lot
more complicated global bifurcations can occur.

Example 5.6. Consider the following second-order ODE

x′′ − x+ x3 = 0,

which can be viewed as a nonlinear oscillator. Re-writing as a first-order
system. we get

x′ = y,
y′ = x− x3.

(5.10)

The equilibrium point at the origin is easily checked to be a saddle point.
Furthermore, the structure of (5.10) can be written in the form

x′ = ∂yH(x, y),
y′ = −∂xH(x, y),

H(x, y) =
y2

2
+
x4

4
− x2

2
, (5.11)

whereH : R2 → R is called theHamiltonian and systems in the form (5.11)
are called Hamiltonian systems. �

Theorem 5.7 (Hamiltonian level sets). Consider a Hamiltonian system.
Any solution is constant along a given level set {H(x, y) = constant}.

Proof. One can simply calculate

d

dt
H(x, y) = x′∂xH + y′∂yH = x′y′ − x′y′ = 0,

so the result follows.

Example 5.8. (Example 5.6 continued) Since the system is Hamiltonian
and planar, we know now that levels are solution curves. So we look at
the level sets and find a figure-eight curve containing zero as shown in
Figure TODO. In particular, there are two trajectories γj(t), j ∈ {1, 2},
asymptotic in forward and backward time to the saddle point at the origin
both satisfying the conditions

lim
t→−∞

γj(t) = (0, 0)⊤ = lim
t→+∞

γj(t). (5.12)

28AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

92

Such a trajectory/orbit bi-asymptotic to a saddle is called a homoclinc
orbit. Now imagine we add small perturbation terms in our original equa-
tions

x′ = y + εf1(x, y),
y′ = x− x3 + εf2(x, y).

Then we would expect that the Hamiltonian structure breaks for ε 6= 0
for most functions f1,2. We expect a similar fate for our homoclinic orbit,
so the phase portrait changes. Getting two non-equivalent phase portraits
under parameter variation is a bifurcation, yet in this case the bifurcation
is global as not only an equilibrium is involved; see Figure TODO. �

29AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

93

6 Multiple Scales and Perturbation Theory

We have already seen in Example 5.8 that the relatively simple nonlinear
systems with a cubic nonlinearity can generate very complicated dynamics.
Now we shall be more specific and focus on the analysis of one model
problem, which has motivated large parts of nonlinear dynamics.

Example 6.1. We consider the van der Pol equation

x′′ + p(x2 − 1)x′ + x = 0, (6.1)

which is a prototypical nonlinear oscillator, whose features appear in almost
all branches of nonlinear modelling in some form. There are two interesting
limits for (6.1) given by

p = δ → 0, p =
1√
ε
→ ∞,

which correspond to very small (0 < ε ≪ 1) and very large (0 < δ ≪ 1)
nonlinear damping. It actually turns out that the standard trick y′ = x is
not the best solution to re-write (6.1) as a first-order system. Instead, we
notice

0 = x′′ + p(x2 − 1)x′ + x =
d

dt

(
x′ + p

(
x3

3
− x

))
+ x.

Furthermore, we look back at Example 5.2, which leads us to define

y := x′ + p

(
x3

3
− x

)
⇒ y′ = −x.

Considering the case p = 1/
√
ε, yields

x′ = y − 1√
ε

(
x3

3 − x
)
,

y′ = −x.
(6.2)

This system can be simplified even further by scaling using y = ỹ/
√
ε,

t = t̃
√
ε, and then employing this scaling and dropping the tildes gives

x′ = y − x3

3 + x =: f(x, y),
y′ = −εx =: g(x, y).

(6.3)

For small ε > 0, it is relatively easy to draw a phase plane. Indeed, away
from the curve

C0 :=
{
(x, y) ∈ R2 : f(x, y) = 0

}

30AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

94

the vector field (6.3) is almost horizontal as x′ ≫ y′ so x is fast in com-
parison to y. Assuming formally the limit ε = 0 gives a one-dimensional
ODE

x′ = y − x3

3
+ x,

where y is viewed as a parameter. The bifurcation diagram is shown in
Figure TODO with two fold bifurcations corresponding to the two local
extrema of the curve C0. However, if we are exactly on C0 and ε > 0, then
x′ = 0 so the slow motion defined by

y′ = −εx
governs the dynamics as shown in Figure TODO. In summary, our analysis
seems to predict that there is a periodic orbit consisting of two fast and two
slow segements as shown in Figure TODO. These types of periodic orbits
occur in numerous applications and are called relaxation oscillations. �

Some observations about the van der Pol equation can be generalized
to more general planar fast-slow systems

x′ = f(x, y),
y′ = εg(x, y).

(6.4)

The set C0 is also called the critical set. One also refers to C0 more
commonly as the critical manifold but we shall only cover more general
invariant manifold theory in [4]. C0 consists of equilibrium points for the
fast subsystem

x′ = f(x, y),
y′ = 0.

(6.5)

Re-scaling time as s := εt in gives

εdxds = εẋ = f(x, y),
dy
ds = ẏ = g(x, y).

(6.6)

Taking the limit ε→ 0 gives the slow subsystem

0 = f(x, y),
ẏ = g(x, y),

(6.7)

which is a differential-algebraic equation (DAE). Since the fast and
slow subsystems are different types of differential equations, one refers to
ε → 0 as a singular limit and to the van der Pol equation as a singular
perturbation problem. One may actually prove (very difficult!) that un-
der the hypothesis ∂xf(z) 6= 0 for z ∈ C0, the fast-slow decomposition we
used above to understand phase space just using the fast and slow subsys-
tems. However, the next example shows that we are bound to encounter
problems near the two fold bifurcations of the fast subsystem.

31AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

95

Example 6.2. (Example 6.1 continued) So far, we have only analyzed with
the van der Pol (vdP) equation in the limit ε = 0 and observed that C0 is
a key object consisting basically of slow trajectory segments. How would
this object look for 0 < ε≪ 1? Let us consider a simpler model problem

εẋ = y − x2,
ẏ = −1,

(6.8)

which captures one part of the region for the vdP equation near the local
minimum of its critical manifold; see also Figure TODO. We have C0 =
{x = ±√

y} and notice that (6.8) can be re-written

ε
dx

dy
= ε

dx

ds

ds

dy
= −y + x2, (6.9)

which is a non-autonomous ODE as the “time” y appears also in the
vector field. We want to find a trajectory close to part of the parabola C0
for ε > 0 using (6.9) and an asymptotic expansion

x(y) ∼ h0(y) + εh1(y) + ε2h2(y) + · · · as ε→ 0. (6.10)

The ansatz (6.10) just means each term in the series is supposed to be
smaller than the previous one as ε→ 0. We can just plug (6.10), say up to
quadratic terms in ε, into (6.9) to obtain

ε
dh0
dy

+ ε2
dh1
dy

+O(ε3) = −y + h20 + 2εh0h1 + ε2(h21 + 2h0h2) +O(ε3).

Before we proceed, let us briefly clarify the order O(·)-notation. �

Definition 6.3. Consider two functions k1(ε) and k2(ε). Let ε→ 0 be the
relevant asymptotic limit. Then we write

(D1) k1 = O(k2) if limε→0
k1(ε)
k2(ε)

< +∞;

(D2) k1 ∼ k2 if k1 = O(k2) and k2 = O(k1);

(D3) k1 ≪ k2 if limε→0
k1(ε)
k2(ε)

= 0.

Example 6.4. (Example (6.2) continued) Continuing with our calculation
above, we can just start to collect the terms of different orders. Starting at
order O(1), we get

0 = y − h0(y)
2, ⇒ h0(y) = ±√

y.

32AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

96

Therefore, the leading-order solution x(y) ∼ ±√
y + O(ε) really does cor-

respond to the critical manifold C0 = {y = x2}. Let us just consider a
perturbation for the right-branch

Ca
0 = {(x, y) ∈ C0 : x > 0}

and fix h0(y) =
√
y; the calculation for the other branch is very similar

(exercise!). Now for the next two orders we get

O(ε) : dh0
dy = 2h0h1.

O(ε2) : dh1
dy = h21 + 2h0h2.

It is very important to note that we now need h0 to solve for h1, i.e., the
asymptotic series solution has to proceed order-by-order. We get purely
algebraic equation

dh0
dy

=
1

2
√
y
= 2

√
yh1(y) = 2h0h1,

which gives us h1(y) = 1/4y. A slightly longer, yet easy (exercise!), calcu-
lation gives h2(y) =

5
32y5/2

. Therefore, an asymptotic solution perturbing

near C0 gives up to second-order terms

x(y) ∼ √
y +

1

4y
ε− 5

32y5/2
ε2 +O(ε3). (6.11)

Figure TODO shows that this solution essentially coincides with a numeri-
cal solution starting near Ca

0 for some y(0) > 0. However, as the numerical
solution approaches the non-hyperbolic fold bifurcation of the fast subsys-
tem (x, y) = (0, 0), our asymptotic expansion starts to deteriorate and de-
viates substantially. Indeed, this is not unexpected since the formula (6.11)
is no longer a well-ordered asymptotic series as

y ∼ ε2/3 ⇒ ε1/3 ∼ 1

4ε2/3
ε ∼ 5

32ε5/3
ε2.

This is another clear indicator that we work with a singular perturbation
problem as in a neighbourhood of (0, 0) with size (x, y) ∼ (ε1/3, ε2/3). In
fact, the ansatz (6.10) we made is a regular (or naive) perturbation
ansatz. �

The last example is not a special case or just bad luck. There are many
situations in multiscale dynamics, where direct perturbation methods work
in one regime but have to replaced by more clever ideas in another regime.
We are not even safe in the linear case as the next example shows.

33AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

97

Example 6.5. Following up on the van der Pol equation (6.1), we can
structurally write the case p = δ as a special case of

x′′ + x+ δH(x, x′) = 0, (6.12)

which are weakly nonlinear oscillators. A special case of (6.12) are
oscillators with weak linear damping, e.g.,

x′′ + 2δx′ + x = 0, x(0) = 0, x′(0) = 1. (6.13)

Let us try a regular perturbation approach for this problem

x(t) ∼ x0(t) + δx1(t) +O(δ2).

Inserting the ansatz into (6.13) gives the two ODEs

O(1) : 0 = x′′0 + x0.
O(δ) : 0 = x′′1 + 2x′0 + x1,

(6.14)

as well as the initial conditions

x0(0) = 0, x1(0) = 0, x′0(0) = 1, x′1(0) = 0. (6.15)

Solving the first equation in (6.14) and using (6.15) gives

x0(t) = sin t.

So plugging this into (6.14) means we have to solve

x′′1 + x1 = −2 cos t, x1(0) = 0, x′1(0) = 0. (6.16)

The ODE (6.16) is a (periodically) forced oscillator; in this case, the
forcing is also called resonant as it appears as a linear factor in the un-
forced harmonic oscillator. One verifies easily that the solution to (6.16)
is

x1(t) = −t sin t.
Therefore, our asymptotic solution is

x(t) ∼ sin t− δt sin t+O(δ2).

So is this solution correct? Since the problem is linear, we can find after
some calculations an exact solution

x(t) =
e−δt√
1− δ2

sin
(√

1− δ2t
)
. (6.17)

34AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

98

The true solution does not grow unbounded as t→ +∞ but the asymptotic
solution contains a secular term −δt sin t, which starts to grow rapidly
when t = O(1/δ). One may check that the Taylor series in δ of the ex-
act solution does actually produce the same for the first two terms as our
asymptotic solution (exercise!) but since our goal is to find a simple approx-
imation with just a few terms also for nonlinear problems without explicit
solutions, we have to be aware of secular terms. �

35AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

99

7 Two-Timing and Matched Asymptotics

In this section, we outline two of the most classical multiscale methods.
We have seen in Example 6.5 that secular terms can appear in oscillators of
the form (6.12). The first method we are going to look at aims to remove
these secular terms.

Example 7.1. A famous example for the class (6.12) is the Duffing equa-
tion

x′′ + x+ δx3 = 0, x(0) = 1, x′(0) = 0. (7.1)

One checks with the same type of calculation as in Example 6.5 that secular
terms appear in a naive perturbation ansatz. Example (6.5) shows that we
expect two time scales to play a role t and s := δt. So we make the two-
timing ansatz

x(t) = X0(t, s) + δX1(t, s) +O(δ2). (7.2)

One also refers to this ansatz as the method of multiple scales; the name
is quite common and also very unfortunate since there are many methods
for multiscale problems. Starting from (7.2), the chain rule yields

dx

dt
=

(
∂X0

∂t
+
∂X0

∂s

ds

dt

)
+ δ

(
∂X1

∂t
+
∂X1

∂s

ds

dt

)
+ · · ·

and since ds/dt = δ we find

dx

dt
=
∂X0

∂t
+ δ

(
∂X0

∂s
+
∂X1

∂t

)
+O(δ2).

Differentiating one more time leads to

d2x

dt2
=
∂2X0

∂t2
+ δ

(
2
∂2X0

∂s∂t
+
∂2X1

∂t2

)
+O(δ2). (7.3)

Substituting (7.3) and (7.2) into the weakly nonlinear Duffing oscillator (7.1)
gives for the first two orders

O(1) :
∂2X0

∂t2
+X0 = 0, (7.4)

O(δ) :
∂2X1

∂t2
+X1 = −X3

0 − 2
∂2X0

∂s∂t
. (7.5)

Observe carefully that (7.5) is a partial differential equation (PDE). The
general solution of (7.4) is just

X0(t, s) = A(s)eit +A(s)e−it

36AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

100

where A(s) denotes complex conjugate of the amplitude A(s). Calculating
the nonlinearity for the next order means looking at

X3
0 = A(s)3e3it +A(s)

3
e−3it + 3|A(s)|2A(s)eit + 3|A(s)|2A(s)e−it,

2∂
2X0
∂s∂t = 2

(
ieit dAds − ie−it dA

ds

)
.

Therefore, the right-hand side of (7.5) is

eit
(
−3|A|2A− 2i

dA

ds

)
+ e−it

(
−3|A|2A+ 2i

dA

ds

)
− e3itA3 − e−3itA

3
.

Since eit and e−it solve the homogeneous problem on the left-hand side
of (7.5) we must assure that their coefficients vanish on the right-hand to
avoid secular terms so we require

0 = −3|A|2A− 2i
dA

ds
, (7.6)

0 = −3|A|2A+ 2i
dA

ds
. (7.7)

The amplitude equations (7.6) and (7.7) are complex conjugates and
hence redundant. One may just solve, say (7.6), to find A(s). Using polar
coordinates for the complex plane and thus writing A(s) = R(s)eiθ(s) yields

dR
ds = 0,
dθ
ds = 3

2R
2,

which implies A(s) = R(0) exp(iθ(0) + 3
2 iR

2(0)s). Therefore, the zeroth-
order solution is

X0(t, s) = 2R(0) cos

(
θ(0) +

3

2
R2(0)s+ t

)
.

The initial conditions x(0) = 1, x′(0) = 0 determine R(0) and θ(0). Since
x(0) = 1 we must have

X0(0, 0) = 1, X1(0, 0) = 0, . . .

and x′(0) = 0 translates into (using s = δt)

∂X

∂t
(0, 0) = 0,

∂X1

∂t
(0, 0) = −∂X0

∂s
(0, 0),

To satisfy the initial conditions we must require R(0) = 1
2 and θ(0) = 0. It

follows that the zeroth-order solution on the original time scale t is given
by

x0(t) = cos

[
t

(
1 +

3

8
δ

)]
+O(δ) (7.8)

as δ → 0, where we have avoided secular terms. �

37AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

101

Returning to the van der Pol equation from Example 6.4, we still have
to address that certain expansions can fail locally in phase space. To solve
this problem in generality here is too advanced but the basic idea is ex-
tremely important for many different classes of multiscale problems. The
next example illustrates the key principle of matched asymptotics.

Example 7.2. As a model problem, we are going to study the non-autonomous
ODE

x′′ + (1 + εt)x′ + εx = 0. (7.9)

We turn it into a boundary value problem (BVP) for t ∈ [0, 1] assuming
the boundary conditions

x(0) = 1 and x(1) = 1. (7.10)

Example 6.4 indicates that if we turn the vdP equation into a BVP, then
we expect for “most” conditions that the initial movement of trajectories
is fast, i.e., it as a fast/inner layer near t = 0 and then a slow variation,
also called outer layer over the time remaining interval; see Figure TODO.
This gives us the idea to try to use two expansions. The inner expansion

x(t) = g0(t) + g1(t)ε+O(ε2). (7.11)

Substituting (7.11) into (7.9) and collecting terms we obtain

g′′0 + g′0 = 0 and g′′1 + g′1 + tg′0 + g0 = 0.

Taking into account the boundary conditions g0(0) = 1 and g1(0) = 0 yields

g0(t) = 1+A0(e
−t−1) and g1(t) = −t+A0

(
−1

2
t2e−t + t

)
+A1(e

−t−1),

where we have no information yet, how to determine the constants of inte-
gration A0,1. Since the problem is multiscale, let us also look at the second
natural scale s = tε in (7.9), which gives

ε
d2x

ds2
+ (1 + s)

dx

ds
+ x = εẍ+ (1 + s)ẋ+ x = 0. (7.12)

Let us use our standard ansatz

x(s) = h0(s) + h1(s)ε+O(ε2). (7.13)

Substituting (7.13) into (7.12) and collecting terms of different orders in ε
gives the equations

(1 + s)ḣ0 + h0 = 0 and (1 + s)ḣ1 + h1 + ḧ0 = 0,

38AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

102

where we must satisfy the boundary conditions h0(1) = 1 and h1(1) = 0.
The equations are easily solved

h0(s) = 2(1 + s)−1 and h1(s) = 2(1 + s)−3 − 1

2
(1 + s)−1 .

The outer (7.13) is not valid at s = 0 as it does not even satisfy the
boundary condition at s = 0. However, one can just expand the solution
in a series under the assumption s → 0+, i.e. this is an expansion for the
slow/outer solution in the fast/inner limit and requires s ≪ 1. This idea
yields

x(s) = 2 +O(ε, s) as s→ 0+, ε→ 0.

Similarly, one can expand the fast/inner solution in the outer/slow limit
t → ∞. As long as 1 ≪ s/ε = t and s ≪ 1 hold we also have εt → 0+.
Therefore, expanding the fast solution in terms of εt ≈ 0 leads to

x(t) = 1−A0 +O(εt) = 1−A0 +O(s).

The expressions 1−A0 +O(s) and 2 +O(ε, s) should agree to get a com-
posite expansion so that we must have A0 = −1 to get order O(1). It can
be shown that for the expansion up to order O(ε) one obtains A1 = −3

2 . In
particular, we have shown that the two expansions can agree on an (in-time)
overlap domain to get a uniformly valid asymptotic expansion. �

39AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

103

8 Discrete-Time Dynamics

Instead of differential equations, there are several motivations to study
discrete-time problems. Here we just mention a few, beyond the directly
obvious requirements that specific models may enforce. Consider the ODE

dx

dt
= x′ = f(x), x = x(t) ∈ R. (8.1)

Numerical schemes discretize (8.1) on a time grid 0 = t0 < t1 = t0 + h <
t2 + 2h · · · with regular spacing h > 0. For example, the forward Euler
method gives

x′ ≈ x(tj+1)− x(tj)

h
= f(x(tj)).

Defining x(tj) =: yj and yj+f(yj) =: g(yj), the Euler method is an iteration

yj+1 = g(yj) g : R → R, y0 given. (8.2)

The rule (8.2) defines an iterated map or difference equation.

Example 8.1. Let us re-consider the van der Pol oscillator (6.3)

x′ = y − 1
3x

3 + x,
y′ = −εx, (8.3)

which displays periodic relaxation oscillations. How can we study the (lo-
cal) stability of these oscillations as sketched in Figure TODO? Although
the problem is global around the orbit, there is an important way to localize
the dynamics. Define a section (cf. proof of Theorem 4.6)

Σ := {(x, y)⊤ ∈ R2 : y = 0, x > 0}.

Solving (8.3) induces a Poincaré map (or return map). More precisely,
let z0 ∈ Σ and let Tz0 be the first return time of the trajectory for (8.3)
starting at z0 = z(0) = (x(0), y(0)) = (x0, y0) then we define

P : Σ → Σ, P (x0, y0) = (x(Tz0), y(Tz0)) =: (x1, y1).

The map P is effectively one-dimensional as we can just look at the first
component and define x1 := g(x0). This can be iterated so we obtain a
map

xj+1 = g(xj), xj ∈ (0,∞). (8.4)

A point (x∗0, y
∗
0), which lies on a periodic orbit for (8.3), becomes invariant

under g, so that g(x∗0) = x∗0. �

40AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

104

The concept of a Poincaré map can be generalized to higher-dimensional
ODEs [4]. The following concept is key and we state it for general maps.

Definition 8.2. Consider an iterated map g : X → X for X ⊆ Rd. A point
x∗ ∈ X is called a fixed point if g(x∗) = x∗.

To simplify our notation we write instead of composition of maps g(g(. . .))
just g2(y) := g(g(x)), g3(x) := g(g(g(x))), and emphasize that one has to
be careful not to confuse the notation with taking powers.

Definition 8.3. A fixed point x∗ of an iterated map is locally asymp-
totically stable if there exists a neighbourhood U of x∗ such that

lim
k→∞

gk(x) = x∗

for all x ∈ U ; cf. Definition 1.4 for equilibrium points of vector fields.

Hence, we have to understand, how to calculate local stability of maps.

Example 8.4. Based upon Example 1.1, it seems wise to start from a
general linear one-dimensional toy problem

xj+1 = g(xj) := µxj , (8.5)

where µ ∈ R is a parameter. The map (8.5) can be iterated/solved explicitly

xj = µxj+1 = µ2xj−2 = µ3xj−3 = · · · = µjx0.

So the absolute value of µ is the important stability indicator as for |µ| < 1
we get xj → 0 as j → +∞ so the fixed point x∗ = 0 is (even globally)
stable. For |µ| > 1, the fixed point is unstable. �

Definition 8.5. Let g : X → X with X ⊆ R be a one-dimensional map
with fixed point x∗. Then x∗ is called hyperbolic if |g′(x∗)| 6= 1. The
value g′(x∗) is called a multiplier.

The next result is an immediate consequence of the discussion in Ex-
ample (8.4).

Proposition 8.6. For µ > 1 the fixed point x∗ is unstable, while for
µ < 1, the fixed point x∗ is locally asymptotically stable.

Hence, the stability question of the periodic orbit we observed in the
van der Pol equation in Example 8.1 is equivalent to the analysis of a one-
dimensional map. One-dimensional maps also appear as Poincaré maps in
many other contexts so we shall investigate them in some detail. There is
a natural generalization of the fold bifurcation.

41AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

105

Theorem 8.7 (fold bifurcation of maps). Consider a one-dimensional
map

xj+1 = g(xj , p), xj ∈ R, p ∈ R. (8.6)

and fixed point x∗ = 0 for p = 0. A fold bifurcation occurs if ∂xg(0, 0) =
1. Suppose the conditions ∂xxg(0, 0) 6= 0 and ∂pg(0, 0) 6= 0 hold, then the
dynamics near the bifurcation is equivalent to the normal form

yj+1 = p+ yj ± y2j .

We shall not prove the normal form result here but see [4]. Note that
the normal form needs genericity conditions similar to Theorem 2.3 to be
valid as a proxy for the general dynamics. The next example already in-
dicates that one-dimensional maps have a lot richer dynamics than 1- and
2-dimensional vector fields.

Example 8.8. Since we already learned a lot from the one-dimensional
logistic equation starting from Example 1.3, it is very natural to generalize
this model to a discrete-time version

xj+1 = pxj(1− xj) =: g(xj , p), xj ∈ R, (8.7)

and p > 0 is a parameter. Biologically one can justify (8.7), e.g., since
some species only reproduce during fixed phases during the year. A natural
domain for (8.7) seems to be X = [0, 1]; see Figure TODO. We want to
iterate the map g : X → X , which is only guaranteed if

g(x, p) = px(1− x) ≤ 1 ∀x ∈ [0, 1].

The maximum of f can simply be found by looking at

∂xg(x, p) = p− 2px
!
= 0 ⇒ x =

1

2
.

The value at the maximum is g(1/2, p) = p/4 so a natural definition of the
logistic map is

xj+1 = g(xj , p) = pxj(1− xj), g : [0, 1] → [0, 1], p ∈ (0, 4]. (8.8)

Since g(0, p) = 0, it follows that 0 is always a fixed point with the associated
locally linearized map

Xj = (∂xg(0, p))X = (p− 2p · 0)X = pX.

Therefore, 0 is locally asymptotically stable for p ∈ (0, 1). In fact, the fixed
point is even globally stable in this parameter range for any x0 ∈ X , which

42AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

106

can be illustrated using the cobweb construction in Figure TODO. More
generally, fixed points of (8.8) can be found solving

x = g(x, p) ⇒ x = 0 or 1 = p(1− x) ⇐⇒ x = x∗ := 1− 1/p.

Note that the fixed point x∗ = 1 − 1/p does not lie in X for p ∈ (0, 1).
One easily checks computing the linearization that a bifurcation occurs at
p = 1, where 0 and x∗ exchange stability at a transcritical bifurcation
(of maps); see Figure 1(a). Linearizing at x∗ yields

X ′ = (p− 2px∗)X = (p− 2p(1− 1/p))X = (−p+ 2)X.

Therefore, x∗ is locally stable for any p ∈ (1, 3). However, at p = 3 we
get a new situation since a multiplier µ = −1 occurs. Since there are no
additional fixed points generated, we may wonder, what happens at p = 3.
The cobweb diagram shown in Figure TODO indicates that a periodic orbit
may emerge. To find periodic orbits of period two we look at the second-
iterate map

g(g(x, p), p) = p2x(1− x)(1− px(1− x)) = (p2x− p2x2)(1− px+ px2).

Fixed points of g can be found by solving

x = (p2x− p2x2)(1− px+ px2). (8.9)

Solving this fourth-order polynomial equation looks difficult at first. Then
we realize that the two fixed points x = 0 and x∗ = 1 − 1/p must still
solve (8.9) as they are trivial fixed points of the second iterate map. Remov-
ing these two solutions by long division and solving the remaining quadratic
equation yields (exercise!) two solutions

x± =
1 + p±

√
(p− 3)(p+ 1)

2p
.

So a two-cycle does indeed exist for p ∈ (3, 4]; see Figure TODO. �
The bifurcation we just observed is a special case of the following:

Theorem 8.9 (flip bifurcation). Consider a one-dimensional map (8.6).
The normal form for a generic flip bifurcation occurring when g(0, 0) = 0
and µ = −1, is given by

yj+1 = −(1 + p)yj ± y3j , yj ∈ R, p ∈ R. (8.10)

We shall not discuss the genericity conditions for a flip bifurcation here
as they are a bit more intricate to derive than for the other bifurcations of
maps we have considered here but see [4]. The flip bifurcation is also often
referred to as period-doubling bifurcation.

43AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

107

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x
g(x)

xp

(a) (b)

Figure 1: (a) Bifurcation diagram of the logistic map (8.8) obtained by
direct simulation for a 500 point equally spaced mesh of the parameter
space p ∈ [0, 4]. Transients have been removed (here: first 100 iterations),
then 40 iterates are plotted for each value of p. (b) Illustration of the
cobweb construction for p = 3.95 showing clearly the extremely complicated
dynamics of the logistic map in this regime.

Example 8.10. (Example 8.8 continued) Having understood the flip bi-
furcation at p = 3, one may wonder, what happens to the two-cycle for
p ∈ (3, 4]. Analytically, this analysis is beyond our scope here but Fig-
ure 1(a) shows a bifurcation diagram for p ∈ (0, 4]. The results are quite
staggering showing a period-doubling cascade showing bifurcations to
various k-cycle orbits. In fact, there are parts of parameter space, where
we do not seem to see anything but “chaotic” behaviour of our iteration.
�

44AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

108

9 Chaos in Iterated Maps

The bifurcation sequence in the logistic map has already provided a good
indication that one-dimensional maps produce complicated dynamics. The
next example is a simplified version of the logistic map.

Example 9.1. Consider the unit interval X = [0, 1] and define the tent
map

xj+1 = g(xj ; p) =

{
pxj if xj ∈ [0, 1/2)
p(1− xj) if xj ∈ [1/2, 1]

(9.1)

as shown in Figure TODO for the standard case p = 2, which we shall
consider from now on. The tent map inherites as a key feature from the
logistic map that it is unimodal having a unique maximum in its domain
of definition. �

In more generality, we shall consider continuous interval maps

g : [0, 1] → R, g ∈ C0.

Instead of tracking every point precisely, it will be easier to just capture to
look at certain subintervals. So let 0 = y0 < y1 < · · · yn−1 < yn = 1 be a
partition of [0, 1] with associated intervals Ij = [yj−1, yj]. The interval Ij
is said to g-cover Ik for m-times if there exist m open disjoint subintervals
K1, . . . ,Km of Ij such that

g
(
Kr

)
= Ik, for r ∈ {1, 2, . . . ,m}.

An example of the covering property is shown for the tent map discussed
in Example 9.3.

Definition 9.2. A (generalized) transition graph of g is a direct gener-
alized graph with vertices Ij . There exist m edges from Ij to Ik if Ij does
g-cover Ik for m-times.

Example 9.3. For the standard tent map (9.1) with p = 2, we see that
I1 = [0, 1/2] and I2 = [1/2, 1] each cover the other interval and itself once
under iteration. The resulting graph is shown in Figure TODO. �

Instead of tracking the iteration of every point, we now just look at
sequences of intervals, which is actually a first glimpse at the concept
of symbolic dynamics. An allowed path is a sequence of intervals
Ia1Ia2 . . . Ian+1 , where aj ∈ N, and there is an edge from Iaj to Iaj+1 for
each j ∈ {1, 2, . . . , n}.

45AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

109

Lemma 9.4. Consider an allowed path with a1 = an+1. Then there exists
a point x ∈ Ia1 such that gn(x) = x and gj(x) ∈ Iaj for j ∈ {2, . . . , n}. In
particular, x is periodic with period n.

Proof. From the definition of an allowed path, there exist subintervals Kj ⊆
Iaj such that

g(Kj) = Kj+1 for j = 1, . . . , n and Kn+1 = Ian+1 = Ia1 .

Therefore, gn(K1) = Ia1 and K1 ⊆ Ia1 so applying the Intermediate
Value Theorem [6] gives a fixed point gn(x) = x for x ∈ K1. We have by
construction that g(Kj) = Kj+1 ⊆ Iaj+1 so the last part of the lemma also
follows.

To restrict our attention to periodic points with minimal period, we say
that a path is irreducible if it is not the periodic repetition of a shorter
path.

Example 9.5. Consider the tent map from Example 9.3. Then I1I2I1I2I1
is not irreducible while I1I2I1 is. �

The next result is one of the classical landmark results in the field. It
was discovered first by Sharkovskii in more general form as stated in Theo-
rem 9.8 below but the following version is easier to prove and to remember.

Theorem 9.6 (Li-Yorke Theorem; “Period-Three implies Chaos”). Sup-
pose g : [a, b] → R with a < b, has a periodic orbit with minimal period
three. Then g has periodic orbits of all periods.

Proof. Wlog we may translate and scale coordinates to restrict to [a, b] =
[0, 1]. Let p1, p2, p3 ∈ [0, 1] be points on the periodic orbit with p1 < p2 < p3
and

g(p1) = p2, g(p2) = p3, g(p3) = p1.

The last assumption is wlog upon reversing the interval direction. Define
I1 = [p1, p2] and I2 = [p2, p3]. By the Intermediate Value Theorem, it
follows that I2 ⊆ g(I1) and I1 ∪ I2 ⊆ g(I2); see Figure TODO. Therefore,
the transition graph of g is given as in Figure TODO. There exists a fixed
point by Lemma (9.4) as I2I2 is an allowed path. Similarly, we get a period
two orbit as I2I1I2 is an allowed path. Period three exists by assumption
and minimal periods with n > 3 are constructed by the irreducible and
allowed path I2I1(I2)n−2I2.

In fact, one may get a lot finer information on the appearance of different
families of periodic orbits.

46AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

110

Definition 9.7. The Sharkovskii ordering ⊳ on N is defined by

1 ⊳ 2 ⊳ 4 ⊳ 23 ⊳ · · · ⊳ 2n ⊳ 2n+1 · · ·
· · · ⊳ 9 · 2n+1 ⊳ 7 · 2n+1 ⊳ 5 · 2n+1 ⊳ 3 · 2n+1 ⊳ · · ·

· · · ⊳ 9 · 2n ⊳ 7 · 2n ⊳ 5 · 2n ⊳ 3 · 2n ⊳ · · · ⊳ 9 ⊳ 7 ⊳ 5 ⊳ 3.

This ordering seems odd at first but may not be entirely unexpected
since we have already seen in Example 8.10 that we first got period 2, then
period 4, and so on upon parameter variation.

Theorem 9.8 (Sharkovskii Theorem). Suppose g : [a, b] → R has a periodic
orbit with minimal period n. Then g has periodic orbits of all periods k ⊳n.

The proof idea of Theorem 9.6 analyzing transition graphs carefully also
applies to the (lengthy!) proof of Sharkovskii’s Theorem. One can make
precise that the occurence of many different types of periodic orbits is one
of the key elements of chaos. To perform a precise analysis is beyond this
course [4] but we shall encounter another chaotic dynamical system in the
next section.

47AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

111

10 Attractors and Time Series

In the previous sections, we have seen that already one-dimensional maps
can be chaotic. Here we shall illustrate, how these results link directly into
applications. In fact, applications and models first generated chaos, and
then the mathematics of one-dimensional maps was studied.

Example 10.1. Consider a fluid confined between two plates; see Fig-
ure TODO. The standard model describing fluid motion at the Navier-
Stokes equations, which are nonlinear partial differential equations (PDEs).
Although directly studying Navier-Stokes is beyond this course, it turns out
that one can try to study a simpler approximation based upon a Fourier
series approximation of the solution of Navier-Stokes. This approximation
can be written as a three-dimensional system of ODEs

x′1 = σ(x2 − x1),
x′2 = ρx1 − x2 − x1x3,
x′3 = x1x2 − βx3,

(10.1)

with parameters σ, ρ, β > 0. The ODEs are also known as the Lorenz
system. A numerical simulation of (10.1) is shown in Figure 2.

40

20

0
0

-20
-10 -20

0
10

20

-4020

40

x3

x2

x1

Figure 2: Forward integration of the Lorenz system (10.1) for parameter
values σ = 10, β = 8/3, ρ = 28, and initial condition x(0) = (0.1, 0.1, 0.1)⊤.

For the chosen parameter values, one observes that trajectories all seem
to tend to a complicated structure, also called the Lorenz attractor. �

Although we cannot provide the advanced details for the Lorenz attrac-
tor here, let us make more precise that trajectories stay bounded.

48AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

112

Definition 10.2. A compact set U is called a trapping region for a vector
field provided that all orbits starting in U are contained in the interior of
U after some time t > 0.

Proposition 10.3. There exists a trapping region for the Lorenz sys-
tem (10.1).

Proof. To show that a trapping region exists for the flow generated by (10.1)
consider the function

L(x) :=
x21 + x22 + (x3 − ρ− σ)2

2
.

Essentially, L can be thought of as a Lyapunov-like function for an ellipsoid
since one calculates (exercise!)

d

dt
L(x) = −σx21 − x22 − β

(
x3 −

ρ+ σ

2

)2

+
β(ρ+ σ)2

4
.

We have L′ < 0 if

σx21 + x22 + β

(
x3 −

ρ+ σ

2

)2

>
β(ρ+ σ)2

4
(10.2)

which occurs outside of an ellipsoid E with boundary ∂E defined by consid-
ering equality in (10.2). E attracts all trajectories starting outside it and E
is invariant in forward time.

Although the Lorenz system is a nice model, and can be analyzed a lot
further, let us take a step back and think, how we could actually link our
models more directly to applications. The typical situation is that exper-
iments are performed or field data is gathered. Usually the only common
ground is that we can get a time series

x(t0), x(t1), . . . , x(tM)

for a certain fixed number of points M > 0. An easy example to think
of is a chemical reaction, where we measure the concentration of a certain
chemical at fixed time intervals. However, in more generality, we expect
just to be able to measure a function of phase space.

Definition 10.4. Let X be the phase space. A function v : X → R is also
called an observable.

Usually, one requires some additional properties (e.g., measurability,
differentiability, smoothness, etc.) but we shall state them as needed.

49AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

113

Example 10.5. (Example 10.1 continued) Let us suppose we do not know
the Lorenz equations but just observe some parts of its output, say for
simplicity x1(tj) for certain times tj to be specified so the observable is

v(x1, x2, x3) = x1.

Can we reconstruct the dynamics shown in Figure TODO just from the
time series x1(tj)? This seems like an under-determined question as we
just know one variable. A key trick is to consider a delay embedding for
a fixed delay τ > 0, i.e., we consider

α(t) = (α1(t), α2(t))
⊤ := (x1(t), x1(t− τ))⊤. (10.3)

which can be computed from a time series if the spacing of samples is chosen
commensurate with τ . Of course, this can be generalized and we could use
three components

α(t) = (α1(t), α2(t), α3(t))
⊤ := (x1(t), x1(t− τ), x1(t− 2τ))⊤. (10.4)

40

20
0

0
-20

-20
0

-4020

50

-20 0 20

-20

-10

0

10

20

-20

20

0

20

0

20

0

-20 -20

x1

x2

x3

α1

α2

α1α2

α3(a)
(b)

(c)

Figure 3: (a) Plot of the Lorenz attractor as in Figure 2. (b) Delay coor-
dinate embedding (10.3) for delay τ = 0.055. (c) Delay coordinate embed-
ding (10.4) for delay τ = 0.055.

Figure 3 shows the original Lorenz attractor, as well as a two- and three-
dimensional coordinates α from the delay embedding. We do get a very
accurate view of the structure of the attractor in the delay coordinate phase
space although we have only used a single observation function. We also
observe by comparing Figure 3(b) and Figure 3(c) that two dimensions
almost seem to suffice to obtain a good representation of the attractor.
In fact, one can computationally check that the Lorenz attractor has a
non-integer dimension slightly larger than two; see [4] for more discussion
regarding non-integer dimension. �

50AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

114

The process we have carried out in Example 10.5 is known as attractor
reconstruction, or more generally phase space reconstruction. In fact,
there is a theorem providing very general conditions that a delay embedding
works. Although we cannot discuss it here in full technical detail, it is
interesting to just take a first look.

Theorem 10.6 (Takens’ Theorem). Let M ⊂ Rd be a compact m-
dimensional manifold. Consider an ODE

x′ = f(x), x ∈ Rd, f ∈ C2(Rd,Rd), x(0) = x0,

and an observable v : M → R. Then the mapping Φ : M → R2m+1

Φ(x0) := (v(x(0)), v(x(τ)), . . . , v(x(2mτ))), with τ > 0,

is, under generic conditions, a diffeomorphism onto its image.

Here generic conditions means that most C2 vector fields f are going
to satisfy these conditions. Usually one takes as M just a closed bounded
set without boundary containing the attractor; C2 manifold just means we
can locally parametrize M via a C2-mapping from some open set in Rm.
The conclusion that we get a diffeomorphism onto its image means that
Φ(x0) can be used to define a trajectory in our reconstructed phase space
R2m+1; see Figure TODO.

51AMS Open Math Notes: Works in Progress; Reference # OMN:201802.110761; Last Revised: 2018-02-01 07:44:32

115

POST GRADUATE DEGREE PROGRAMME (CBCS) IN

MATHEMATICS

SEMESTER III

SELF LEARNING MATERIAL

PAPER : MATP 3.4
(Pure Stream)

• Block - I : Topological Groups
• Block - II : Measure Theory

Directorate of Open and Distance Learning
University of Kalyani

Kalyani, Nadia
West Bengal, India

Course Preparation Team

1. Mr. Biswajit Mallick 2. Ms. Audrija Choudhury
Assistant Professor (Cont.) Assistant Professor (Cont.)
DODL, University of Kalyani DODL, University of Kalyani

November, 2019

Directorate of Open and Distance Learning, University of Kalyani

Published by the Directorate of Open and Distance Learning

University of Kalyani, 741235, West Bengal

All rights reserved. No part of this work should be reproduced in any form without the permission in writing
form the Directorate of Open and Distance Learning, University of Kalynai.

Director’s Massage
Satisfying the varied needs of distance learners, overcoming the obstacle of distance and reaching the un-
reached students are the threefold functions catered by Open and Distance Learning (ODL) systems. The
onus lies on writers, editors, production professionals and other personnel involved in the process to overcome
the challenges inherent to curriculum design and production of relevant Self Learning Materials (SLMs). At
the University of Kalyani a dedicated team under the able guidance of the Hon’ble Vice-Chancellor has in-
vested its best efforts, professionally and in keeping with the demands of Post Graduate CBCS Programmes
in Distance Mode to devise a self-sufficient curriculum for each course offered by the Directorate of Open and
Distance Learning (DODL), University of Kalyani.

Development of printed SLMs for students admitted to the DODL within a limited time to cater to the
academic requirements of the Course as per standards set by Distance Education Bureau of the University
Grants Commission, New Delhi, India under Open and Distance Mode UGC Regulations, 2017 had been our
endeavour. We are happy to have achieved our goal.

Utmost care and precision have been ensured in the development of the SLMs, making them useful to the
learners, besides avoiding errors as far as practicable. Further suggestions from the stakeholders in this would
be welcome.

During the production-process of the SLMs, the team continuously received positive stimulations and feed-
back from Professor (Dr.) Sankar Kumar Ghosh, Hon’ble Vice-Chancellor, University of Kalyani, who kindly
accorded directions, encouragements and suggestions, offered constructive criticism to develop it within
proper requirements. We gracefully, acknowledge his inspiration and guidance.

Sincere gratitude is due to the respective chairpersons as weel as each and every member of PGBOS
(DODL), University of Kalyani, Heartfelt thanks is also due to the Course Writers-faculty members at the
DODL, subject-experts serving at University Post Graduate departments and also to the authors and aca-
demicians whose academic contributions have enriched the SLMs. We humbly acknowledge their valuable
academic contributions. I would especially like to convey gratitude to all other University dignitaries and
personnel involved either at the conceptual or operational level of the DODL of University of Kalyani.

Their persistent and co-ordinated efforts have resulted in the compilation of comprehensive, learner-friendly,
flexible texts that meet the curriculum requirements of the Post Graduate Programme through Distance Mode.

Self Learning Materials (SLMs) have been published by the Directorate of Open and Distance Learning,
University of Kalyani, Kalyani-741235, West Bengal and all the copyright reserved for University of Kalyani.
No part of this work should be reproduced in any from without permission in writing from the appropriate
authority of the University of Kalyani.

All the Self Learning Materials are self writing and collected from e-book, journals and websites.

Director

Directorate of Open and Distance Learning

University of Kalyani

Elective Paper
MATP 3.4
Block - I

Marks : 50 (SSE : 40; IA : 10)
Topological Groups (Pure Stream)

1

Notation and terminology

We denote by P, N and N+ respectively the set of primes, the set of natural numbers and the set of positive
integers. The symbol c stands for the cardinality of the continuum. The symbols Z, Q, R, C will denote the
integers, the rationals, the reals and the complex numbers, respectively.

The quotient T = R/Z is a compact divisible abelian group, topologically isomorphic to the unitary circle S
(i.e., the subgroup of all z ∈ C with |z| = 1). For S we use the multiplicative notation, while for T we use the
additive notation.

For an abelian group G we denote by Hom (G,T) the group of all homomorphisms from G to T written
additively. The multiplicative form G∗ = Hom(G,S) ∼= Hom(G,T) will be used when necessary (e.g., concerning
easier computation in C, etc.). We call the elements of Hom (G,T) ∼= Hom(G,S) characters.

For a topological group G we denote by c(G) the connected component of the identity 1 in G. If c(G) is
trivial, the group G is said to be totally disconnected. If M is a subset of G then 〈M〉 is the smallest subgroup

of G containing M and M is the closure of M in G. The symbol w(G) stands for the weight of G. Moreover G̃
stands for the completion of a Hausdorff topological abelian group G (see §3.9).

2 Background on topological spaces and abstract groups

2.1 Background on abelian groups

Generally a group G will be written multiplicatively and the neutral element will be denoted by eG or simply e
or 1 when there is no danger of confusion. For a subset A,A1, A2, . . . , An of a group G we write

A−1 = {a−1 : a ∈ A}, and A1A2 . . . An = {a1 . . . an : ai ∈ Ai, i = 1, 2, . . . , n} (∗)

and we write An for A1A2 . . . An if all Ai = A. Moreover, for A ⊆ G we denote by cG(A) the centralizer of A,
i.e., the subgroup {x ∈ G : xa = ax for every a ∈ A}.

We use additive notation for abelian groups, consequently 0 will denote the neutral element in such a case.
Clearly, the counterpart of (*) will be −A, A1 +A2 + . . .+An and nA.

A standard reference for abelian groups is the monograph [46]. We give here only those facts or definitions
that appear very frequently in the sequel.

For m ∈ N+, we use Zm or Z(m) for the finite cyclic group of order m. Let G be an abelian group. The
subgroup of torsion elements of G is t(G) and for m ∈ N+

G[m] = {x ∈ G : mx = 0} and mG = {mx : x ∈ G}.

For a family {Gi : i ∈ I} of groups we denote by
∏

i∈I Gi the direct product G of the groups Gi. The underlying
set of G is the Cartesian product

∏
i∈I Gi and the operation is defined coordinatewise. The direct sum

⊕
i∈I Gi

is the subgroup of
∏

i∈I Gi consisting of all elements of finite support. If all Gi are isomorphic to the same

group G and |I| = α, we write
⊕

αG (or G(α), or
⊕

I G) for the direct sum
⊕

i∈I Gi

A subset X of an abelian group G is independent, if
∑n

i=1 kixi = 0 with ki ∈ Z and distinct elements xi of
X, i = 1, 2, . . . , n, imply k1 = k2 = . . . = kn = 0. The maximum size of an independent subset of G is called
free-rank of G and denoted by r0(G). An abelian group G is free , if G has an independent set of generators X.
In such a case G ∼=

⊕
|X| Z.

For an abelian group G and a prime number p the subgroup G[p] is a vector space over the finite field Z/pZ.
We denote by rp(G) its dimension over Z/pZ and call it p-rank of G.

Let us start with the structure theorem for finitely generated abelian groups.

Theorem 2.1. If G is a finitely generated abelian group, then G is a finite direct product of cyclic groups.
Moreover, if G has m generators, then every subgroup of G is finitely generated as well and has at most m
generators.

Definition 2.2. An abelian group G is

(a) torsion if t(G) = G;

(b) torsion-free if t(G) = 0;

(c) bounded if mG = 0 for some m > 0;

(d) divisible if G = mG for every m > 0;

Unit 1 Unit 1

 1

2 2 BACKGROUND ON TOPOLOGICAL SPACES AND ABSTRACT GROUPS

(e) reduced if the only divisible subgroup of G is the trivial one.

Example 2.3. (a) The groups Z, Q, R, and C are torsion-free. The class of torsion-free groups is stable
under taking direct products and subgroups.

(b) The groups Zm Q/Z are torsion. The class of torsion groups is stable under taking direct sums, subgroups
and quotients.

(c) Letm1,m2, . . . ,mk > 1 be naturals and let α1, α2, . . . , αk be cardinal numbers. Then the group
⊕k

i=1 Z
(αi)
mi

is bounded. According to a theorem of Prüfer every bounded abelian group has this form [46]. This gen-
eralizes the Frobenius-Stickelberger theorem about the structure of the finite abelian groups (see Theorem
2.1).

Example 2.4. (a) The groups Q, R, C, and T are divisible.

(b) For p ∈ P we denote be Z(p∞) the Prüfer group, namely the p-primary component of the torsion group
Q/Z (so that Z(p∞) has generators cn = 1/pn + Z, n ∈ N). The group Z(p∞) is divisible.

(c) The class of divisible groups is stable under taking direct products, direct sums and quotients. In partic-
ular, every abelian group has a maximal divisible subgroup d(G).

(d) [46] Every divisible group G has the form (
⊕

r0(G) Q)⊕ (
⊕

p∈P Z(p∞)(rp(G))).

If X is a set, a set Y of functions of X to a set Z separates the points of X if for every x, y ∈ X with x 6= y,
there exists f ∈ Y such that f(x) 6= f(y). Now we see that the characters separate the points of a discrete
abelian groups.

Theorem 2.5. Let G be an abelian group, H a subgroup of G and D a divisible abelian group. Then for every
homomorphism f : H → D there exists a homomorphism f : G→ D such that f �H= f .

If a ∈ G \H and D contains elements of arbitrary finite order, then f can be chosen such that f(a) 6= 0.

Proof. Let H ′ be a subgroup of G such that H ′ ⊇ H and suppose that g : H ′ → D is such that g �H= f . We
prove that for every x ∈ G, defining N = H ′ + 〈x〉, there exists g : N → D such that g �H′= g. There are two
cases.

If 〈x〉 ∩H ′ = {0}, then take any y ∈ D and define g(h+ kx) = g(h) + ky for every h ∈ H ′ and k ∈ Z. Then
g is a homomorphism. This definition is correct because every element of N can be represented in a unique way
as h+ kx, where h ∈ H ′ and k ∈ Z.

If C = 〈x〉 ∩ H ′ 6= {0}, then C is cyclic, being a subgroup of a cyclic group. So C = 〈lx〉 for some l ∈ Z.
In particular, lx ∈ H ′ and we can consider the element a = g(lx) ∈ D. Since D is divisible, there exists y ∈ D
such that ly = a. Now define g : N → D putting g(h + ky) = g(h) + ky for every h + kx ∈ N , where h ∈ H ′

and k ∈ Z. To see that this definition is correct, suppose that h + kx = h′ + k′x for h, h′ ∈ H ′ and k, k′ ∈ Z.
Then h− h′ = k′x− kx = (k′ − k)x ∈ C. So k − k′ = sl for some s ∈ Z. Since g : H ′ → D is a homomorphism
and lx ∈ H ′, we have

g(h)− g(h′) = g(h− h′) = g(s(lx)) = sg(lx) = sa = sly = (k′ − k)y = k′y − ky.

Thus, from g(h)− g(h′) = k′y − ky we conclude that g(h) + ky = g(h′) + k′y. Therefore g is correctly defined.
Moreover g is a homomorphism and extends g.

Let M be the family of all subgroups Hi of G such that H ≤ Hi and of all homomorphisms fi : Hi → D
that extend f : H → D. For (Hi, fi), (Hj , fj) ∈ M put (Hi, fi) ≤ (Hj , fj) if Hi ≤ Hj and fj extends fi. In this
way (M,≤) is partially ordered. Let {(Hi, fi)}i∈I a totally ordered subset of (M,≤). Then H0 =

⋃
i∈I Hi is a

subgroup of G and f0 : H0 → D defined by f0(x) = fi(x) whenever x ∈ Hi, is a homomorphism that extends
fi for every i ∈ I. This proves that (M,≤) is inductive and so we can apply Zorn’s lemma to find a maximal
element (Hmax, fmax) of (M,≤). It is easy to see that Hmax = G.

Suppose now that D contains elements of arbitrary finite order. If a ∈ G \H, we can extend f to H + 〈a〉
defining it as in the first part of the proof. If 〈a〉 ∩H = {0} then f(h+ ka) = f(h) + ky for every k ∈ Z, where
y ∈ D \ {0}. If 〈a〉 ∩ H 6= {0}, since D contains elements of arbitrary order, we can choose y ∈ D such that
f(h+ ka) = f(h) + ky with y 6= 0. In both cases f(a) = y 6= 0.

Corollary 2.6. Let G be an abelian group and H a subgroup of G. If χ ∈ Hom(H,T) and a ∈ G \H, then χ
can be extended to χ ∈ Hom(G,T), with χ(a) 6= 0.

2

2.2 Background on topological spaces 3

Corollary 2.7. If G is an abelian group, then Hom(G,T) separates the points of G.

Corollary 2.8. If G is an abelian group and D a divisible subgroup of G, then there exists a subgroup B of G
such that G = D ×B.

Proof. Consider the homomorphism f : D → G defined by f(x) = x for every x ∈ D. By Theorem 2.5 we can
extend f to f : G → G. Then put B = ker f and observe that G = D + B and D ∩ B = {0}; consequently
G ∼= D ×B.

Corollary 2.9. Every abelian group G can be written as G = d(G)×R, where RT is a reduced subgroup of G.

Proof. By Corollary 2.8 there exists a subgroup R of G such that G = d(G)×R. To conclude that R is reduced
it suffices to apply the definition of d(G).

The ring of endomorphisms of the group Z(p∞) will be denoted by Jp, it is isomorphic the inverse limit
lim←− Z/pnZ, known also as the ring of p-adic integers. The field of quotients of Jp (i.e., the field of p-adic
numbers) will be denoted by Qp. Sometimes we shall consider only the underlying groups of these rings (and
speak of ”the group p-adic integers”, or ”the group p-adic numbers).

2.2 Background on topological spaces

We assume the reader is familiar with the basic definitions and notions related to topological spaces. For the
sake of completeness we recall here some frequently used properties related to compactness.

Definition 2.10. A topological space X is

• compact if for every open cover of X there exists a finite subcover;

• Lindelöff if for every open cover of X there exists a countable subcover;

• locally compact if every point of X has compact neighborhood in X;

• σ-compact if X is the union of countably many compact subsets;

• of first category, if X =
⋃∞

n=1An and every An is a closed subset of X with empty interior;

• of second category, if X is not of first category;

• connected if for every proper open subset of X with open complement is empty.

Here we recall properties of maps:

Definition 2.11. For a map f : (X, τ) → (Y, τ ′) between topological spaces and a point x ∈ X we say:

• f is continuous at x if for every neighborhood U of f(x) in Y there exists a neighborhood V of x in X
such that f(V) ⊆ U ,

• f is open in x ∈ X if for every neighborhood V of x in X there exists a neighborhood U of f(x) in Y such
that f(V) ⊇ U ,

• f is continuous (resp., open) if f is continuous (resp., open) at every point x ∈ X.

• f is closed if the subset f(A) of Y is closed for every closed subset A ⊆ X.

Some basic properties relating spaces to continuous maps are collected in the next lemma:

Lemma 2.12. • If f : X → Y is a continuous surjective map, then Y is compact (resp., Lindelöff, σ-
compact, connected) whenever X has the same property.

• If X is a closed subspace of a space Y , then X is compact (resp., Lindelöff, σ-compact, locally compact)
whenever Y has the same property.

• If X =
∏

i∈I Xi, then X is compact (resp., connected) iff every space Xi has the same property. If I is
finite, the same holds for local compactness and σ-compactness.

3

4 2 BACKGROUND ON TOPOLOGICAL SPACES AND ABSTRACT GROUPS

A partially ordered set (A,≤) is directed if for every α, β ∈ A there exists γ ∈ A such that γ ≥ α and γ ≥ β.
A subset B of A is cofinal, if for every α ∈ A there exists β ∈ B with β ≥ α.

A net in a topological space X is a map from a directed set A to X. We write xα for the image of α ∈ A so
that the net can be written in the form N = {xα}α∈A. A subnet of a net N is S = {xβ}β∈B such that B is a
cofinal subset of A.

A net {xα}α∈A in X converges to x ∈ X if for every neighborhood U of x in X there exists β ∈ A such that
α ∈ A and α ≥ β implies α ∈ U .

Lemma 2.13. Let X be a topological space.

(a) If Z is a subset of X, then x ∈ Z if and only if there exists a net in Z converging to x.

(b) X is compact if and only if every net in X has a convergent subnet.

(c) A function f : X → Y (where Y is a topological space) is continuous if and only if f(xα) → f(x) in Y for
every net {xα}α∈A in X with xα → x.

(d) The space X is Hausdorff if and only if every net in X converges to at most one point in X.

Let us recall that the connected component of a point x in a topological space X is the largest connected
subset of X containing x. It is always a closed subset of X. The space X is called totally disconnected if all
connected components are singletons.

In a topological space X the quasi-component of a point x ∈ X is the intersection of all clopen sets of X
containing x.

Lemma 2.14. (Shura-Bura) In a compact space X the quasi-components and the connected components coin-
cide.

A topological space X zero-dimensional if X has a base of clopen sets. Zero-dimensional T2 spaces are totally
disconnected (as every point is an intersection of clopen sets).

Theorem 2.15. (Vedenissov) Every totally disconnected locally compact space is zero-dimensional.

By βX we denote the Čech-Stone compactification of a topological Tychonov space X, that is the compact
space βX together with the dense immersion i : X → βX, such that for every function f : X → [0, 1] there
exists fβ : βX → [0, 1] which extends f (this is equivalent to ask that every function of X to a compact space
Y can be extended to βX). Here βX will be used only for a discrete space X.

Theorem 2.16 (Baire category theorem). A Hausdorff locally compact space X is of second category.

Proof. Suppose that X =
⋃∞

n=1An and assume that every An is closed with empty interior. Then the sets
Dn = G \ An are open and dense in X. To get a contradiction, we show that

⋂∞
n=1Dn is dense, in particular

non-empty (so G 6= ⋃∞
n=1An, a contradiction).

We use the fact that a Hausdorff locally compact space is regular. Pick an arbitrary open set V 6= ∅. Then
there exists an open set U0 6= ∅ with U0 compact and U0 ⊆ V . Since D1 is dense, U0∩D1 6= ∅. Pick x1 ∈ U0∩D1

and an open set U1 3 x1 in X with U1 compact and U1 ⊆ U0 ∩D1 . Proceeding in this way, for every n ∈ N+

we can find an open set Un 6= ∅ in G with Un compact and Un ⊆ Un−1 ∩Dn. By the compactness of every Un

there exists a point x ∈ ⋂∞
n=1 Un. Obviously, x ∈ V ∩⋂∞

n=1Dn.

Lemma 2.17. If G is a locally compact σ-compact space, then G is a Lindelöff space.

Proof. Let G =
⋃

α∈I Uα. Since G is σ-compact, G =
⋃∞

n=1Kn where each Kn is a compact subset of G.
Thus for every n ∈ N+ there exists a finite subset Fn of I such that Kn ⊆ ⋃

n∈Fn
Un. Now I0 =

⋃∞
n=1 Fn is a

countable subset of I and Kn ⊆ ⋃
α∈I0

Uα for every N ∈ N+ yields G =
⋃

α∈I0
Uα.

Let X be a topological space. Let C(X,C) be the C-algebra of all continuous complex valued functions on
X. If f ∈ C(X,C) let

‖f‖∞ = sup{|f(x)| : x ∈ X}.

Theorem 2.18 (Stone-Weierstraß theorem). Let X be a compact topological space. A C-subalgebra A of
C(X,C) containing all constants and closed under conjugation is dense in C(X,C) for the norm ‖ ‖∞ if and
only if A separates the points of X.

We shall need in the sequel the following local form of Stone-Weierstraß theorem.

4

5

Corollary 2.19. Let X be a compact topological space and f ∈ C(X,C). Then f can be uniformly approximated
by a C-subalgebra A of C(X,C) containing all constants and closed under the complex conjugation if and only
if A separates the points of X separated by f ∈ C(X,C).

Proof. Denote by G : X → CA the diagonal map of the family {g : g ∈ A}. Then Y = G(X) is a compact
subspace of CA and by the compactness of X, its subspace topology coincides with the quotient topology of
the map G : X → Y . The equivalence relation ∼ in X determined by this quotient is as follows: x ∼ y for
x, y ∈ X by if and only if G(x) = G(y) (if and only if g(x) = g(y) for every g ∈ A). Clearly, every continuous
function h : X → C, such that h(x) = h(y) for every pair x, y with x ∼ y, can be factorized as h = h ◦ q, where
h ∈ C(Y,C). In particular, this holds true for all g ∈ A and for f (for the latter case this follows from our
hypothesis). The C-subalgebra A ⊆ C(Y,C) is closed under the complex conjugation and contains all constants.
It is easy to see that it separates the points of Y . Hence we can apply Stone - Weierstraß theorem 2.18 to Y
and A to deduce that we can uniformly approximate the function f by functions of A. This produces uniform
approximation of the function f by functions of A.

3 General properties of topological groups

3.1 Definition of a topological group

Let us start with the following fundamental concept:

Definition 3.1. Let G be a group.

• A topology τ on G is said to be a group topology if the map f : G×G → G defined by f(x, y) = xy−1 is
continuous.

• A topological group is a pair (G, τ) of a group G and a group topology τ on G.

If τ is Hausdorff (resp., compact, locally compact, connected, etc.), then the topological group (G, τ) is
called Hausdorff (resp., compact, locally compact, connected, etc.). Analogously, if G is cyclic (resp., abelian,
nilpotent, etc.) the topological group (G, τ) is called cyclic (resp. abelian, nilpotent, etc.). Obviously, a topology
τ on a group G is a group topology iff the maps

µ : G×G→ G and ι : G→ G

defined by µ(x, y) = xy and ι(x) = x−1 are continuous when G×G carries the product topology.
Here are some examples, starting with two trivial ones: for every group G the discrete topology and the

indiscrete topology on G are group topologies. Non-trivial examples of a topological group are provided by the
additive group R of the reals and by the multiplicative group S of the complex numbers z with |z| = 1, equipped
both with their usual topology. This extends to all powers Rn and Sn. These are abelian topological groups.
For every n the linear group GLn(R) equipped with the topology induced by Rn2

is a non-abelian topological
group. The groups Rn and GLn(R) are locally compact, while S is compact.

Example 3.2. For every prime p the group Jp of p-adic integers carries the topology induced by
∏∞

n=1 Z(pn),
when we consider it as the inverse limit lim←− Z/pnZ. The same topology can be obtained also when we consider Jp
as the ring of all endomorphims of the group Z(p∞). Now Jp embeds into the product Z(p∞)Z(p

∞) carrying the
product topology, while Z(p∞) is discrete. We leave to the reader the verification that this is a compact group
topology on Jp. Basic open neighborhoods of 0 in this topology are the subgroups pnJp of (Jp,+) (actually,
these are ideals of the ring Jp) for n ∈ N. The field Qp becomes a locally compact group by declaring Jp open
in Qp (i.e., an element x ∈ Qp has as typical neighborhoods the cosets x+ pnJp, n ∈ N.

Other examples of group topologies will be given in §3.2.
If G is a topological group written multiplicatively and a ∈ G, then the translations x 7→ ax and x 7→ xa

as well as the internal automorphism x 7→ axa−1 are homeomorphisms. Consequently, the group G is discrete
iff the point 1 is isolated, i.e., the singleton {1} is open. In the sequel aM will denote the image of a subset
M ⊆ G under the (left) translation x 7→ ax, i.e., aM := {am : m ∈M}. This notation will be extended also to
families of subsets of G, in particular, for every filter F we denote by aF the filter {aF : F ∈ F}.

Making use of the homeomorphisms x 7→ ax one can prove:

Exercise 3.3. Let f : G → H be a homomorphism between topological groups. Prove that f is continuous
(resp., open) iff f is continuous (resp., open) at 1 ∈ G.

Unit 2

 5

6 3 GENERAL PROPERTIES OF TOPOLOGICAL GROUPS

For a topological group G and g ∈ G we denote by VG,τ (g) the filter of all neighborhoods of the element g
of G. When no confusion is possible, we shall write briefly also VG(g), Vτ (g) or even V(g). Among these filters
the filter VG,τ (1), obtained for the neutral element g = 1, plays a central role. It is useful to note that for every
a ∈ G the filter VG(a) coincides with aVG(1) = VG(1)a. More precisely, we have the following:

Theorem 3.4. Let G be a group and let V(1) be the filter of all neighborhoods of 1 in some group topology τ
on G. Then:

(a) for every U ∈ V(1) there exists V ∈ V(1) with V · V ⊆ U ;

(b) for every U ∈ V(1) there exists V ∈ V(1) with V −1 ⊆ U ;

(c) for every U ∈ V(1) and for every a ∈ G there exists V ∈ V(1) with aV a−1 ⊆ U.

Conversely, if V is a filter on G satisfying (a), (b) and (c), then there exists a unique group topology τ on
G such that V coincides with the filter of all τ -neighborhoods of 1 in G.

Proof. To prove (a) it suffices to apply the definition of the continuity of the multiplication µ : G×G → G at
(1, 1) ∈ G × G. Analogously, for (b) use the continuity of the map ι : G → G at 1 ∈ G. For item (c) use the
continuity of the internal automorphism x 7→ axa−1 at 1 ∈ G.

Let V be a filter on G satisfying all conditions (a), (b) and (c). Let us see first that every U ∈ V contains 1.
In fact, take W ∈ V with W ·W ⊆ U and choose V ∈ V(1) with V ⊆W and V −1 ⊆W . Then 1 ∈ V ·V −1 ⊆ U .

Now define a topology τ on G whose open sets O are defined by the following property:

τ := {O ⊆ G : (∀a ∈ O)(∃U ∈ V) such that aU ⊆ O}.

It is easy to see that τ is a topology onG. Let us see now that for every g ∈ G the filter gV coincides with the filter
V(G,τ)(g) of all τ -neighborhoods of g in (G, τ). The inclusion gV ⊇ V(G,τ)(g) is obvious. Assume U ∈ V. To see
that gU ∈ V(G,τ)(g) we have to find a τ -open O ⊆ gU that contains g. Let O := {h ∈ gU : (∃W ∈ V) hW ⊆ gU}.
Obviously g ∈ O. To see that O ∈ τ pick x ∈ O. Then there exists W ∈ V with xW ⊆ gU . Let V ∈ V with
V · V ⊆W , then xV ⊆ O since xvV ⊆ gU for every v ∈ V .

We have seen that τ is a topology on G such that the τ -neighborhoods of any x ∈ G are given by the filter
xV. It remains to see that τ is a group topology. To this end we have to prove that the map (x, y) 7→ xy−1 is
continuous. Fix x, y and pick a U ∈ V. By (c) there exists a W ∈ V with Wy−1 ⊆ y−1U . Now choose V ∈ V
with V · V −1 ⊆ W . Then O = xV × yV is a neighborhood of (x, y) in G × G and f(O) ⊆ xV · V −1y−1 ⊆
xWy−1 ⊆ xy−1U .

In the above theorem one can take instead of a filter V also a filter base, i.e., a family V with the property

(∀U ∈ V)(∀V ∈ V)(∃W ∈ V)W ⊆ U ∩ V

beyond the proprieties (a)–(c).
A neighborhood U ∈ V(1) is symmetric, if U = U−1. Obviously, for every U ∈ V(1) the intersection

U ∩ U−1 ∈ V(1) is a symmetric neighborhood, hence every neighborhood of 1 contains a symmetric one.
Let {τi : i ∈ I} be a family of group topologies on a group G. Then their supremum τ = supi∈I τi is a group

topology on G with a base of neighborhoods of 1 formed by the family of all finite intersection U1∩U2∩ . . .∩Un,
where Uk ∈ Vτik

(1) for k = 1, 2, . . . , n and the n-tuple i1, i2, . . . , in runs over all finite subsets if I.

Exercise 3.5. If (an) is a sequence in G such that an → 1 for every member τi of a family {τi : i ∈ I} of group
topologies on a group G, then an → 1 also for the supremum supi∈I τi.

3.2 Examples of group topologies

Now we give several series of examples of group topologies, introducing them by means of the filter V(1) of
neighborhoods of 1 as explained above. However, in all cases we avoid the treat the whole filter V(1) and
we prefer to deal with an essential part of it, namely a base. Let us recall the precise definition of a base of
neighborhoods.

Definition 3.6. Let G be a topological group. A family B ⊆ V(1) is said to be a base of neighborhoods of 1 (or
briefly, a base at 1) if for every U ∈ V(1) there exists a V ∈ B contained in U (such a family will necessarily be
a filterbase).

6

3.2 Examples of group topologies 7

3.2.1 Linear topologies

Let V = {Ni : i ∈ I} be a filter base consisting of normal subgroups of a group G. Then V satisfies (a)–(c),
hence generates a group topology on G having as basic neighborhoods of a point g ∈ G the family of cosets
{gNi : i ∈ I}. Group topologies of this type will be called linear topologies. Let us see now various examples of
linear topologies.

Example 3.7. Let G be a group and let p be a prime:

• the pro-finite topology, with {Ni : i ∈ I} all normal subgroups of finite index of G;

• the pro-p-finite topology, with {Ni : i ∈ I} all normal subgroups of G of finite index that is a power of p;

• the p-adic topology, with I = N and for n ∈ N, Nn is the subgroup (necessarily normal) of G generated
by all powers {gpn

: g ∈ G}.

• the natural topology (or Z-topology), with I = N and for n ∈ N, Nn is the subgroup (necessarily normal)
of G generated by all powers {gn : g ∈ G}.

• the pro-countable topology, with {Ni : i ∈ I} all normal subgroups of at most countable index [G : Ni].

The next simple construction belongs to Taimanov. Now neighborhoods of 1 are subgroups, that are not
necessarily normal.

Exercise 3.8. Let G be a group with trivial center. Then G can be considered as a subgroup of Aut (G) making
use of the internal automorphisms. Identify Aut (G) with a subgroup of the power GG and equip Aut (G) with
the group topology τ induced by the product topology of GG, where G carries the discrete topology. Prove that:

• the filter of all τ -neighborhoods of 1 has as base the family of centralizers {cG(F)}, where F runs over all
finite subsets of G;

• τ is Hausdorff;

• τ is discrete iff there exists a finite subset of G with trivial centralizer.

3.2.2 Topologies generated by characters

Let G be an abelian group. A character of G is a homomorphism χ : G→ S. For characters χi, i = 1, . . . , n, of
G and δ > 0 let

UG(χ1, . . . , χn; δ) := {x ∈ G : |Arg (χi(x))| < δ, i = 1, . . . , n}, (1)

where the argument Arg (z) of a complex number z is taken in (−π, π].

Exercise 3.9. Let G be an abelian group and let H be a family of characters of G. Then the family

{UG(χ1, . . . , χn; δ) : δ > 0, χi ∈ H, i = 1, . . . , n}

is a filter base satisfying the conditions (a)–(c) of Theorem 3.4, hence it gives rise to a group topology TH on G
(this is the initial topology of the family H, i.e., the coarsest topology that makes continuous all the characters
of H).

We refer to the group topology TH as topology generated by the characters of H. The topology TG∗ , generated
by all characters of G, is called Bohr topology of G.

For an abelian group G some of the linear topologies on G are also generated by appropriate families of
characters.

Exercise 3.10. Let G be an abelian group.

1. Prove that the profinite topology of G is contained in the Bohr topology of G. Give an example of a group
G where these two topologies differ.

2. Let H be the family of all characters χ of G such that the subgroup χ(G) is finite. Prove that the topology
TH coincides with the pro-finite topology on G.

3. Let H be the family of all characters χ of G such that the subgroup χ(G) is finite and contained in the
subgroup Z(p∞) of T. Prove that the topology TH coincides with the pro-p-finite topology on G.

7

8 3 GENERAL PROPERTIES OF TOPOLOGICAL GROUPS

This exercise suggests to call a character χ : G → T torsion is there exists n > 0 such that χ vanishes on
the subgroup nG := {nx : x ∈ G}. (Equivalently, the character n · χ coincides with the trivial character, where
the character n · χ : G→ T is defined by (n · χ)(x) := nχ(x).)

Exercise 3.11. Let G be an abelian group. Prove that:

1. if H is a family of characters of G, then the topology TH is contained in the pro-finite topology of G iff
every character of H is torsion.

2. if G is bounded, then the Bohr topology of G coincides with the profinite topology of G.

3. if the Bohr topology of G coincides with the profinite topology of G, then G is bounded.

3.2.3 Pseudonorms and pseudometrics in a group

According to Markov a pseudonorm in an abelian group G is a map ν : G→ R+ such that for every x, y ∈ G:

(1) ν(1) = 0;

(2) ν(x−1) = ν(x);

(3) ν(xy) ≤ ν(x) + ν(y).

The norms defined in a real vector space are obviously pseudonorms (with the additional property, in additive
notation, ν(0) = 0 iff x = 0).

Every pseudonorm ν generates a pseudometric dν on G defined by dν(x, y) := ν(x−1y). This pseudometric
is left invariant in the sense that dν(ax, ay) = dν(x, y) for every a, x, y ∈ G. Denote by τν the topology induced
on G by this pseudometric. A base of Vτν (1) is given by the open balls {B1/n(1) : n ∈ N+}.

In order to build metrics inducing the topology of a given topological group (G, τ) we need the following
lemma (for a proof see [67, 8.2], [79]). We say that a pseudometric d onG is continuous if the map d : G×G→ R+

is continuous. This is equivalent to have the topology induced by the metric d coarser than the topology τ (i.e.,
every open set with respect to the metric d is τ -open).

Lemma 3.12. Let G be a topological group and let

U0 ⊇ U1 ⊇ . . . ⊇ Un ⊇ . . . (2)

be symmetric neighborhoods of 1 with U3
n ⊆ Un−1 for every n ∈ N. Then there exists a continuous left invariant

pseudometric d on G such that Un ⊆ B1/n(1) ⊆ Un−1 for every n.

Exercise 3.13. Prove that in the previous lemma H =
⋂∞

n=1 Un is a closed subgroup of G with the property
H = {x ∈ G : d(x, 1) = 0}. In particular, d is a metric iff H = {1}.

If the chain (2) has also the property xUnx
−1 ⊆ Un−1 for every x ∈ G and for every n, the subgroup H is

normal and d defines a metric on the quotient group letting d̃(xH, yH) := d(x, y). The metric d̃ induces the
quotient topology on G/H.

3.2.4 Permutation groups

Let X be an infinite set and let G briefly denotes the group S(X) of all permutations of X. A very natural
topology on G is defined by taking as filter of neighborhoods of 1 = idX the family of all subgroups of G of the
form

SF = {f ∈ G : (∀x ∈ F) f(x) = x},
where F is a finite subset of X.

This topology can be described also as the topology induced by the natural embedding of G into the Cartesian
power XX equipped with the product topology, where X has the discrete topology.

This topology is also the point-wise convergence topology on G. Namely, if (fi)i∈I is a net in G, then fi
converges to f ∈ G precisely when for every x ∈ X there exists an i0 ∈ I such that for all i ≥ i0 in I one has
fi(x) = f(x).

Exercise 3.14. If Sω(X) denotes the subset of all permutations of finite support in S(X) prove that Sω is a
dense normal subgroup of G.

Exercise 3.15. Prove that S(X) has no proper closed normal subgroups.

8

3.3 Subgroups and quotients of topological groups 9

3.3 Subgroups and quotients of topological groups

Let G be a topological group and let H be a subgroup of G. Then H becomes a topological group when endowed
with the topology induced by G. Sometimes we refer to this situation by saying H is a topological subgroup of
G.

Let G and H be topological groups and let f : G→ H be a continuous homomorphism. If f is simultaneously
an isomorphism and a homeomorphism, then f is called a topological isomorphism. If f : G → f(G) ⊆ H is
a topological isomorphism, where f(G) carries the topology induced by H, then f is called topological group
embedding, or shortly embedding.

Proposition 3.16. Let G be a topological group and let H be a subgroup of G. Then:

(a) H is open in G iff H has a non-empty interior;

(b) if H is open, then H is also closed;

(c) if H is discrete and G is T1, then H is closed.

Proof. (a) Let ∅ 6= V ⊆ H be an open set and let h0 ∈ V . Then 1 ∈ h−1
0 V ⊆ H = h−1

0 H. Now U = h−1
0 V is

open, contains 1 and h ∈ hU ⊆ H for every h ∈ H. Therefore H is open.
(b) If H is open then every coset gH is open and consequently the complement G \ H is open. So H is

closed.
(c) Since H is discrete there exists U ∈ V(1) with U ∩H = {1}. Choose V ∈ V(1) with V −1 · V ⊆ U . Then

|xV ∩H| ≤ 1 for every x ∈ G, as h1 = xv1 ∈ xV ∩H and h2 = xv2 ∈ xV ∩H give h−1
1 h2 ∈ V −1 · V ∩H = {1},

hence h1 = h2. Therefore, if x 6∈ H one can find a neighborhood W ⊆ xV of x with W ∩H = ∅, i.e., x 6∈ H.
Indeed, if xV ∩H = ∅, just take W = xV . In case xV ∩H = {h} for some h ∈ H, one has h 6= x as x 6∈ H.
Then W = xV \ {x} is the desired neighborhood of x.

Exercise 3.17. Let H be a discrete non-trivial group and let G = H ×N , where N is an indiscrete non-trivial
group. Prove that H × {1} is a discrete non-closed subgroup of G.

Let us see now how the closure H of a subset H of a topological group G can be computed.

Lemma 3.18. Let H be a subset of G. Then with V = V(1) one has

(a) H =
⋂

U∈V UH =
⋂

U∈V HU =
⋂

U,V ∈V UHV ;

(b) if H is a subgroup of G, then H is a subgroup of G; if H a normal subgroup, then also H is normal subgroup;

(c) N = {1} is a closed normal subgroup.

Proof. (a) For x ∈ G one has x 6∈ H iff there exists U ∈ V such that xU ∩H = ∅ = Ux∩H. Pick a symmetric U ,
i.e., U = U−1. Then the latter property is equivalent to x 6∈ UH∪HU . This provesH =

⋂
U∈V UH =

⋂
U∈V HU .

To prove the last equality in (a) note that the already established equalities yield

⋂

U,V ∈V
UHV =

⋂

U∈V
(
⋂

V ∈V
UHV) =

⋂

U∈V
UH ⊆

⋂

U∈V
U2H =

⋂

W∈V
WH = H.

(b) Let x, y ∈ H. According to (a), to verify xy ∈ H it suffices to see that xy ∈ UHU for every U ∈ V. This
follows from x ∈ UH and y ∈ HU for every U ∈ V. If H is normal, then for every a ∈ G and for U ∈ V there
exists a symmetric V ∈ V with aV ⊆ Ua and V a−1 ⊆ a−1U . Now for every x ∈ H one has x ∈ V HV −1, hence
axa−1 ∈ aV HV −1a−1 ⊆ UaHa−1U ⊆ UHU . This proves axa−1 ∈ H according to (a).

(c) follows from (b) with H = {1}.

Exercise 3.19. Prove that:

• the subgroup H × {1} from Exercise 3.17 of G is dense.

• for every infinite set X and every group topology on the permutation group S(X) the subgroups Sx = {f ∈
S(X) : f(x) = x}, x ∈ X, are either closed or dense. (Hint. Prove that Sx is a maximal subgroup of
S(X), see Fact 3.56.)

Exercise 3.20. Prove that every proper closed subgroup of R is cyclic.

9

10 3 GENERAL PROPERTIES OF TOPOLOGICAL GROUPS

(Hint. If H is a proper closed non-trivial subgroup of R prove that the set {h ∈ H : h > 0} has a greatest
lower bound h0 and conclude that H = 〈h0〉.)

Let G be a topological group and H a normal subgroup of G. Consider the quotient G/H with the quotient
topology, namely the finest topology on G/H that makes the canonical projection q : G → G/H continuous.
Since we have a group topology on G, the quotient topology consists of all sets q(U), where U runs over the
family of all open sets of G (as q−1(q(U)) is open in G in such a case). In particular, the canonical projection
q is open.

The next theorem is due to Frobenius.

Theorem 3.21. If G and H are topological groups, f : G → H is a continuous surjective homomorphism and
q : G→ G/ ker f is the canonical homomorphism, then the unique homomorphism f1 : G/ ker f → H, such that
f = f1 ◦ q, is a continuous isomorphism. Moreover, f1 is a topological isomorphism iff f is open.

Proof. Follows immediately from the definitions of quotient topology and open map.

Independently on its simplicity, this theorem is very important since it produces topological isomorphisms.
Openness of the map f is its main ingredient, so from now on we shall be interested in providing conditions
that ensure openness (see also §4.1).

Lemma 3.22. Let X,Y be topological spaces and let ϕ : X → Y be a continuous open map. Then for every
subspace P of Y with P ∩ ϕ(X) 6= ∅ the restriction ψ : H1 → P of the map ϕ to the subspace H1 = ϕ−1(P) is
open.

Proof. To see that ψ is open choose a point x ∈ H1 and a neighborhood U of x in H1. Then there exists a
neighborhoodW of x in X such that U = H1∩W . To see that ψ(U) is a neighborhood of ψ(x) in P it suffices to
note that if ϕ(w) ∈ P for w ∈W , then w ∈ H1, hence w ∈ H1∩W = U . Therefore ϕ(W)∩P ⊆ ϕ(U) = ψ(U).

We shall apply this lemma when X = G and Y = H are topological group and ϕ = q : G → H is a
continuous open homomorphism. Then the restriction q−1(P) → P of q is open for every subgroup P of H.
Nevertheless, even in the particular case when q is surjective, the restriction H1 → ϕ(H1) of q to an arbitrary
closed subgroup H1 of G need not be open.

In the next theorem we see some isomorphisms related the quotient groups.

Teoema 3.23. Let G be a topological group, let N be a normal closed subgroup of G and let p : G → G/N be
the canonical homomorphism.

(a) If H is a subgroup of G, then the homomorphism i : HN/N → p(H), defined by i(xN) = p(x), is a
topological isomorphism.

(b) If H is a closed normal subgroup of G with N ⊆ H, then p(H) = H/N is a closed normal subgroup of G/N
and the map j : G/H → (G/N)/(H/N), defined by j(xH) = (xN).(H/N), is a topological isomorphism.

(Both in (a) and (b) the quotient groups are equipped with the quotient topology.)

Proof. (a) As HN = p−1(p(H)) we can apply Lemma 3.22 and conclude that p′ is an open map. Now Theorem
3.21 applies to the restriction p′ : HN → p(H) of p.

(b) Since H = HN , item (a) implies that the induced topology of p(H) coincides with the quotient topology
of H/N . Hence we can identify H/N with the topological subgroup p(H) of G/N . Since H = HN , the set
(G/N) \ p(HN) = p(G \ HN) is open, hence p(H) is closed. Finally note that the composition f : G →
(G/N)/(H/N) of p with the canonical homomorphism G/N → (G/N)/(H/N) is open, being the latter open.
Applying to the open homomorphism f with ker f = H Theorem 3.21 we can conclude that j is a topological
isomorphism.

Exercise 3.24. Let G be an abelian group equipped with its Bohr topology and let H be a subgroup of G. Prove
that:

• H is closed in G;

• the topological subgroup topology of H coincides with its Bohr topology;

• the quotient topology of G/H coincides with the Bohr topology of G/H.

• ∗ G has no convergent sequences [36, §3.4].

10

3.4 Separation axioms 11

Exercise 3.25. Let H be a discrete subgroup of a topological group G. Prove that:

• H ∩ {1} = {1};
• H is isomorphic to the semi-direct product of H and {1}, carrying the product topology, where H is discrete

and {1} is indiscrete.

3.4 Separation axioms

Lemma 3.18 easily implies that every topological group is regular, hence:

Proposition 3.26. For a topological group G the following are equivalent:

(a) G is Hausdorff;

(b) G is T0.

(c) G is T3 (where T3 stands for ”regular and T1”).

(d) {1} = {1}.
A topological group G is monothetic if there exists x ∈ G with 〈x〉 dense in G.

Exercise 3.27. Prove that:

• a Hausdorff monothetic group is necessarily abelian.

• T is monothetic.

Is T2 monothetic? What about TN?

Now we relate proprieties of the quotient G/H to those of the subgroup H of G.

Lemma 3.28. Let G be a topological group and let H be a normal subgroup of G. Then:

(1) the quotient G/H is discrete if and only if H is open;

(2) the quotient G/H is Hausdorff if and only if H is closed.

Let us see now that every T0 topological group is also a Tychonov space.

Theorem 3.29. Every Hausdorff topological group is a Tychonov space.

Proof. Let F be a closed set with 1 6∈ F . Then we can find a chain (2) of open neighborhoods of 1 as in Lemma
3.12 such that F ∩ U0 = ∅. Let d be the pseudometric defined in Lemma 3.12 and let fF (x) = d(x, F) be
the distance function from F . This function is continuous in the topology induced by the pseudometric. By
the continuity of d it will be continuous also with respect to the topology of G. It suffices to note now that
fF (F) = 0, while fF (1) = 1. This proves that the space G is Tychonov, as the pseudometric is left invariant,
so the same argument provides separation of a generic point a ∈ G from a closed set F that does not contain
a.

Let G be an abelian group and let H be a family of characters of G. Then the characters of H separate the
points of G iff for every x ∈ G, x 6= 0, there exists a character χ ∈ H with χ(x) 6= 1.

Exercise 3.30. Let G be an abelian group and let H be a family of characters of G. Prove that the topology
TH is Hausdorff iff the characters of H separate the points of G.

Proposition 3.31. Let G be an infinite abelian group and let H = Hom(G,S). Then the following holds true:

(a) the characters of H separate the points of G,

(b) the Bohr topology TH is Hausdorff and non-discrete.

Proof. (a) This is Corollary 2.7.
(b) According to Exercise 3.30 item (a) implies that the topology TH is Hausdorff. Suppose, for a contradic-

tion, that TH is discrete. Then there exist χi ∈ H, i = 1, . . . , n and δ > 0 such that U(χ1, . . . , χn; δ) = {0}. In
particular, H =

⋂n
i=1 kerχi = {0}. Hence the diagonal homomorphism f = χ1 × . . .× χn : G→ Sn is injective

and f(G) ∼= G is an infinite discrete subgroup of Sn. According to Proposition 3.16 f(G) is closed in Sn and
consequently, compact. The compact discrete spaces are finite, a contradiction.

11

12 3 GENERAL PROPERTIES OF TOPOLOGICAL GROUPS

Most often the topological groups in the sequel will be assumed to be Hausdorff.

Example 3.32. Contrary to what we proved in Theorem 3.29 Hausdorff topological groups need not be normal
as topological spaces (see Exercise 3.37). A nice “uniform” counter-example to this was given by Trigos: for
every uncountable group G the topological group G# is not normal as a topological space (countable groups are
ruled out since every every countable Hausdorff topological group is normal, being a regular Lindel̈ff space).

Theorem 3.33. (Birkhoff-Kakutani) A topological group is metrizable iff it has a countable base of neighbor-
hoods of 1.

Proof. The necessity is obvious as every point x in a metric space has a countable base of neighborhoods. Suppose
now that G has countable base of neighborhoods of 1. Then one can build a chain (2) of neighborhoods of 1 as
in Lemma 3.12 that form a base of V(1), in particular,

⋂∞
n=1 Un = {1}. Then the pseudometric produced by the

lemma is a metric that induces the topology of the group G because of the inclusions Un ⊆ B1/n ⊆ Un−1.

Exercise 3.34. Prove that subgroups and quotients of metrizable topological groups are metrizable.

Exercise 3.35. Prove that every topological abelian group admits a continuous isomorphism into a product of
metrizable abelian groups.

[Hint. For x ∈ G, x 6= 0 choose an open neighborhood U of 0 with x ∈ U . Build a sequence {Un} of
symmetric open neighborhoods of 0 with U0 ⊆ U and Un + Un ⊆ Un−1. Then HU =

⋂∞
n=1 Un is a closed

subgroup of G .Let τU be the group topology on the quotient G/HU having as a local base at 0 the family
{fU (Un)}, where fU : F → G/HU is the canonical homomorphism. Show that (G/H, τU) is metrizable. Now
take the product of all groups (G/H, τU). To conclude observe that the diagonal map of the family fU into the
product of all groups (G/H, τU) is continuous and injective.]

Exercise 3.36. Let G be a Hausdorff topological group. Prove that the centralizer of an element g ∈ G is a
closed subgroup. In particular, the center Z(G) is a closed subgroup of G.

Exercise 3.37. ∗ The group Zℵ1 equipped with the Tychonov topology (where Z is discrete) is not a normal
space [67].

Furstenberg used the natural topology ν of Z (see Example 3.7) to find a new proof of the infinitude of prime
numbers.

Exercise 3.38. Prove that there are infinitely many primes in Z using the natural topology ν of Z.

(Hint. If p1, p2, . . . , pn were the only primes, then consider the union of the open subgroups p1Z, . . . , pnZ
and use the fact that every integer n 6= 0,±1 has a prime divisor, so belongs to

⋃n
i=1 piZ.)

3.5 Connectedness in topological groups

For a topological group G we denote by c(G) the connected component of 1 and we call it briefly connected
component of G.

Before proving some basic facts about the connected component, we need an elementary property of the
connected sets in a topological groups.

Lemma 3.39. Let G be a topological group.

(a) If C1, C2, . . . , Cn are connected sets in G, then also C1C2 . . . Cn is connected.

(b) If C is a connected set in G, then the set C−1 as well as the subgroup generated by C are connected.

Proof. (a) Let us conisder the case n = 2, the general case easily follows from this one by induction. The
subset C1 × C2 of G × G is connected. Now the map µ : G × G → G defined µ(x, y) = xy is continuous and
µ(C1 × C2) = C1C2.

(a) For the first part it suffices to note that C−1 is a continuous image of C under the continuous map
x 7→ x−1.

To prove the second assertion consider the set C1 = CC−1. It is connected by the previous lemma and
obviously 1 ∈ C1. Moreover, C2

1 ⊇ C ∪ C−1. It remains to note now that the subgroup generated by C1

coincides with the subgroup generated by C. Since the former is the union of all sets Cn
1 , n ∈ N and each set

Cn
1 is connected by item (a), we are done.

12

3.5 Connectedness in topological groups 13

Proposition 3.40. The connected component c(G) a topological group G is a closed normal subgroup of G.
The connected component of an element x ∈ G is simply the coset xc(G) = c(G)x.

Proof. To prove that c(G) is stable under multiplication it suffices to note that c(G)c(G) is still connected
(applying item (a) of the above lemma) and contains 1, so must be contained in the connected component c(G).
Similarly, an application of item (b) implies that c(G) is stable also w.r.t. the operation x 7→ x−1, so c(G) is a
subgroup of G. Moreover, for every a ∈ G the image ac(G)a−1 under the conjugation is connected and contains
1, so must be contains in the connected component c(G). So c(G) is stable also under conjugation. Therefore
c(G) is a normal subgroup. The fact that c(G) is closed is well known.

To prove the last assertion it suffices to recall that the maps y 7→ xy and y 7→ yx are homeomorphisms.

Our next aim is to see that the quotient G/c(G) is totally disconnected. We need first to see that connect-
edness and total connectedness are properties stable under extension:

Proposition 3.41. Let G be a topological group and let N be a closed normal subgroup of G.

(a) If both N and G/N are connected, then also G is connected.

(b) If both N and G/N are totally disconnected, then also G is totally disconnected.

Proof. Let q : G→ G/N be the canonical homomorphism.
(a) Let A 6= ∅ be a clopen set of G. As every coset aN is connected, one has either aN ⊆ A or aN ∩A = ∅.

Hence, A = q−1(q(A)). This implies that q(A) is a non-empty clopen set of the connected group G/N . Thus
q(A) = G/N . Consequently A = G.

(b) Assume C is a connected set in G. Then q(C) is a connected set of G/N , so by our hypothesis, q(C)
is a singleton. This means that C is contained in some coset xN . Since xN is totally disconnected as well, we
conclude that C is a singleton. This proves that G is totally disconnected.

Lemma 3.42. If G is a topological group, then the group G/c(G) is totally disconnected.

Proof. Let q : G→ G/c(G) be the canonical homomorphism and let H be the inverse image of c(G/c(G)) under
q. Now apply Proposition 3.41 to the group H and the quotient group H/c(G) ∼= c(G/c(G)) to conclude that
H is connected. Since it contains c(G), we have H = c(G). Hence G/c(G) is totally disconnected.

For a topological group G denote by Q(G) the quasi-component of the neutral element 1 of G (i.e., the
intersection of all clopen sets of G containing 1) and call it quasi-component of G.

Proposition 3.43. For a topological group G the quasi-component Q(G) is a closed normal subgroup of G. The
quasi-component of x ∈ G coincides with the coset xQ(G) = Q(G)x.

Proof. Let x, y ∈ Q(G). To prove that xy ∈ Q(G) we need to verify that xy ∈ O for every clopen set O
containing 1. Let O be such a set, then x, y ∈ O. Obviously Oy−1 is a clopen set containing 1, hence x ∈ Oy−1.
This implies xy ∈ O. Hence Q(G) is stable under multiplication. For every clopen set O containing 1 the set
O−1 has the same propriety, hence Q(G) is stable also w.r.t. the operation a 7→ a−1. This implies that Q(G) is
a subgroup. Moreover, for every a ∈ G and for every clopen set O containing 1 also its image aOa−1 under the
conjugation is a clopen set containing 1. So Q(G) is stable also under conjugation. Therefore Q(G) is a normal
subgroup. Finally, as an intersection of closen sets, Q(G) is closed.

Remark 3.44. It follows from Lemma 2.14 that c(G) = Q(G) for every compact topological group G. Actually,
this remains true also in the case of locally compact groups G (cf. 4.22).

In the next remark we discuss zero-dimensionality.

Remark 3.45. (a) It follows immediately from Proposition 3.16 that every linear group topology is zero-
dimensional; in particular, totally disconnected.

(b) Every countable Hausdorff topological group is zero-dimensional (this is true for topological spaces as
well).

We shall see in the sequel that for locally compact abelian groups or compact groups the implication from item
(a) can be inverted (see Theorem 4.18). On the other hand, the next example shows that local connectedness
is essential.

Example 3.46. The group Q/Z is zero-dimensional but has no proper open subgroups.

13

14 3 GENERAL PROPERTIES OF TOPOLOGICAL GROUPS

3.6 Group topologies determined by sequences

Let G be an abelian group and let (an) be a sequence in G. The question of the existence of a Hausdorff group
topology that makes the sequence (an) converge to 0 is not only a mere curiosity. Indeed, assume that some
Hausdorff group topology τ makes the sequence (pn) of all primes converge to zero. Then pn → 0 would yield
pn − pn+1 → 0 in τ , so this sequence cannot contain infinitely many entries equal to 2. This would provide a
very easy negative solution to the celebrated problem of the infinitude of twin primes (actually this argument
would show that the shortest distance between two consecutive primes converges to ∞).

Definition 3.47. [89] A sequence A = {an}n in an abelian group G is called a T-sequence is there exists a
Hausdorff group topology on G such that an → 0. 2

Let (an) be a T-sequence in an abelian group G. Hence the family {τi : i ∈ I} of Hausdorff group topologies
on the group G such that an → 0 in τi is non-empty. Let τ = supi∈I τi, then by Exercise 3.5 an → 0 in τ as
well. Clearly, this is the finest group topology in which an converges to 0. This is why we denote it by τA or
τ(an).

3

Before discussing the topology τ(an) and how T -sequences can be described in general we consider a couple
of examples:

Example 3.48. (a) Let us see that the sequences (n2) and (n3) are not a T -sequence in Z. Indeed, suppose
for a contradiction that some Hausdorff group topology τ on Z makes n2 converge to 0. Then (n + 1)2

converges to 0 as well. Taking the difference we conclude that 2n+1 converges to 0 as well. Since obviously
also 2n + 3 converges to 0, we conclude, after substraction, that the constant sequence 2 converges to 0.
This is a contradiction, since τ is Hausdroff. We leave the case (n3) as an exercise to the reader.

(b) A similar argument proves that the sequence Pd(n), where Pd(x) ∈ Z[x] is a fixed polynomial with
degPd = d > 0, is not a T -sequence in Z.

Protasov and Zelenyuk [88] established a number of nice properties of the finest group topology τ(an) on G
that makes (an) converge to 0.

For an abelian group G and subsets A1, . . . , An . . . of G we denote by ±A1 ± . . . ± An the set of all sums
g = g1 + . . .+ gn, where gi ∈ {0} ∪Ai ∪ −Ai for every i = 1, . . . , n. Let

±A1 ± . . .±An ± . . . =
∞⋃

n=1

±A1 ± . . .±An.

If A = {an}n is a sequence in G, for m ∈ N denote by Am the “tail” {am, am+1, . . .}. For k ∈ N let
A(k,m) = ±Am ± . . .±Am (k times).

Remark 3.49. The existence of a finest group topology τA on an abelian group G that makes an arbitrary
given sequence A = {an}n in G converge to 0 is easy to prove as far as we are not interested on imposing the
Hausdorff axiom. Indeed, as an converges to 0 in the indiscrete topology, τA is simply the supremum of all
group topologies τ on G such that an converges to 0 in τ . This gives no idea on how this topology looks like.
One can easily describe it as follows.

Let m1, . . . ,mn, . . . be a sequence of natural numbers. Denote by A(m1, . . . ,mn, . . .) the set

±Am1
± . . .±Amn

± . . .

and by BA the family of all sets A(m1, . . . ,mn, . . .) when m1, . . . ,mn, . . . vary in NN. Then BA is a filter
base, satisfying the axioms of group topology. The group topology τ defined in this way satisfies the required
conditions. Indeed, obviously an → 0 in (G, τ) and τ contains any other group topology with this property.
Consequently, τ = τA.

Note that
A(k,m) ⊆ A(m1, . . . ,mn, . . .), (1)

for every k ∈ N, where m = max{m1, . . . ,mk}. The sets A(k,m), for k,m ∈ N, form a filter base, but the
filter they generate need not be the filter of neighborhoods of 0 in a group topology. The utility of this family
becomes clear now.

2We shall see below that the sequence (pn) of all primes is not a T -sequence in the group Z (see Exercise 4.32). So the above
mentioned possibility to resolve the problem of the infinitude of twin primes does not work.

3To simplify things we consider only sequences without repetition, hence the convergence to zero an → 0 depends only on the
set A = {an}n, it does not depend on the enumeration of the sequence.

14

3.7 Markov’s problems 15

Theorem 3.50. A sequence A = {an}n in an abelian group G is a T-sequence iff

∞⋂

m=1

A(k,m) = 0 for every k ∈ N. (2)

Proof. Obviously the sequence A = {an}n is a T-sequence iff the topology τA is Hausdorff. Clearly, τA is
Hausdorff iff

⋂∞
m1,...,mn,...

A(m1, . . . ,mn, . . .) = 0. If τA is Hausdorff, then (2) holds by (1). It remains to see that

(2) implies
⋂∞

m1,...,mn,...
A(m1, . . . ,mn, . . .) = 0. First of all note that A(m1, . . . ,mn, . . .) ⊇ A(m∗

1, . . . ,m
∗
n, . . .),

where m∗
n = max{m1, . . . ,mn}. Moreover, the sequence (m∗

n) is increasing. Hence

∞⋂

m1,...,mn,...

A(m1, . . . ,mn, . . .) =
∞⋂

m∗1 ,...,m
∗
n,...

A(m∗
1, . . . ,m

∗
n, . . .),

where the second intersection is taken only over the increasing sequences (m∗
n). Obviously, for every increasing

sequence (m∗
n) one has

A(m∗
1, . . . ,m

∗
n, . . .) ⊆

∞⋃

k=1

A(k,m∗
1).

This yields
∞⋂

m∗1 ,...,m
∗
n,...

A(m∗
1, . . . ,m

∗
n, . . .) ⊆

∞⋂

m∗1=1

∞⋃

k=1

A(k,m∗
1) =

∞⋃

k=1

∞⋂

m∗1=1

A(k,m∗
1) = 0.

Since every infinite abelian group G admits a non-discrete metrizable group topology, there exist non-trivial
(i.e., having all members non-zero) T -sequences.

A notion similar to T -sequence, but defined with respect to only topologies induced by characters, will be
given in §6.2. From many points of view it turns out to be easier to deal with than T -sequence. In particular,
we shall see easy sufficient condition for a sequence of integers to be a T -sequence.

We give without proof the following technical lemma that will be useful in §6.2.

Lemma 3.51. [89] For every T -sequence A = {an} in Z there exists a sequence {bn} in Z such that for every
choice of the sequence (en), where en ∈ {0, 1}, the sequence qn defined by q2n = bn + en and q2n−1 = an, is a
T -sequence.

Exercise 3.52. (a)∗ Prove that there exists a T -sequence (an) in Z with limn
an+1

an
= 1 [89] (see also Example

6.12).

(b)∗ Every sequence (an) in Z with limn
an+1

an
= +∞ is a T -sequence [89, 7] (see Theorem 6.11).

(c)∗ Every sequence (an) in Z such that limn
an+1

an
∈ R is transcendental is a T -sequence [89].

3.7 Markov’s problems

3.7.1 The Zariski topology and the Markov topology

Let G be a Hausdorff topological group, a ∈ G and n ∈ N. Then the set {x ∈ G : xn = a} is obviously closed
in G. This simple fact motivated the following notions due to to Markov [76].

A subset S of a group G is called:

(a) elementary algebraic if there exist an integer n > 0, a1, . . . , an ∈ G and ε1, . . . , εn ∈ {−1, 1} such that

S = {x ∈ G : xε1a1x
ε2a2 . . . an−1x

εn = an},

(b) algebraic if S is an intersection of finite unions of elementary algebraic subsets,

(c) unconditionally closed if S is closed in every Hausdorff group topology of G.

15

16 3 GENERAL PROPERTIES OF TOPOLOGICAL GROUPS

Since the family of all finite unions of elementary algebraic subsets is closed under finite unions and contains
all finite sets, it is a base of closed sets of some T1 topology ZG on G, called the Zariski topology4. Clearly, the
ZG-clsoed sets are precisely the algebraic sets in G.

Analogously, the family of all unconditionally closed subsets of G coincides with the family of closed subsets
of a T1 topology MG on G, namely the infimum (taken in the lattice of all topologies on G) of all Hausdorff group
topologies on G. We call MG the Markov topology of G. Note that (G,ZG) and (G,MG) are quasi-topological
groups, i.e., the inversion and translations are continuous. Nevertheless, when G is abelian (G,ZG) and (G,MG)
are not group topologies unless they are discrete.

Since an elementary algebraic set of G must be closed in every Hausdorff group topology on G, one always
has ZG ⊆ MG. In 1944 Markov [76] asked if the equality ZG = MG holds for every group G. He himself showed
that the answer is positive in case G is countable [76]. Moreover, in the same manuscript Markov attributes to
Perel’man the fact that ZG = MG for every Abelian group G (a proof has never appeared in print until [37]).
An example of a group G with ZG 6= MG was given by Gerchard Hesse [66].

Exercise 3.53. Show that if (G, ·) is an abelian group, then every elementary algebraic set of G has the form
{x ∈ G : xn = a}, a ∈ G.

3.7.2 The Markov topology of the symmetric group

Let X be an infinite set. In the sequel we denote by τX the pointwise convergence topology of the infinite
symmetric group S(X) defined in §3.2.4. It turns out that the Markov topology of S(X) coincides with τX :

Theorem 3.54. Then Markov topology on S(X) coincides with the topology τX of pointwise convergence of
S(X).

This theorem follows immediately from the following old result due to Gaughan.

Theorem 3.55. ([36]) Every Hausdorff group topology of the infinite permutation group S(X) contains the
topology τX .

The proof of this theorem follows more or less the line of the proof exposed in [36, §7.1] with several
simplifications. The final stage of the proof is preceded by a number of claims (and their corollaries) and two
facts about purely algebraic properties of the group S(X) (3.56 and 3.59). The claims and their corollaries are
given with complete proofs. To give an idea about the proofs of the two algebraic facts, we prove the first one;
the proof of the second one can be found in [36, Lemmas 7.1.4, 7.1.8] (actually, only a fragment of the proof of
[36, Lemmas 7.1.8] is needed for the proof of item (b) of Fact 3.59).

We say for a subset A of S(X) that A is m-transitive for some positive integer m if for every Y ⊆ X of
size at most m and every injection f : Y → X there exists a ∈ A that extends f . 5 The leading idea is that a
transitive subset A of S(X) is placed “generically” in S(X), whereas a non-tranisitve one is a subset of some
subgroup of S(X) that is a direct product S(Y) × S(X \ Y). (Here and in the sequel, for a subset Y of X
we tacitly identify the group S(Y) with the subgroup of S(X) consisting of all permutations of S(X) that are
identical on X \ Y .)

The first fact concerns the stabilizers Sx = S{x} = {f ∈ S(X) : f(x) = x} of points x ∈ X. They consitute
a prebase of the filter of neighborhoods of idX in τX .

Fact 3.56. For every x ∈ X the subgroup Sx of S(X) is maximal.

Proof. Assume H is a subgroup of S(X) properly containing Sx. To show that H = S(X) take any f ∈ S(X).
If y = f(x) coincides with x, then f ∈ Sx ⊆ H and we are done. Assume y 6= x. Get h ∈ H \ Sx. Then
z = h(x) 6= x, so x 6∈ {z, y}. There exists g ∈ S(X) such that g(x) = x, g(y) = z and g(z) = y. Then
g ∈ Sx ⊆ H and f(x) = g(h(x)) = y, so h−1g−1f(x) = x and h−1g−1f ∈ Sx ∩G ⊆ H. So f ∈ ghH = H.

Claim 3.57. Let T be a Hausdorff group topology on S(X). If a subgroups of S(X) of the form Sx is T -closed,
then it is also T -open.

Proof. As Sx is T -closed, for every fixed y 6= x the set Vy = {f ∈ S(X) : f(x) 6= y} is T -open and contains 1.
So there exists a symmetric neighborhood W of 1 in T such that W.W ⊆ Vy. By the definition of Vy this gives
Wx ∩Wy = ∅. Then either |X\Wx| = |X| or |X\Wy| = |X|. Suppose this occurs with x, i.e., |X\Wx| = |X|.

4Some authors call it also the verbal topology [20], we prefer here Zariski topology coined by most authors [10].
5Note that a countable subset H of S(X) cannot be transitive unless X itself is countable.

16

3.7 Markov’s problems 17

Then one can find a permutation f ∈ S(X) that sends Wx \ {x} to the complement of Wx and f(x) = x. Such
an f satisfies:

fWf−1 ∩W ⊆ Sx

as fWf−1(x) meets Wx precisely in the singleton {x} by the choice of f . This proves that Sx is T -open.
Analogous argument works for Sy when |X\Wy| = |X|.

Corollary 3.58. If T be a Hausdorff group topology on S(X) that does not contain τX , then all subgroups of
S(X) of the form Sx are T -dense.

Proof. Since the subgroups Sx of S(X) form a prebase of the filter of neighborhoods of idX in S(X), out
hypothesis implies that some subgroup Sx is not T -open. By Claim 3.57 Sx is not T -closed either. By Fact
3.56 Sx is T -dense. Since all subgroups of the form Sy are conjugated, this implies that stabilizers Sy are
T -dense.

This was the first step in the proof. The next step will be establishing that Sx,y are never dense in any
Hausdorff group topology on S(X) (Corollary 3.62).

In the sequel we need the subgroup S̃x,y := Sx,y × S({x, y}) of S(X) that contains Sx,y as a subgroup of

index 2. Note that S̃x,y is precisely the subgroup of all permutations in S(X) that leave the doubleton {x, y}
set-wise invariant.

Fact 3.59. For any doubleton x, y in X the following holds true:

(a) the subgroup S̃x,y of S(X) is maximal;

(b) every proper subgroup of S(X) properly containing Sx,y coincides with one of the subgroups Sx, Sy or S̃x,y.

Claim 3.60. Let T be a Hausdroff group topology on S(X), then there exists a T -nbd of 1 that is not 2-transitive.

Proof. Assume for a contradiction that all T -neighborhoods of idX that are 2-transitive. Fix distinct u, v, w ∈
X. We show now that the 3-cycle (u, v, w) ∈ V for every arbitrarily fixed T -neighborhood of idX . Indeed,
choose a symmetric T -neighborhood W of idX such that W 2 ⊆ V . Let f be the transposition (uv). Then
U = fWf ∩W ∈ T is a neighborhood of 1 and fUf = U . Since U is 2-transitive there exists g ∈ U such that
g(u) = u and g(v) = w. Then (u, v, w) = gfg−1f ∈W · (fUf) ⊆W 2 ⊆ V .

Claim 3.61. Let T be a group topology on S(X). Then

(a) every T-nbd V of idX in S(X) is transitive iff every stabilizer Sx is T-dense;

(b) every T -nbd V of idX in S(X) is m-transitive iff every stabilizer SF with |F | ≤ m is T -dense.

Proof. Assume that some (hence all) Sz is T -dense in S(X). To prove that V is transitive consider a pair
x, y ∈ X. Let t = (xy). By the T -density of Sx the T -nbd t−1V of t−1 meets Sx, i.e., for some v ∈ V one has
t−1v ∈ Sx. Then v ∈ tSx obviously satisfies vx = y.

A similar argument proves that transitivity of each T-nbd of 1 entails that every stabilizer Sx is T -dense.
(b) The proof in the case m > 1 is similar.

What we really need further on (in particular, in the next corollary) is that the density of the stabilizers
Sx,y imply that every T -nbd V of idX in S(X) is 2-transitive.

Corollary 3.62. Let T be a Hausdroff group topology on S(X). Then Sx,y is T -dense for no pair x, y in X.

Proof. Follows from claims 3.60 and 3.61

Proof of Theorem 3.55. Assume for a contradiction that T is a Hausdroff group topology on S(X) that does
not contain τX . Then by corollaries 3.58 and 3.62 all subgroups of the form Sx are T -dense and no subgroup
of the form Sx,y is T -dense. Now fix a pair x, y ∈ X and let Gx,y denote the T -closure of Sx,y. Then Gx,y is a
proper subgroup of S(X) containing Sx,y. Since Sx is dense, Gx,y cannot contain Sx, so Sx ∩Gx,y is a proper
subgroup of Sx containing Sx,y. By Claim 3.56 applied to Sx = S(X \{x}) and its subgroup Sx,y (the stabilizer
of y in Sx), we conclude that Sx,y is a maximal subgroup of Sx. Therefore, Sx ∩Gx,y = Sx,y. This shows that
Sx,y is a T -closed subgroup of Sx. By Claim 3.57 applied to Sx = S(X \{x}) and its subgroup Sx,y, we conclude
that Sx,y is a T -open subgroup of Sx. Since Sx is dense in S(X), we can claim that Gx,y is a T -open subgroup
of S(X). Since Sx is a proper dense subgroup of S(X), it is clear that Sx cannot contain Gx,y. Analogously, Sy

17

18 3 GENERAL PROPERTIES OF TOPOLOGICAL GROUPS

cannot contain Gx,y either. So Gx,y 6= Sx,y is a proper subgroup of S(X) containing Sx,y that does not coincide

with Sx or Sy. Therefore Gx,y = S̃x,y by Fact 3.59. This proves that S̃x,y is T -open. Since all subgroups of the

form S̃x,y are pairwise conjugated, we can claim that all subgroups S̃x,y is T -open.
Now we can see that the stabilizers SF with |F | > 2 are T-open, as

SF =
⋂

{S̃x,y : x, y ∈ F, x 6= y}.

This proves that all basic neighborhoods SF of 1 in τX are T -open. In particular, also the subgroups Sx are
T -open, contrary to our hypothesis.

3.7.3 Existence of Hausdorff group topologies

According to Proposition 3.31 every infinite abelian group admits a non-discrete Hausdorff group topology, for
example the Bohr topology. This gives immediately the following

Corollary 3.63. Every group with infinite center admits a non-discrete Hausdorff group topology.

Proof. The center Z(G) of the group G has a non-discrete Hausdorff group topology τ by the above remark.
Now consider the family B of all sets of the form aU , where a ∈ G and U is a non-empty τ -subset of Z(G). It
is easy to see that it is a base of a non-discrete Hausdorff group topology on G.

In 1946 Markov set the problem of the existence of a (countably) infinite group G that admits no Hausdorff
group topology beyond the discrete one. Let us call such a group a Markov group. Obviously, G is a Markov
group precisely when MG is discrete. A Markov group must have finite center by Corollary 3.63.

According to Proposition 3.26, the closure of the neutral element of every topological group is always a
normal subgroup of G. Therefore, a simple topological group is either Hausdorff, or indiscrete. So a simple
Markov group G admits only two group topologies, the discrete and the indiscrete ones.

The equality ZG = MG established by Markov in the countable case was intended to help in finding a
countably infinite Markov group G. Indeed, a countable group G is Markov precisely when ZG is discrete.
Nevertheless, Markov failed in building a countable group G with discrete Zariski topology; this was done much
later, in 1980, by Ol′shanskii [78] who made use of the so called Adian groups A = A(m,n) (constructed by
Adian to negatively resolve the famous 1902 Burnside problem on finitely generated groups of finite exponent).
Let us sketch here Ol′shanskii’s elegant short proof.

Example 3.64. [78] Let m and n be odd integers ≥ 665, and let A = A(m,n) be Adian’s group having the
following properties

(a) A is generated by n-elements;

(b) A is torsion-free;

(c) the center C of A is infinite cyclic.

(d) the quotient A/C is infinite, of exponent m, i.e., ym ∈ C for every y ∈ A.6

By (a) the group A is countable. Denote by Cm the subgroup {cm : c ∈ C} of A. Let us see that (b), (c) and
(d) jointly imply that the Zariski topology of the infinite quotient G = A/Cm is discrete (so G is a countably
infinite Markov group). Let d be a generator of C. Then for every x ∈ A\C one has xm ∈ C\Cm. Indeed, if
xm = dms, then (xd−s)m = 1 for some s ∈ Z, so xd−s = 1 and x ∈ C by (b). Hence

for every u ∈ G\{1} there exists a ∈ C\Cm, such that either u = a or um = a. (3)

As |C/Cm| = m, every u ∈ G\{1} is a solution of some of the 2(m− 1) equations in (3). Thus, G\{e} is closed
in the Zariski topology ZG of G. Therefore, ZG is discrete.

Now we recall an example, due to Shelah [92], of an uncountable group which is non-topologizable. It
appeared about a year or two earlier than the ZFC-example of Ol′shanskii exposed above.

Example 3.65. [92] Under the assumption of CH there exists a group G of size ω1 satisfying the following
conditions (a) (with m = 10000) and (b) (with n = 2):

(a) there exists m ∈ N such that Am = G for every subset A of G with |A| = |G|;
6i.e., the finitely generated infinite quotient A/C negatively resolves Burnside’s problem.

18

3.7 Markov’s problems 19

(b) for every subgroup H of G with |H| < |G| there exist n ∈ N and x1, . . . , xn ∈ G such that the intersection⋂n
i=1 x

−1
i Hxi is finite.

Let us see thatG is a Markov group (i.e., MG is discrete)7. Assume T be a Hausdorff group topology onG. There
exists a T -neighbourhood V of eG with V 6= G. Choose a T -neighbourhoodW of eG withWm ⊆ V . Now V 6= G
and (a) yield |W | < |G|. Let H = 〈W 〉. Then |H| = |W | ·ω < |G|. By (b) the intersection O =

⋂n
i=1 x

−1
i Hxi is

finite for some n ∈ N and elements x1, . . . , xn ∈ G. Since each x−1
i Hxi is a T -neighbourhood of eG, this proves

that eG ∈ O ∈ T . Since T is Hausdorff, it follows that {eG} is T -open, and therefore T is discrete.

One can see that even the weaker form of (a) (with m depending on A ∈ [G]|G|), yields that every proper
subgroup of G has size < |G|. In the case |G| = ω1, the groups with this property are known as Kurosh groups (in
particular, this is a Jonsson semigroup of size ω1, i.e., an uncountable semigroup whose proper subsemigroups
are countable).

Finally, this remarkable construction from [92] furnished also the first consistent example to a third open
problem. Namely, a closer look at the above argument shows that the group G is simple. As G has no maximal
subgroups, it shows also that taking Frattini subgroup8 “does not commute” with taking finite direct products
(indeed, Fratt(G) = G, while Fratt(G×G) = ∆G the “diagonal” subgroup of G×G).

3.7.4 Extension of group topologies

The problem of the existence of (Hausdorff non-discrete) group topologies can be considered also as a problem
of extension of (Hausdorff non-discrete) group topologies.

The theory of extension of topological spaces is well understood. If a subset Y of a set X carries a topology
τ , then it is easy to extend τ to a topology τ∗ on X such that (Y, τ) is a subspace of (X, τ∗). The easiest way
to do it is to consider X = Y ∪ (X \ Y) as a partition of the new space (X, τ∗) into clopen sets and define
the topology of X \ Y arbitrarily. Usually, one prefers to define the extension topology τ∗ on X in such a way
to have Y dense in X. In such a case the extensions of a given space (Y, τ) can be described by means of
appropriate families of open filters of Y (i.e., filters on Y having a base of τ -open sets).

The counterpart of this problem for groups and group topologies is much more complicated because of the
presence of group structure. Indeed, let H be a subgroup of a group G and assume that τ is a group topology
of H. Now one has to build a group topology τ∗ on G such that (H, τ) is a topological subgroup of (G, τ∗).
The first idea to extend τ is to imitate the first case of extension considered above by declaring the subgroup H
a τ∗-open topological subgroup of the new topological group (G, τ∗). Let us note that this would immediately
determine the topology τ∗ in a unique way. Indeed, every coset gH of H must carry the topology transported
from H to gH by the translation x 7→ gx, i.e., the τ∗-open subsets of gH must have the form gU , where U is
an open subset of (H, τ). In other words, the family {gU : ∅ 6= U ∈ τ} is a base of τ∗. This idea has worked in
the proof of Corollary 3.63 where H was the center of G. Indeed, this idea works in the following more general
case.

Lemma 3.66. Let H be a subgroup of a group G such that G = HcG(G). Then for every group topology τ on
H the above described topology τ∗ is a group topology of G such that (H, τ) is a topological subgroup of (G, τ∗).

Proof. The first two axioms on the neighborhood base are easy to check. For the third one pick a basic τ∗-
neighborhood U of 1 in G. Since H is τ∗-open, we can assume wlog that U ⊆ H, so U is a τ -neighborhood of
1. Let x ∈ G. We have to produce a τ∗-neighborhood V of 1 in G such that x−1V x ⊆ U . By our hypothesis
there exist h ∈ H, z ∈ cG(G), such that x = hz. Since τ is a group topology on H there exist V ∈ VH,τ (1) such
that h−1V h ⊆ U . Then

x−1V x = z−1h−1V hz ⊆ z−1Uz = U

as z ∈ cG(G). This proves that τ
∗ is a group topology of G .

Clearly, the condition G = HcG(G) is satisfied when H is a central subgroup of G. It is satisfied also when
H is a direct summand of G. On the other hand, subgroups H satisfying G = HcG(G) are normal.

Two questions are in order here:

• is the condition G = HcG(G) really necessary for the extension problems;

• is it possible to definite the extension τ∗ in a different way in order to have always the possibility to
extend a group topology?

7Hesse [66] showed that the use of CH in Shelah’s construction of a Markov group of size ω1 can be avoided.
8the Frattini subgroup of a group G is the intersection of all maximal subgroups of G.

19

20 3 GENERAL PROPERTIES OF TOPOLOGICAL GROUPS

Our next theorem shows that the difficulty of the extension problem are not hidden in the special features
of the extension τ∗.

Theorem 3.67. Let H be a normal subgroup of the group G and let τ be a group topology on H. Then the
following are equivalent:

(a) the extension τ∗ is a group topology on G;

(b) τ can be extended to a group topology of G;

(c) for every x ∈ G the automorphism of H induced by the conjugation by x is τ -continuous.

Proof. The implication (a) → (b) is obvious, while the implication (b) → (c) follows from the fact that the
conjugations are continuous in any topological group. To prove the implication (c) → (a) assume now that
all automorphisms of N induced by the conjugation by elements of G are τ -continuous. Take the filter of all
neighborhoods of 1 in (H, τ∗) as a base of neighborhoods of 1 in the group topology τ∗ of G. This works since
the only axiom to check is to find for every x ∈ G and every τ∗-nbd U of 1 a τ∗-neighborhood V of 1 such that
V x := x−1V x ⊆ U . Since we can choose U, V contained in H, this immediately follows from our assumption of
τ -continuity of the restrictions to H of the conjugations in G.

Now we give an example showing that the extension problem cannot be resolved for certain triples G,H, τ
of a group G, its subgroup H and a group topology τ on H.

Example 3.68. In order to produce an example when the extension is not possible we need to produce a triple
G,H, τ such that at least some conjugation by an element of G is not τ -continuous when considered as an
automorphism of H. The best tool to face this issue is the use of semi-direct products.

Let us recall that for groups K, H and a group homomorphism θ : K → Aut(H) one defines the semi-direct
product G = HoθK, where we shall identify H with the subgroup H×{1} of G. In such a case, the conjugation
in G by an element k of K restricted to H is precisely the automorphism θ(k) of H. Now consider a group
topology τ on H. According to Theorem 3.67 τ can be extended to a group topology of G iff for every k ∈ K
the automorphism θ(k) of H is τ -continuous. (Indeed, every element x ∈ G has the form x = hk, where h ∈ H
and k ∈ K; hence it remains to note that the conjugation by x is composition of the (continuous) conjugation
by h and the conjugation by k.)

In order to produce the required example of a triple G,H, τ such that τ cannot be extended to G it suffices
to find a group K and a group homomorphism θ : K → Aut(H) such that at least one of the automorphisms
θ(k) of H is τ -discontinuous. Of course, one can simplify the construction by taking the cyclic group K1 = 〈k〉
instead of the whole group K, where k ∈ K is chosen such that the automorphisms θ(k) of H is τ -discontinuous.
A further simplification can be arranged by taking k in such a way that the automorphism f = θ(k) of H is
also an involition, i.e., f2 = idH . Then H will be an index two subgroup of G.

Here is an example of a topological abelian group (H, τ) admitting a τ -discontuous involition f . Then the
triple G,H, τ such that τ cannot be extended to G is obtained by simply taking G = Ho〈f〉, where the involition
f acts on H. Take as (H, τ) the torus group T with the usual topology. Then T is algebraically isomorphic to
(Q/Z)⊕c

⊕
Q, so T has 2c many involutions. Of these only the involutions ±idT of T are continuous.

Let us conclude now with a series of examples when the extension problem has always a positive solution.

Example 3.69. Let p be a prime number. If the group of p-adic integers N = Zp is a normal subgroup of
some group G, then the p-adic topology of N can be extended to a group topology on G. Indeed, it suffices to
note that if ξ : N → N is an automorphism of N , then ξ(pnN) = pnN . Since the subgroups pnN define the
topology of N , this proves that every automorphism of N is continuous. Now Theorem 3.67 applies.

Clearly, the p-adic integers can be replaced by any topological group N such that every automorphism of N

is continuous (e.g., products of the form
∏

p Z
kp
p × Fp, where kp < ω and Fp is a finite abelian p-group).

3.8 Cardinal invariants of topological groups

Here we shall be interested in measuring the minimum size of a base (of neighborhoods of 1) in a topological
group H, as well as other cardinal functions related to H.

It is important to relate the bases (of neighborhoods of 1) in H to those of a subgroup G of H.

Exercise 3.70. If G is a subgroup of a topological group H and if B is a base (of neighborhoods of 1) in H then
a base (of neighborhoods of 1) in G is given by {U ∩G : U ∈ B}.

20

3.8 Cardinal invariants of topological groups 21

Now we consider the case when G is a dense subgroup of H.

Lemma 3.71. If G is a dense subgroup of a topological group H and B is a base of neighborhoods of 1 in G,

then {UH
: U ∈ B} is a base of neighborhoods of 1 in H.

Proof. Since the topological group H is regular, the closed neighborhoods form a base at 1 in H. Hence for
a neighborhood V 3 1 in H one can find another neighborhood V0 3 1 such that V0 ⊆ V . Since G ∩ V0 is a
neighborhood of 1 in G, there exists U ∈ B such that U ⊆ G ∩ V0. There exists also an open neighborhood W

of 1 in H such that U = W ∩G. Obviously, one can choose W ⊆ V0. Hence U
H

= W as G is dense in H and

W is open in H. Thus U
H

=W ⊆ V 0 ⊆ V is a neighborhood of 1 in H.

Lemma 3.72. Let G be a dense subgroup of a topological group H and let B be a base of neighborhoods of 1 in
H. Then {gU : U ∈ B, g ∈ G} is a base of the topology of H.

Proof. Let x ∈ H and let x ∈ O be an open set. Then there exists a U ∈ U symmetric with xU2 ⊆ O. Pick a
g ∈ G ∩ xU . Then x ∈ gU ⊆ O.

For a topological group G set d(G) = min{|X| : X is dense in G},

w(G) = min{|B| : B is a base of G} and χ(G) = min{|B| : B a base of neighborhoods of 1 in G}.

Lemma 3.73. Let H be a subgroup of a topological group G. Then:

(a) w(H) ≤ w(G) and χ(H) ≤ χ(G);

(b) if H is dense in G, then w(G) = w(H) and χ(G) = χ(H).

Lemma 3.74. w(G) = χ(G) · d(G) for every topological group G.

Proof. The inequality w(G) ≥ χ(G) is obvious. To see that w(G) ≥ d(G) choose a base B of size w(G) and for
every U ∈ B pick a point dU ∈ U . Then the set D = {dU : U ∈ B} is dense in G and |D| ≤ w(G). This proves
the inequality w(G) ≥ χ(G) · d(G).

The inequality w(G) ≤ χ(G) · d(G) follows from the previous lemma.

The cardinal invariants of the topological groups are cardinal numbers, say ρ(G), associated to every topo-
logical group G such that if G is topologically isomorphic to the topological group H, then ρ(G) = ρ(H). For
example, the size |G| is the simplest cardinal invariant of a topological group, it does not depend on the topology
of G. Other cardinal invariants are the weight w(G), the character χ(G) and the density character d(G) defined
above. Beyond the equality w(G) = χ(G) · d(G) proved in Lemma 3.74, one has also the following inequalities:

Lemma 3.75. Let G be a topological group. Then:

(a) d(G) ≤ w(G) ≤ 2d(G);

(b) |G| ≤ 2w(G) if G is Hausdorff.

Proof. (a) d(G) ≤ w(G) has already been proved in Lemma 3.74 (a). To prove w(G) ≤ 2d(G) note that G is
regular, hence every open base B on G contains a base Br of the same size consisting of regular open sets9.
Let B be a base of G of regular open sets and let D be a dense subgroup of G of size d(G). If U, V ∈ B, with
U ∩ D = V ∩ D, then U = U ∩D = V ∩D = V . Being U and V regular open, the equality U = V implies
U = V . Hence the map U 7→ U ∩D from B to the power set P (D) is injective. Therefore w(G) ≤ 2d(G).

(b) To every point x ∈ G assign the set Ox = {U ∈ B : x ∈ U}. Then the axiom T2 guarantees that map
x 7→ Ox from G to the power set P (B) is injective. Therefore, |G| ≤ 2w(G).

Remark 3.76. Two observations related to item (b) of the above lemma are in order here.

• The equality in item (b) can be attained (see Theorem 4.46).

• One cannot remove Hausdorffness in item (b) (any large indiscrete group provides a counter-example).
This dependence on separation axioms is due to that the presence of the size of the group in (b). We see
in the next exercise that the Hausdorff axiom is not relevant as far as the other cardinal invariants are
involved.

9an open set is said to be regular open if it coincides with the interior of its closure.

21

22 3 GENERAL PROPERTIES OF TOPOLOGICAL GROUPS

Exercise 3.77. Let G be a topological group. Prove that:

• w(G) = w(G/{1}), χ(G) = χ(G/{1}) and d(G) = d(G/{1});

• d(U) = D(G) for every non-empty open set U , if G is Lindelöff;

• w(G) = χ(G) if locally compact and σ-compact.

3.9 Completeness and completion

A net {gα}α∈A in a topological group G is a Cauchy net if for every neighborhood U of 1 in G there exists
α0 ∈ A such that g−1

α gβ ∈ U and gβg
−1
α ∈ U for every α, β > α0.

Exercise 3.78. Let G be a dense subgroup of a topological group H. If (gα) is a net in G that converges to
some element h ∈ H, then (gα) is a Cauchy net.

By the previous exercise, the convergent nets are Cauchy nets. A topological group G is complete (in the
sense of Răıkov) if every Cauchy net in G converges in G. We omit the tedious proof of the next theorem.

Theorem 3.79. For every topological Hausdorff group G there exists a complete topological group G̃ and a
topological embedding i : G → G̃ such that i(G) is dense in G̃. Moreover, if f : G → H is a continuous

homomorphism and H is a complete topological group, then there is a unique continuous homomorphism f̃ :
G̃→ H with f = f̃ ◦ i.

Therefore every Hausdorff topological abelian group has a unique, up to topological isomorphisms, (Răıkov-

)completion (G̃, i) and we can assume that G is a dense subgroup of G̃.

Definition 3.80. A net {gα}α∈A in G is a left [resp., right] Cauchy net if for every neighborhood U of 1 in G
there exists α0 ∈ A such that g−1

α gβ ∈ U [resp., gβg
−1
α ∈ U] for every α, β > α0.

Lemma 3.81. Let G be a Hausdorff topological group. Every left (resp., right) Cauchy net in G with a
convergent subnet is convergent.

Proof. Let {gα}α∈A be a left Cauchy net in G and let {gβ}β∈B be a subnet convergent to x ∈ G, where B is a
cofinal subset of A. Let U be a neighborhood of 1 in G and V a symmetric neighborhood of 1 in G such that
V V ⊆ U . Since gβ → x, there exists β0 ∈ B such that gβ ∈ xV for every β > β0. On the other hand, there
exists α0 ∈ A such that α0 ≥ β0 and g−1

α gγ ∈ V for every α, γ > α0. With γ = β0 we have gα ∈ xV V ⊆ xU for
every α > α0, that is gα → x.

A topological group G is complete in the sense of Weil if every left Cauchy net converges in G.
Every Weil-complete group is also complete, but the converse does not hold in general. It is possible to

define the Weil-completion of a Hausdorff topological group in analogy with the Răıkov-completion.

Exercise 3.82. Prove that if a Hausdorff topological group G admits a Weil-completion, then in G the left
Cauchy and the right Cauchy nets coincide.

Exercise 3.83. Let X be an infinite set and let G = S(X) equipped with the topology described in §3.2.4. Prove
that:

(a) a net {fα}α∈A in G is left Cauchy iff there exists f ∈ XX so that fα → f in XX , prove that such an f
must necessarily be injective;

(b) a net {fα}α∈A in G is right Cauchy iff there exists g ∈ XX so that f−1
α → g in XX ;

(c) the group S(X) admits no Weil-completion. (Hint. Build a left Cauchy net in S(X) that is not right
Cauchy and use items (a) and (b), as well as the previous exercise.)

(d) S(X) is Răıkov-complete. (Hint. Use items (a) and (b).)

Exercise 3.84. (a) Let G be a linearly topologized group and let {Ni : i ∈ I} be its system of neighborhoods
of 1 consisting of open normal subgroups. Then the completion of G is isomorphic to the inverse limit
lim←− G/Ni of the discrete quotients G/Ni.

(b) Show that the completion in (a) is compact iff all Ni have finite index in G.

Unit 3

22

23

(c) Let p be a prime number. Prove that the completion of Z equipped with the p-adic topology (see Example
3.7) is the compact group Jp of p-adic integers.

(d) Prove that the completion of Z equipped with the natural topology (see Example 3.7) is isomorphic to∏
p Jp.

Exercise 3.85. Let p be a prime number. Prove that:

(a) Z admits a finest group topology τ such that pn converges to 0 in τ (this is τ(pn) in the notation of §3.4);

(b) ∗ [89, 88] (Z, τ) is complete;

(c) conclude that τ is not metrizable.

Exercise 3.86. Let G be a Hausdroff topologized group. Call a filter F on G Cauchy if for every U ∈ VG(1)
there exists g ∈ G such that gU ∈ F . Prove that:

(a) a filter F on G Cauchy iff for every U ∈ VG(1) there exists g ∈ G such that Ug ∈ F .

(b) if F is a Cauchy filter on G and xF ∈ F for every F ∈ F , then the net {xF : F ∈ F} is a Cauchy net
(here F is considered as a directed partially ordered set w.r.t. inclusion);

(c) if {xi : i ∈ I} is a Cauchy net in G and Fi = {xj : j ∈ I, j ≥ i}, then the family {Fi : i ∈ I} is a filter
base of a Cauchy filter on G;

(d) G is complete iff every Cauchy filter in G converges.

4 Compactness and local compactness in topological groups

Clearly, a topological group G is locally compact if there exists a compact neighborhood of eG in G (compare
with Definition 2.10). We shall assume without explicitly mentioning it, that all locally compact groups are
Hausdorff.

As an immediate consequence of Tychonov’s theorem of compactness of products we obtain the following
the first example of a compact abelian group (it will become clear with the duality theorem that this is the
most general one).

Remark 4.1. Let us see that for every abelian group G the group G∗ = Hom(G,S) is closed in the product
SG, hence G∗ is compact. Consider the projections πx : SG → T for every x ∈ G and the following equalities

G∗ =
⋂

h,g∈G

{f ∈ SG : f(h+ g) = f(h)f(g)} =
⋂

h,g∈G

{f ∈ SG : πh+g(f) = πh(f)πg(f)}

=
⋂

h,g∈G

{f ∈ SG : (π−1
h+gπhπg)(f) = 1} =

⋂

h,g∈G

ker(π−1
h+gπhπg).

Since πx is continuous for every x ∈ G and {1} is closed in S, then all ker(π−1
h+gπhπg) are closed; so Hom (G,S)

is closed too.

The next lemma contains a well known useful fact – the existence of a “diagonal subnet”.

Lemma 4.2. Let G be an abelian group and let N = {χα}α be a net in G∗. Then there exist χ ∈ G∗ and a
subnet S = {χαβ

}β of N such that χαβ
(x) → χ(x) for every x ∈ G.

Proof. By Tychonov’s theorem, the group SG endowed with the product topology is compact. Then N has a
convergent (to χ) subnet S. Therefore χαβ

(x) → χ(x) for every x ∈ G and χ ∈ G∗, because G∗ is closed in SG
by 4.1.

4.1 Specific properties of (local) compactness

Here we shall see the impact of local compactness in various directions (the open mapping theorem, properties
related to connectedness, etc.).

Lemma 4.3. Let G be a topological group and let C and K be closed subsets of G:

23

Unit 3, 4Units 3, 4

24 4 COMPACTNESS AND LOCAL COMPACTNESS IN TOPOLOGICAL GROUPS

(a) if K is compact, then both CK and KC are closed;

(b) if both C and K are compact, then CK and KC are compact;

(c) if K is contained in an open subset U of G, then there exists an open neighborhood V of 1 such that
KV ⊆ U .

Proof. (a) Let {xα}α∈A be a net in CK such that xα → x0 ∈ G. It is sufficient to show that x0 ∈ CK. For
every α ∈ A we have xα = yαzα, where yα ∈ C and zα ∈ K. Since K is compact, then there exist z0 ∈ K
and a subnet {zαβ

}β∈B such that zαβ
→ z0. Thus (xαβ

, zαβ
)β∈B is a net in G×G which converges to (x0, z0).

Therefore yαβ
= xαβ

z−1
αβ

converges to x0z
−1
0 because the function (x, y) 7→ xy−1 is continuous. Since yαβ

∈ C

for every β ∈ B and C is closed, x0z
−1
0 ∈ C. Now x0 = (x0z

−1
0)z0 ∈ CK. Analogously it is possible to prove

that KC is closed.
(b) The product C × K is compact by the Tychonov theorem and the function (x, y) 7→ xy is continuous

and maps C ×K onto CK. Thus CK is compact.
(c) Let C = G \U . Then C is a closed subset of G disjoint with K. Therefore, for the compact subset K−1

of G one has 1 6∈ K−1C. By (a) K−1C is closed, so there exists a symmetric neighborhood V of 1 that misses
K−1C. Then KV misses C and consequently KV is contained in U .

Compactness of K cannot be omitted in item (a). Indeed, K = Z and C = 〈
√
2〉 are closed subgroups of

G = R but the subgroup K + C of R is dense (see Exercie 3.20 or Proposition 4.45).

Lemma 4.4. Let G be a topological group and K a compact subgroup of G. Then the canonical projection
π : G→ G/K is closed.

Proof. Let C be a closed subset of G. Then CK is closed by Lemma 4.3 and so U = G \CK is open. For every
x 6∈ CK, that is π(x) 6∈ π(C), π(U) is an open neighborhood of π(x) such that π(U) ∩ π(C) is empty. So π(C)
is closed.

Lemma 4.5. Let G be a topological group and let H be a closed subgroup of G.

(1) If G is compact, then G/H is compact.

(2) If H and G/H are compact, then G is compact.

Proof. (1) is obvious.
(2) Let F = {Fα : α ∈ A} be a family of closed sets of G with the finite intersection property. If π : G→ G/H

is the canonical projection, π(F) is a family of closed subsets with the finite intersection property in G/H by
Lemma 4.4. By the compactness of G/H there exists π(x) ∈ π(Fα) for every α ∈ A. So x ∈ ⋂

α∈A FαH. Let
x = fαhα with hα ∈ H and fα ∈ Fα. It is not restrictive to assume that F is closed for finite intersections.
Define a partial order on A by α ≤ α′ if Fα ⊇ Fα′ . Then (A,≤) is a right-filtered partially ordered set and so
{fα}α∈A is a net in G. By the compactness of H we can assume wlog that hα converges to h ∈ H (otherwise
pass to a convergent subnet). But then fα = xh−1

α → xh−1. Since fα is contained definitively in Fα, also the
limit xh−1 ∈ Fα. So the intersection of all Fα is not empty.

Lemma 4.6. Let G be a locally compact group, H be a closed subgroup of G and π : G→ G/H be the canonical
projection. Then:

(a) G/H is locally compact too;

(b) If C is a compact subset of G/H, then there exists a compact subset K of G such that π(K) = C.

Proof. Let U be an open neighborhood of 1 in G with compact closure. Consider the open neighborhood π(U)
of 1 in G/H. Then π(U) ⊆ π(U) by the continuity of π. Now π(U) is compact in G/H, which is Hausdorff,

and so π(U) is closed. Since π(U) is dense in π(U), we have π(U) = π(U) = π(U). So G/H is locally compact.
(b) Let U be an open neighborhood of 1 in G with compact closure. Then {π(sU) : s ∈ G} is an open

covering of G/H. Since C is compact, a finite subfamily {π(siU) : i = 1, . . . ,m} covers C. Then we can take
K = (s1U ∪ · · · ∪ smU) ∩ π−1(C).

Lemma 4.7. A locally compact group is Weil-complete.

24

4.1 Specific properties of (local) compactness 25

Proof. Let U be a neighborhood of 1 in G with compact closure and let {gα}α∈A be a left Cauchy net in G.
Then there exists α0 ∈ A such that g−1

α gβ ∈ U for every α, β ≥ α0. In particular, gβ ∈ gα0
U for every β > α0.

By the compactness of gα0
U , we can conclude that there exists a convergent subnet {gβ}β∈B (for some cofinal

B ⊆ A) such that gβ → g ∈ G. Then also gα converges to g by Lemma 3.81.

Lemma 4.8. A locally compact countable group is discrete.

Proof. By the Baire category theorem 2.16 G is of second category. Since G = {g1, . . . , gn, . . . } =
⋃∞

n=1{gn},
there exists n ∈ N+ such that Int {gn} is not empty and so {gn} is open.

Now we prove the open mapping theorem for topological groups.

Theorem 4.9 (Open mapping theorem). Let G and H be locally compact topological groups and let f be a
continuous homomorphism of G onto H. If G is σ-compact, then f is open.

Proof. Let U be an open neighborhood of 1 in G. There exists an open symmetric neighborhood V of 1 in
G such that V V ⊆ U and V is compact. Since G =

⋃
x∈G xV and G is Lindelöff by Lemma 2.17, we have

G =
⋃∞

n=1 xnV . ThereforeH =
⋃∞

n=1 h(xnV), because h is surjective. Put yn = h(xn), henceH =
⋃∞

n=1 ynh(V)
where each h(V) is compact and so closed in H. Since H is locally compact, Theorem 2.16 yields that there
exists n ∈ N+ such that Inth(V) is not empty. So there exists a non-empty open subset W of H such that

W ⊆ h(V). If w ∈W , then w ∈ h(V) and so w = h(v) for some v ∈ V = V
−1

. Hence

1 ∈ w−1W ⊆ w−1h(V) = h(v−1)h(V) ⊆ h(V V) ⊆ h(U)

and this implies that h(U) is an open neighborhood of 1 in H.

The following immediate corollary is frequently used:

Corollary 4.10. If f : G → H is a continuous surjective homomorphism of Hausdorff topological groups and
G is compact, then f is open.

Now we introduce a special class of σ-compact groups that will play an essential role in determining the
structure of the locally compact abelian groups.

Definition 4.11. A group G is compactly generated if there exists a compact subset K of G which generates
G, that is G = 〈K〉 = ⋃∞

n=1(K ∪K−1)n.

Lemma 4.12. If G is a compactly generated group then G is σ-compact.

Proof. By the definition G =
⋃∞

n=1(K ∪K−1)n, where every (K ∪K−1)n is compact, since K is compact.

It should be emphasized that while σ-compactness is a purely topological property, being compactly gener-
ated involves essentially the algebraic structure of the group.

Exercise 4.13. (a) Give examples of σ-compact groups that are not compactly generated.

(b) Show that every connected locally compact group is compactly generated.

Lemma 4.14. Let G be a locally compact group.

(a) If K a compact subset of G and U an open subset of G such that K ⊆ U , then there exists an open
neighborhood V of 1 in G such that (KV) ∪ (V K) ⊆ U and (KV) ∪ (V K) is compact.

(b) If G is compactly generated, then there exists an open neighborhood U of 1 in G such that U is compact
and U generates G.

Proof. (a) By Lemma 4.3 (c) there exists an open neighborhood V of 1 in G such that (KV) ∪ (V K) ⊆ U .
Since G is locally compact, we can choose V with compact closure. Thus KV is compact by Lemma 4.3. Since
KV ⊆ KV , thenKV ⊆ KV and soKV is compact. Analogously V K is compact, so (KV) ∪ (V K) = KV ∪V K
is compact.

(b) Let K be a compact subset of G such that K generates G. So K ∪{1} is compact and by (a) there exists
an open neighborhood U of 1 in G such that U ⊇ K ∪ {1} and U is compact.

In the case of first countable topological groups Fujita and Shakmatov [49] have described the precise
relationship between σ-compactness and the property of being compactly generated.

25

26 4 COMPACTNESS AND LOCAL COMPACTNESS IN TOPOLOGICAL GROUPS

Theorem 4.15. A metrizable topological group G is compactly generated if and only if G is σ-compact and, for
every open subgroup H of G, there exists a finite set F ⊆ G such that F ∪H algebraically generates G [49].

This gives the following:

Corollary 4.16. A σ-compact metrizable group G is compactly generated in each of the following cases (for the
definition of total boundedness see Definition 4.25):

• G has no open subgroups

• the completion G̃ is connected;

• G is totally bounded.

Moreover,

Theorem 4.17. A countable metrizable group is compactly generated iff it is algebraically generated by a
sequence (possibly eventually constant) converging to its neutral element.

Examples showing that the various conditions above cannot be omitted can be found in [49].
The question when will a topological group contain a compactly generated dense subgroup is considered in

[50].
Now we see that linearity and total disconnectedness of group topologies coincide for compact groups and

for locally compact abelian groups.

Theorem 4.18. Every locally compact totally disconnected group has a base of neighborhoods of 1 consisting
of open subgroups. In particular, a locally compact totally disconnected group that is either abelian or compact
has linear topology.

This can be derived from the followis more precise result:

Theorem 4.19. Let G be a locally compact topological group and let C = c(G). Then :

(a) C coincides with the intersection of all open subgroups of G;

(b) if G is totally disconnected, then every neighborhoodof 1 contains an open subgroup of G.

If G is compact, then the open subgroups in items (a) and (b) can be chosen normal.

Proof. (a) follows from (b) as G/C is totally disconnected hence the neutral element of G/C is intersection of
open (resp. open normal) subgroups of G/C. Now the intersection of the inverse images, w.r.t. the canonical
homomorphism G→ G/C, of these subgroups coincides with C.

(b) Let G be a locally compact totally disconnted group. By Vedenissov’s Theorem G has a base O of clopen
symmetric compact neighborhoods of 1. Let U ∈ O. The U = U =

⋂
V ∈O UV . Then every set U ·V is compact

by Lemma 4.3, hence closed. According to Lemma 2.14 there exist V1, . . . , Vn ∈ O such that U =
⋂n

k=1 UVk.
Then for V := U ∩⋂n

k=1 Vk one has UV = U . This implies also V V ⊆ U , V V V ⊆ U etc. Since V is symmetric,
the subgroup H = 〈V 〉 is contained in U as well. From V ⊆ H one can deduce that H is open (cf. 3.16). In
case G is compact, note that the heart HG =

⋂
x∈G x

−1Hx of H is an open normal subgroup as the number of
all conjugates x−1Hx of H is finite (being equal to [G : NG(H)] ≤ [G : H] <∞). Hence HG is an open normal
subgroup of G contained in H, hence also in U .

Corollary 4.20. The quotient of a locally compact totally disconnected group is totally disconnected.

Proof. Let G be a locally compact totally disconnected group and let N be a closed normal subgroup of G. It
follows from the above theorem that G has a linear topology. This yields that the quotient G/N has a linear
topology too. Thus G/N is totally disconnected.

Corollary 4.21. The continuous homomorphic images of compact totally disconnected groups are totally dis-
connected.

Proof. Follows from the above corollary and the open mapping theorem.

According to Example 3.46 none of the items (a) and (b) of the theorem remain true without the hypothesis
“locally compact”.

Corollary 4.22. Let G be a locally compact group. Then Q(G) = c(G).

Proof. By item (a) of the above theorema C(G) is an intersection of open subgroups, that are clopen being open
subgroups (cf. Proposizione 3.16). Hence c(G) contains Q(G) which in turn coincides with the intersection of
all clopen sets of G containing 1. The inclusion C(G) ⊆ Q(G) is always true.

26

4.2 Subgroups of the compact groups 27

4.2 Subgroups of the compact groups

For a subset E of an abelian group G we set E(2) = E−E, E(4) = E−E+E−E, E(6) = E−E+E−E+E−E
and so on.

A subset X of an abelian group (G,+) is big10 if there exists a finite subset F of G such that G = X + F .
Obviously, every non-empty set of a finite group is big; on the other hand, every big set in an infinite group is
necessarily infinite.

Exercise 4.23. Let B be an infinite subset of Z. Show that B is big iff the following two conditions hold:

(a) B is unbounded from above and from below;

(b) if B = {bn}∞n=−∞ is a one-to-one monotone enumeration of B then the differences bn+1− bn are bounded.

Exercise 4.24. (a) Assume Bν is a big set of the group Gν for ν = 1, 2, . . . , n. Prove that B1 × . . .× Bn is
a big set of G1 × . . .×Gn.

(b) if f : G→ H is a surjective group homomorphism and B is a big subset of H, then f−1(B) is a big subset
of G.

Definition 4.25. A topological group G is totally bounded if every open non-empty subset U of G is big. A
Hausdorff totally bounded group will be called precompact .

Clearly, compact groups are precompact.
Note that if f in item (b) of 4.24 is not surjective, then the property may fail. The next proposition gives

an easy remedy to this.

Proposition 4.26. Let A be an abelian group and let B be a big subset of A. Then (B − B) ∩H is big with
respect to H for every subgroup H of A.

If a ∈ A then there exists a sufficiently large positive integer n such that na ∈ B −B.

Proof. There exists a finite subset F of A such that B + F = A. For every f ∈ F , if (B + f) ∩H is not empty,
choose af ∈ (B + f) ∩ H, and if (B + f) ∩ H is empty, choose an arbitrary af ∈ H. On the other hand, for
every x ∈ H there exists f ∈ F such that x ∈ B + f ; since af ∈ B + f , we have x − af ∈ B − B and so
H ⊆ (B −B) ∩H + {af : f ∈ F}, that is (B −B) ∩H is big in H.

For the last assertion it suffices to take H = 〈a〉. If H is finite, then there is nothing to prove as 0 ∈ B −B.
Otherwise H ∼= Z so the first item of Exercise 4.23 applies.

Combining this proposition with item (b) of 4.24 we get:

Corollary 4.27. For every group homomorphism f : G→ H and every big subset B of H, the subset f−1(B−B)
of G is a big.

Here comes the most important consequence of the above proposition.

Corollary 4.28. Subgroups of precompact groups are precompact. In particular, all subgroups of compact groups
are precompact.

One can show that the precompact groups are precisely the subgroups of the compact groups. This requires
two steps as the next theorem shows:

Theorem 4.29. (a) A group having a dense precompact subgroup is necessarily precompact.

(b) The compact groups are precisely the complete precompact groups.

Proof. (a) Indeed, assume that H is a dense precompact subgroup of a group G. Then for every U ∈ VG(0)
choose an open V ∈ VG(0) with V + V ⊆ U . By the precompactness of H there exists a finite set F ⊆ H such
that H = F + V ∩H. Then

G = V +H ⊆ V + F + V ∩H ⊆ F + V + V ⊆ F + U.

10Some authors use also the terminology large, relatively dense, or syndetically dense. This notion can be given for non-abelian
groups as well, but then both versions, left large and right large, do not coincide. This creates some technical difficulties that we
prefer to avoid since the second part of this section is relevant only for abelian groups. The first half, including the characterization
4.29, remains valid in the non-abelian case as well (since, fortunately, the “left” and “right” versions of total boundedness coincide).

27

28 4 COMPACTNESS AND LOCAL COMPACTNESS IN TOPOLOGICAL GROUPS

(b) Compact groups are complete and precompact. To prove the other implication take a complete precom-
pact group G. To prove that G is compact it sufficies to prove that every ultrafilre on G converges. Assume
U is such an ultrafiler. We show first that it is a Cauchy filter. Indeed, if U ∈ VG(0), then U is a big set of G
so there exists g1, g2, . . . , gn ∈ G such that G =

⋃n
i=1 gi + U . Since U is an ultrafilter, gi + U ∈ U for some i.

Hence U is a is a Cauchy filter. According to Exercise 3.86 U converges.

In this way we have described the precompact groups internally (as the Hausdorff topological groups having
big non-empty open sets), or externally (as the subgroups of the compact groups).

Now we adopt a different approach to describe the precompact groups, based on the use of characters. Our
first aim will be to see that the topologies induced by characters are always totally bounded.

Proposition 4.30. If A is an abelian group, δ > 0 and χ1, . . . , χs ∈ A∗ (s ∈ N+), then U(χ1, . . . , χs; δ) is big in
A. Moreover for every a ∈ A there exists a sufficiently large positive integer n such that na ∈ U(χ1, . . . , χs; δ).

Proof. Define h : A→ Ts such that h(x) = (χ1(x), . . . , χs(x)) and

B =

{
(z1, . . . , zn) ∈ Ss : |Arg zi| <

δ

2
for i = 1, . . . , s

}
=

{
z ∈ S : |Arg z| < δ

2

}s

.

Then B is big in Ss and by Proposition 4.26 the set (B −B) ∩ h(A) is big with respect to h(A). Since

B −B ⊆ C = {(z1, . . . , zs) ∈ Ss : ‖Arg zi‖ < δ for i = 1, . . . , s},

we have that C ∩ h(A) is big with respect to h(A). Therefore U(χ1, . . . , χs; δ) = h−1(C) is big in A.
The second statement follows from Proposition 4.26, since

U

(
χ1, . . . , χs;

δ

2

)
− U

(
χ1, . . . , χs;

δ

2

)
⊆ U(χ1, . . . , χs; δ).

Corollary 4.31. For an abelian group G all topologies of the form TH , where H ≤ G∗, are totally bounded.
Moreover, TH is precompact iff H separates the points of G.

It requires a considerable effort to prove that, conversely, every totally bounded group topology has the form
TH for some H (see Remark 6.3).

It follows easily from Corollary 4.31 and Proposition 4.30 that for every neighborhood E of 0 in the Bohr
topology (namely, a set E containing a subset of the form U(χ1, . . . , χn; ε) with characters χi : G → S,
i = 1, 2, . . . , n, and ε > 0) there exists a big set B of G such that B(8) ⊆ E (just take B = U(χ1, . . . , χn; ε/8)).
Surprisingly, the converse is also true. Namely, we shall obtain as a corollary of Følner’s lemma that every set
E satisfying B(8) ⊆ E for some big set B of G must be a neighborhood of 0 in the Bohr topology of G (see
Corollary 5.8).

Exercise 4.32. If G is a countably infinite Hausdorff abelian group, then for every compact set K in G the set
K(2n) is big for no n ∈ N.

(Hint. By Lemma 4.3 every set K(2n) is compact. So if K(2n) were big for some n, then G itself would be
compact. Now Lemma 4.8 applies.)

Exercise 4.33. Call a subset S of an infinite abelian group G small if there exist (necessarily distinct) elements
g1, g2, . . . , gn, . . . of G such that (gn + S) ∩ (gm + S) = ∅ whenever m 6= n.

(a) Show that a subset S of G such that S − S is not big is necessarily small.

(b) Show that every finite subset is small.

(c) Show that the group Z is not a finite union of small sets.

(d) ∗ Show that no infinite abelian group G is a finite union of small sets.

(e) If S = (an) is a one-to-one T -sequence in an abelian group G, then for every n ∈ N the set S(2n) is small
in G.

(f) Show that the sequence (pn) of prime numbers in Z is not a T -sequence.

28

4.3 Subgroups of Rn 29

(Hint. (d) Use a finitely additive invariant (Banach) measure on G. For (e) consider the (countable) subgroup
generated by S and note that if an → 0 in some Hausdorff group topology τ on G, then the set S ∪ {0} would
be compact in τ , so item (a) and Exercise 4.32 apply. For (f) use (e) and the fact that there exists a constant
m such that every integer number is a sum of at most m11 prime numbers.)

Exercise 4.34. Show that for an infinite abelian group G and a subgroup H of G the following are equivalent:

(a) H has infinite index;

(b) H is not big;

(c) H is small.

Exercise 4.35. ∗ Every infinite abelian group has a small set of generators.

This can be extended to arbitrary groups [30]. One can find in the literature also different (weaker) forms
of smallness ([4, 11]).

Exercise 4.36. (a) If f : G → H is a continuous surjective homomorphism of topological groups, then H is
totally bounded whenever G is totally bounded.

(b) Prove that a topological group G is totally bounded iff G/{1} is totally bounded.

(c) If {Gi : i ∈ I} is a family of topological groups, then
∏

iGi is totally bounded iff each Gi is totally bounded.

(d) Prove that every topological abelian group G admits a “universal” totally bounded continuous surjective
homomorphic image q : G → q(G) (i.e., every continuous homomorphsm G → P , where P is a totally
bounded group, factors through q12).

4.3 Subgroups of Rn

Our main goal here is to prove that every closed subgroup of Rn is topologically isomorphic to Rs × Zm, with
s,m ∈ N and s+m ≤ n. More precisely:

Theorem 4.37. Let n ∈ N+ and let H be a closed subgroup of Rn. Then there exist closed subgroups V and D
of Rn such that H = V +D ∼= V ×D, V ∼= Rs, D ∼= Zm and s+m ≤ n.

The proof is split in several steps. Before starting it, we note the following curious dichotomy hidden in this
theorem:

• the closed connected subgroups of Rn are always isomorphic to some Rs with s ≤ n;

• the totally disconnected closed subgroups D of Rn must be free and have free-rank r0(D) ≤ n; in particular
they are discrete.

In the general case, for every closed subgroup H of Rn the connected component c(H) is open in H and
isomorphic to Rs for some s ≤ n. Therefore, by the divisibility of Rs one can write H = c(H) × D for some
discrete subgroup D of H (see Corollary 2.8). Necessarily r0(D) ≤ n − s as c(H) ∼= Rs contains a discrete
subgroup D1 of rank s, so that D1 ×D will be a discrete subgroup of Rn.

It is not hard to see that every discrete subgroup of R is cyclic (Exercise 3.20). The first part of the proof
consists in appropriately extending this property to discrete subgroups of Rn (see Proposition 4.39). The first
step is to see that the free-rank r0(H) of a discrete subgroup H of Rn coincides with the dimension of the
subspace of Rn generated by H.

Lemma 4.38. Let H be a discrete subgroup of Rn. If the elements v1, . . . , vm of H are Q-linearly independent,
then they are also R-linearly indipendent.

11use the fact that according to the positive solution of the ternary Goldbach’s conjecture a there exists a constant C > 0 such
that every odd integer ≥ C is a sum of three primes (see [96] for further details on Goldbach’s conjecture).

12in other words, the subcategory of all totally bounded groups forms an epireflective subcategory of the category of all topological
groups.

29

30 4 COMPACTNESS AND LOCAL COMPACTNESS IN TOPOLOGICAL GROUPS

Proof. Let V ∼= Rk be the subspace of Rn generated by H. We can assume wlog that V = Rn, i.e., k = n.
Hence we have to prove that the free-rank m = r0(H) of H coincides with n. Obviously m ≥ n. We need to
prove that m ≤ n. Let us fix n R-linearly independent vectors v1, . . . , vn in H. It is enough to see that for
every h ∈ H the vectors v1, . . . , vn, h are not Q-linearly independent. This would imply m ≤ n. Let us note
first that we can assume wlog that H ⊇ Zn. Indeed, as v1, . . . , vn are R-linearly independent, there exists a
linear isomorphism α : Rn → Rn with α(vi) = ei for i = 1, 2, . . . , n, where e1, . . . , en is the canonical base of
Rn. Clearly, α(H) is still a discrete subgroup of Rn and the vectors v1, . . . , vn, h are Q-linearly independent iff
the vectors e1 = α(v1), . . . , en = α(vn), α(h) are. The latter fact is equivalent to α(h) 6∈ Qn. Therefore, arguing
for a contradiction, assume for simplicity that H ⊇ Zn and there exists h = (h1, . . . , hn) ∈ H such that

h 6∈ Qn. (4)

By the discreteness of H there exists an ε > 0 with max{|hi| : i = 1, 2, . . . , n} ≥ ε for every 0 6= h =
(h1, . . . , hn) ∈ H. Represent the cube C = [0, 1]n as a finite union

⋃
i Ci of cubes Ci of diameter < ε (e.g., take

them with faces parallel to the coordinate axes, although their precise position is completely irrelevant). For a
real number r denote by {r} the unique number 0 ≤ x < 1 such that r − x ∈ Z. Then ({mv1}, . . . , {mvn}) 6=
({lh1}, . . . , {lhn}) for every positive l 6= m, since otherwise, (m− l)h ∈ Zn with m− l 6= 0 in contradiction with
(4). Among the infinitely many points am = ({mh1}, . . . , {mhn}) ∈ C there exist two am 6= al belonging to the
same cube Ci. Hence, |{mhj} − {lhj}| < ε for every j = 1, 2, . . . , n. So there exists a z = (z1, . . . , zn) ∈ Zn,
such that 0 6= (m− l)h− z ∈ H and |(m− l)hj − zj | < ε for every j = 1, 2, . . . , n, this contradicts the choice of
ε.

The aim of the next step is to see that the discrete subgroups of Rn are free.

Proposition 4.39. If H is a discrete subgroup of Rn, then H is free and r(H) ≤ n.

Proof. In fact, let m = r(H). By the definition of r(H) there exist m Q-linearly independent vectors v1, . . . , vm
of H. By the previous lemma the vectors v1, . . . , vm are also R-linearly independent. Hence, m ≤ n. Let
V ∼= Rm be the subspace of Rn generated by v1, . . . , vm. Obviously, H ⊆ V , since H is contained in the
Q-subspace of Rn generated by the free subgroup F = 〈v1, . . . , vm〉 di H. Since H is a discrete subgroup of V
too, we can argue with V in place of Rn. So, we can assume wlog that m = n and V = Rn. It suffices to see
that H/F is finite. Then H will be finitely generated and torsion-free, hence H must be free.

Since the vectors v1, . . . , vn are linearly independent on R we can assume wlog that H ⊇ Zn. In fact, let
α : Rn → Rn be the linear isomorphism with α(vi) = ei for i = 1, 2, . . . , n, where e1, . . . , en is the canonical base
of Rn. Then α(H) is still a discrete subgroup of Rn, Zn = α(F) ⊆ α(H) and H/F is finite iff α(H)/α(F) ∼= H/F
is finite.

In the sequel we assume H ⊇ Zn = F for the sake of simplicity. To check that H/F is finite consider the
canonical homomorphism q : Rn → Rn/Zn ∼= Tn. According to Theorem 3.23, q sends the closed subgroup H
onto a closed (hence compact) subgroup q(H) of Tn; moreover H = q−1(q(H)), hence the restriction of q to H
is open and q(H) is discrete. Thus q(H) ∼= H/F is both compact and discrete, so q(H) must be finite.

Now we are in position to prove Theorem 4.37. We advise the reader to review the warming exercise 3.20.

Proof of Theorem 4.37. Let H 6= 0 a closed subgroup of Rn. If H discrete, then H is free and generates a
linear subspace of Rn of dimension r(H) ≤ n by Proposition 4.39, so the assertion is true with s = 0.

In case H is not discrete we argue by induction on n. The case n = 1 is Exercise 3.20. Let n > 1 and assume
the theorem is true for n− 1. Consider the subset

M = {u ∈ Rn : ‖u‖ = 1 and ∃λ ∈ (0, 1) with λu ∈ H}

of the unitary sphere S in Rn. For u ∈ S let Nu = {r ∈ R : ru ∈ H}. Then Nu is a closed subgroup of R and
H ∩ Ru = Nuu. Our aim will be to find some u ∈ S such that the whole line Ru is contained in H. This will
allow us to use our inductive hypothesis. Since the proper closed subgroups of R are cyclic (see Exercise 3.20),
it suffices to find some u ∈ S such that Nu is not cyclic.

Case 1. If M = {u1, . . . , un} is finite, then there exists an index i such that λui ∈ H for infinitely many
λ ∈ (0, 1). Then the closed subgroup Nui

cannot be cyclic, so H contains to line Rui and we are done.
Case 2. Assume M is infinite. By the assumption H is not discrete there exists a sequence un ∈ M such

that the corresponding λn, with λnun ∈ H, converge to 0. By the compactness of S there exists a limit point
u0 ∈ S for the sequence un ∈M . We can assume wlog that un → u0. Let ε > 0 and let ∆ε be the open interval
(ε, 2ε). As λn → 0, there exists n0 such that λn < ε for every n ≥ n0. Hence for every n ≥ n0 there exists an

30

4.3 Subgroups of Rn 31

appropriate kn ∈ N with ηn = knλn ∈ ∆ε. Taking again a subsequence we can assume wlog that there exists
some ξε ∈ ∆ε such that ηn → ξε. Hence ξεu0 = limn knλnu0 ∈ H. This argument shows that Nu0

contains
ξε ∈ ∆ε with arbitrarily small ε. Therefore, Nu0

cannot be cyclic. Hence H contains the line Ru0.
We proved in all cases that our assumption of non-discreteness of H yields the existence of a line L ∼= R as

a subgroup of H. Let L′ ∼= Rn−1 be a subspace of Rn complementing L. Then Rn = L× L′ and the projection
Rn → L′ sends H to a closed subgroup H1 of L′ as L ≤ H (cf. 3.23 (b)). Moreover, H = L ×H1 in view of
L ≤ H again. Now proceed by induction with the subgroup H1 of L′ ∼= Rn−1. This proves Theorem 4.37.

The next corollary describes the quotients of Rn.

Corollary 4.40. A quotient of Rn is isomorphic to Rk × Tm, where k + m ≤ n. In particular, a compact
quotient of Rn is isomorphic to Tm for some m ≤ n.

Proof. Let H be a closed subgroup of Rn. Then H = V +D, where V,D are as in Theorem 4.37. If s = dimV
and m = r0(D), then s +m ≤ n. Let V1 be the linear subspace of Rn spanned by D. Pick a complementing
subspace V2 for the subspace V + V1 and let k = n − (s +m). Then Rn = V + V1 + V2 is a factorization in
direct product. Therefore Rn/H ∼= (V1/D) × V2. Since dimV1 = r0(D) = m, one has V1/D ∼= Tm. Therefore,
Rn/H ∼= Tm × Rk.

Let us denote by (x|y) the usual scalar product in Rn. Recall that every base v1, . . . , vn di Rn admits a dual
base v′1, . . . , v

′
n defined by the relations (vi|v′j) = δij . For a subgroup H of Rn define the associated subgroup

H† setting
H† := {u ∈ Rn : (∀x ∈ H)(x|u) ∈ Z}.

Then obviously (Zn)† = Zn.

Lemma 4.41. Let H be a subgroup di Rn. Then:

1. H† is a closed subgroup of Rn and the correspondence H 7→ H† is decreasing;

2. (H)† = H†.

Proof. The map Rn × Rn → R defined by (x, y) 7→ (x|u) is continuous.
(a) Let q : R → T = R/Z be the canonical homomorphism.Then for every fixed a ∈ Rn the assignment

x 7→ (a|x) 7→ f((a|x)) is a continuous homomorphism χa : Rn → T. Hence the set χ−1
h (0) = {u ∈ Rn : (∀h ∈

H)(h|u) ∈ Z} is closed in Rn. Therefore H† =
⋂

h∈H χ−1
h (0) is closed. The same equality proves that the

correspondence H 7→ H∗ is decreasing.
(b) From the second part of (a) one has (H)† ⊆ H†. Suppose that u ∈ H† e x ∈ H. By the continuity of the

map χx(u) = χu(x), as a function of x, one can deduce that χx(u) = 0, being χu(h) = 0 for every h ∈ H.

We study in the sequel the subgroup H† associated to a closed subgroup H of Rn. According to Theorem
4.37 there exist a base v1, . . . , vn of Rn and k ≤ n, such that for some 0 ≤ s ≤ k H = V ⊕ L where V is the
linear subspace generated by v1, . . . , vs and L = 〈vs+1, . . . , vk〉. Let v′1, . . . , v′n be the dual base of v1, . . . , vn.

Lemma 4.42. In the above notation the subgroup H† coincides with 〈v′s+1, . . . , v
′
k〉+W , where W is the linear

subspace generated by v′k+1, . . . , v
′
n.

Proof. Let V ′ be the linear subspace generated by v′1, . . . , v
′
s, V

′′ the linear subspace generated by v′s+1, . . . , v
′
k

and L′ = 〈v′s+1, . . . , v
′
k〉. Then L† = V ′ +L′ +W , while V † = V ′′ +W . Hence H† ≤ L† ∩ V † = L′ +W . On the

other hand, obviously L′ +W ≤ H†.

Corollario 4.43. H = (H†)† for every subgroup H of Rn.

Proof. If H is closed of the form V +L in the notation of the previous lemma, then H† = L′+W with v′1, . . . , v
′
n,

L′ and W defined as above. Now H† = L′ +W is a closed subgroup of Rn by Lemma 4.41 and v1, . . . , vn is a
dual base of v′1, . . . , v

′
n. Therefore, H = V + L coincides with (H†)†.

Lemma 4.44. Let V be a hyperplain in Rn determined by the equation
∑n

i=1 aixi = 0 such that there exists
at least one coefficient ai = 1. Then the subgroup H = V + Zn of Rn is not dense iff all the coefficients ai are
rational.

Proof. We can assume wlog that i = n. Suppose that H is not dense in Rn. Then H† 6= 0 by Corollary
4.43. Let 0 6= z ∈ H†. Since Zn ≤ H, one has H† ≤ Zn = (Zn)†, so z ∈ Zn. If j < n, then aj ∈ Q as
v = (0, . . . , 0, 1, 0, . . . , 0,−aj) ∈ V

31

32 5 FØLNER’S THEOREM

The next proposition is a particular case of the well-known Kronecker’s theorem.

Proposition 4.45. Let v1, . . . , vn ∈ R. Then for v = (v1, . . . , vn) ∈ Rn the subgroup 〈v〉 + Zn of Rn is dense
iff v0 = 1, v1, . . . , vn ∈ R are linearly independent as elements of the vector space R over Q.

Proof. Assume v0 = 1, v1, . . . , vn ∈ R are linearly independent and let H = 〈v〉+ Zn. Then H† ⊆ Zn = (Zn)†.
It is easy to see now that some z ∈ Zn belongs to (〈v〉)† iff z = 0. This proves that H† = 0. Consequently H is
dense in Rn by Corollary 4.43. If

∑n
i=0 kivi = 0 is a non-trivial linear combination with ki ∈ Z, then the vector

k = (k1, . . . , kn) ∈ Zn is non-zero and obviously k ∈ H†. Thus H† 6= 0, hence H is not dense.

Theorem 4.46. Tc is monothetic.

Proof. Let B be a Hamel base of R on Q that contains 1 and let B0 = B\{1}. Applying the previous proposition
one can see that the element x = (xb)b∈B0 ∈ TB0 , defined by xb = b+Z ∈ R/Z = T, is a generator of the group
TB0 . To conclude note that |B0| = |R| = c.

Corollary 4.47. Let C be a closed subgroup of Tn. Then C is isomorphic to Ts × F where s ≤ n and F is a
finite abelian group.

Proof. Let q : Rn → Tn = Rn/Zn be the canonical projection. If C is a closed subgroup of Tn, then H = q−1(C)
is a closed subgroup of Rn that contains Zn = ker q. Hence H is a direct product H = V + D with V ∼= Rs

and D ∼= Zm, where s and m satisfy s+m = n as Zn ≤ H. Since the restriction of q to H is open by Theorem
3.23, we conclude that the restriction of q to V is open as far as V is open in H. Hence q �V : V → q(V) is an
open surjective homomorphism and the subgroup q(V) is open in C. Since q(V) is also divisible, we can write
C = q(V)× F , where the subgroup F of C must be discrete. Since C is compact, this implies that F is finite.
On the other hand, as a compact quotient of V ∼= Rs the group q(V) is isomorphic to Ts by Corollary 4.40.
Therefore, C ∼= Ts × F .

Exercise 4.48. Determine for which of the following possible choices of the vector v ∈ R4

(
√
2,
√
3,
√
5,
√
6), (

√
2,
√
3,
√
5,
√
7), (log 2, log 3, log 5, log 6),

(log 2, log 3, log 5, log 7), (log 3, log 5, log 7, log 9) and (log 5, log 7, log 9, log 11)

the subgroup 〈v〉+ Z4 of R4 is dense.

Exercise 4.49. (a) Prove that a subgroup H of T is dense iff H is infinite.

(b) Determine the minimal (w.r.t. inclusion) dense subgroups T.

(c) ∗ Determine the minimal (w.r.t. inclusion) dense subgroups T2.

5 Følner’s theorem

This section is entirely dedicated to Følner’s theorem.

5.1 Fourier theory for finite abelian groups

In the sequel G will be a finite abelian group, so G∗ ∼= G, so in particular |G∗| = |G|.
Here we recall some well known properties of the scalar product in finite-dimensional complex spaces V = Cn.

Since our space will be “spanned” by a finite abelian group G of size n (i.e., V = CG), we have also an action
of G on V . We normalize the scalar product in a such way to let the vector (1, 1, . . . , 1) (i. e., the constant
function 1) to have norm 1. The reader familiar with Haar integration may easily recognize in this the Haar
integral on G.

Define the scalar product by

(f, g) =
1

|G|
∑

x∈G

f(x)g(x).

Let us see first that the elements of the subset G∗ of V are pairwise orthogonal and have norm 1:

Proposition 5.1. Let G be an abelian finite group and ϕ, χ ∈ G∗, x, y ∈ G. Then:

Unit 4

32

Unit 5

5.1 Fourier theory for finite abelian groups 33

(a) 1
|G|

∑
x∈G ϕ(x)χ(x) =

{
1 if ϕ = χ

0 if ϕ 6= χ
;

(b) 1
|G∗|

∑
χ∈G∗ χ(x)χ(y) =

{
1 if x = y

0 if x 6= y.
.

Proof. (a) If ϕ = χ then χ(x)χ(x) = χ(x)χ(x)−1 = 1.
If ϕ 6= χ there exists z ∈ G such that ϕ(z) 6= χ(z). Therefore the following equalities

∑

x∈G

ϕ(x)χ(x) =
ϕ(z)

χ(z)

∑

x∈G

ϕ(x− z)χ(x− z) =
ϕ(z)

χ(z)

∑

x∈G

ϕ(x)χ(x)

imply that
∑

x∈F ϕ(x)χ(x) = 0.

(b) If x = y then χ(x)χ(x) = χ(x)χ(x)−1 = 1.
If x 6= y, by Corollary 2.7 there exists χ0 ∈ G∗ such that χ0(x) 6= χ0(y). Now we can proceed as before,

that is ∑

χ∈G∗

χ(x)χ(y) =
χ0(x)

χ0(y)

∑

χ∈G∗

(χχ0)(x)(χχ0)(y) =
χ0(x)

χ0(y)

∑

χ∈G∗

χ(x)χ(y)

yields
∑

χ∈G∗ χ(x)χ(y) = 0.

If G is a finite abelian group and f is a complex valued function on G, then for every χ ∈ G∗ we can define

cχ = (f, χ) =
1

|G|
∑

x∈G

f(x)χ(x),

that is the Fourier coefficient of f corresponding to χ.
For complex valued functions f, g on a finite abelian group G define the convolution f ∗ g by (f ∗ g)(x) =

1
|G|

∑
y∈G f(y)g(x+ y).

Proposition 5.2. Let G be an abelian finite group and f a complex valued function on G with Fourier coefficients
cχ where χ ∈ G∗. Then:

(a) f(x) =
∑

χ∈G∗ cχχ(x) for every x ∈ G;

(b) if {aχ}χ∈G∗ is such that f(x) =
∑

χ∈G∗ aχχ(x), then aχ = cχ for every χ ∈ G∗;

(c) 1
|G|

∑
x∈G |f(x)|2 =

∑
χ∈G∗ |cχ|2;

(d) if g is an other complex valued function on G with Fourier coefficients (dχ)χ∈G∗ , then f ∗ g has Fourier
coefficients (cχdχ)χ∈G∗ .

Proof. (a) The definition of the coefficients cχ yields

∑

χ∈G∗

cχχ(x) =
∑

χ∈G∗

1

|G|
∑

y∈G

f(y)χ(y)χ(x).

Computing
∑

χ∈G∗ χ(y)χ(x) with Proposition 5.1(b) we get
∑

χ∈G∗ cχχ(x) =
|G∗|
|G| f(x) for every x ∈ G. Now

|G| = |G∗| gives f(x) = ∑
χ∈G∗ cχχ(x) for every x ∈ G.

(b) By Proposition 5.1 the definition of the coefficients cχ and the relation f(x) =
∑

χ∈G∗ aχχ(x)

cχ =
1

|G|
∑

ϕ∈G∗

aϕ
∑

x∈G

ϕ(x)χ(x) = aχ.

(d) By item (a) g(x) =
∑

ϕ∈G∗ dϕϕ(x) for every x ∈ G. Therefore

∑

y∈G

f(y)g(x+ y) =
∑

y∈G

(∑

χ∈G∗

cχχ(y)
)(∑

ϕ∈G∗

dϕϕ(x)ϕ(y)
)
=

=
∑

χ∈G∗

∑

ϕ∈G∗

cχdϕϕ(x)
∑

y∈G

χ(y)ϕ(y) = |G|
∑

χ∈G∗

cχdχχ(x).

(c) It is sufficient to apply (d) with g = f and let x = 0.

33

34 5 FØLNER’S THEOREM

Corollary 5.3. Let G be a finite abelian group, E be a non-empty subset of G and let f be the characteristic
function of E. Then for the convolution g = f ∗ f one has

(a) g(x) > 0 iff x ∈ E(2);

(b) g(x) =
∑

χ∈G∗ |cχ|2χ(x).
Proof. (a) g(x) > 0 if and only if there exists y ∈ E with x+ y ∈ E, that is x ∈ E − E = E(2).

(b) follows obviously from Proposition 5.2(d).

5.2 Bogoliouboff and Følner Lemmas

Lemma 5.4 (Bogoliouboff lemma). If F is a finite abelian group and E is a non-empty subset of F , then

there exist χ1, . . . , χm ∈ F ∗, where m =
[(|F |

|E|
)2]

, such that U(χ1, . . . , χm; π
2) ⊆ E(4).

Proof. Let f be the characteristic function of E. By Proposition 5.2(a) we have

f(x) =
∑

χ∈F∗

cχχ(x), with cχ =
1

|F |
∑

x∈F

f(x)χ(x). (1)

Define g = f ∗ f and h = g ∗ g. The functions f and g = f ∗ f have real values and by Corollary 5.3

g(x) =
∑

χ∈F∗

|cχ|2χ(x) and h(x) =
∑

χ∈F∗

|cχ|4χ(x) for x ∈ F. (2)

Moreover, g(x) > 0 if and only if x ∈ E − E = E(2). Analogously h(x) > 0 if and only if x ∈ E(4).

By Proposition 5.2(c)
∑

χ∈F ′ |cχ|2 = |E|
|F | . Set a = |E|

|F | and order the Fourier coefficients of f so that

|cχ0
| ≥ |cχ1

| ≥ . . . ≥ |cχk
| ≥ . . .

(note that they are finitely many). Thus χ0 = 1 and cχ0
= a by (1). Then

∑k
i=0 |cχi

|2 ≤ ∑
χ∈F∗ |cχ|2 = a for

every k ≥ 0. Consequently (k + 1)|cχk
|2 ≤ a, so

|cχk
|4 ≤ a2

(k + 1)2
. (3)

Now let m =
[

1
a2]. We are going to show now that with these χ1, . . . , χm ∈ F ∗ one has

h(x) > 0 for every x ∈ U(χ1 . . . , χm;
π

2
). (4)

Clearly Reχk(x) ≥ 0 for k = 1, 2, ...,m whenever x ∈ U(χ1 . . . , χm; π
2) thus

|a4 +
m∑

k=0

|cχk
|4χk(x)

∣∣ ≥ Re(a4 +
m∑

k=1

|cχk
|4χk(x)) ≥ a4. (5)

On the other hand, (3) yields

∑

k≥m+1

|cχk
|4 ≤

∑

k≥m+1

a2

(k + 1)2
< a2

∑

k≥m+1

1

k(k + 1)
≤ a2

m+ 1
. (6)

Since h has real values, (2), (5) and (6) give

h(x) = |h(x)| = |a4+|cχ1
|4χ1(x)+. . .

∣∣ ≥
∣∣∣∣∣a

4 +
m∑

k=1

|cχk
|4χk(x)

∣∣∣∣∣−
∑

k≥m+1

|cχk
|4 ≥ a4− a2

m+ 1
≥ a2(a2− 1

m+ 1
) > 0.

This proves (4). Therefore U(χ1 . . . , χm; π
2) ⊆ E(4).

Let us note that the estimate for the number m of characters is certainly non-optimal when E is too small.
For example, when E is just the singleton {0}, the upper bound given by the lemma is just |F |2, while one
can certainly find at most m = |F | − 1 characters χ1, . . . , χm (namely, all non-trivial χi ∈ F ∗) such that
U(χ1, . . . , χm; π

2) = {0}. For certain groups (e.g., F = Zk
2) one can find even a much smaller number (say

m = log2 |F |). Nevertheless, in the cases relevant for the proof of Følner’s theorem, namely when the subset E
is relatively large with respect to F , this estimate seems more reasonable.

The next lemma will be needed in the following proofs.

34

5.2 Bogoliouboff and Følner Lemmas 35

Lemma 5.5. Let A be an abelian group and {An}∞n=1 be a sequence of finite subsets of A such that

lim
n→∞

|(An − a) ∩An|
|An|

= 1

for every a ∈ A. If k is a positive integer and V is a subset of A such that k translates of V cover A, then for
every ε > 0 there exists N > 0 such that

|V ∩An| >
(
1

k
− ε

)
|An|

for every n ≥ N .

Proof. Let a1, . . . , ak ∈ A be such that
⋃k

i=1(ai+V) = A. If ε > 0, then there exists N1 > 0 such that for every
n ≥ N1

|(An − ai) ∩An| > (1− ε)|An|
and consequently,

|(An − ai) \An| < ε|An| (7)

for every i = 1, . . . , k. Since An =
⋃k

i=1(ai + V) ∩An, for every n there exists in ∈ {1, . . . , k} such that

1

k
|An| ≤ |(ain + V) ∩An| = |V ∩ (An − ain)|.

Since V ∩ (An − ain) ⊆ (V ∩An) ∪ ((An − ain) \An), (7) yields

1

k
|An| ≤ |V ∩ (An − ain)| ≤ |V ∩An|+ |(An − ain) \An| < |V ∩An|+ ε|An|.

Lemma 5.6 (Bogoliouboff-Følner lemma). Let A be a finitely generated abelian group and let r = r0(A). If
k is a positive integer and V is a subset of A such that k translates of V cover A, then there exist ρ1, . . . , ρs ∈ A∗,
where s = 32rk2, such that UA(ρ1, . . . , ρs;

π
2) ⊆ V(4).

Proof. By Theorem 2.1 we have A ∼= Zr × F , where F is a finite abelian group; so we can identify A with the
group Zr×F . Define An = (−n, n]r×F , let a = (a1, . . . , ar; f) ∈ Zr×F . Then Jni = (−n, n]∩ (−n−ai, n−ai]
satisfies |Jni| ≥ 2n−|ai|. In particular, Jni 6= ∅ for every n > n0 = max{|ai| : i = 1, 2, . . . , n}. As (An−a)∩An =∏r

i=1 Jni × F , we have

|(An − a) ∩An| ≥ |F | ·
r∏

i=1

(2n− |ai|)

or all n > n0. Since |An| = |F |(2n)r, we can apply Lemma 5.5. Thus for every ε > 0 we have

|V ∩An| >
(
1

k
− ε

)
|An|. (8)

for every sufficiently large n. For n with (8) define G = A/(6nZr) and E = q(V ∩An) where q is the canonical
projection of A onto G. Observe that q �An is injective, as (An −An) ∩ ker q = {0}. Then (8) gives

|E| = |V ∩An| >
(
1

k
− ε

)
|An| =

(
1

k
− ε

)
(2n)r|F |

and so
|G|
|E| ≤

(6n)r|F |
(1k − ε)(2n)r|F | =

3rk

1− kε
.

Fix ε > 0 sufficiently small to have
[

32rk2

(1−kε)2

]
= 32rk2 and pick sufficiently large n to have (8). Now apply the

Bogoliouboff Lemma 5.4 to find s = 32rk2 characters ξ1n, . . . , ξsn ∈ G∗ such that UG(ξ1n, . . . , ξsn;
π
2) ⊆ E(4).

For j = 1, . . . , s define %jn = ξjn◦π ∈ A∗. If a ∈ An∩UA(%1n, . . . , %sn;
π
2) then q(a) ∈ UA(ξ1n, . . . , ξsn;

π
2) ⊆ E(4)

and so there exist b1, b2, b3, b4 ∈ V ∩An and c = (ci) ∈ 6nZr such that a = b1 − b2 + b3 − b4 + c. Now

c = a− b1 + b2 − b3 + b4 ∈ (An)(4) +An

35

36 5 FØLNER’S THEOREM

implies |ci| ≤ 5n for each i. So c = 0 as 6n divides ci for each i. Thus a ∈ V(4) and so

An ∩ UA

(
%1n, . . . , %sn;

π

2

)
⊆ V(4) (9)

for all n satisfying (8).
By Lemma 4.2 there exist %1, . . . , %s ∈ A∗ and a subsequence {nl}l of {n}n∈N+ such that %i(a) = liml %inl

(a)
for every i = 1, . . . , s and a ∈ A. We are going to prove now that

UA

(
%1, . . . %s;

π

2

)
⊆ V(4). (10)

Take a ∈ UA(%1, . . . , %s;
π
2). Since A =

⋃∞
l=k Anl

for every k ∈ N+, there exists n0 satisfying (8) and a ∈ An0
.

As %i(a) = liml %inl
(a) for every i = 1, . . . , s, we can pick l to have nl ≥ n0 and |Arg(%inl

(a))| < π/2 for every
i = 1, . . . , s, i.e., a ∈ UA(%1nl

, . . . , %snl
; π
2) ∩Anl

. Now (9), applied to nl, yields a ∈ V(4). This proves (10).

Our next aim is to eliminate the dependence of the number m of characters on the free rank of the group A
in Bogoliouboff - Følner’s lemma. The price to pay for this is taking V(8) instead of V(4).

Lemma 5.7 (Følner lemma). Let A be an abelian group. If k is a positive integer and V be a subset of A such
that k translates of V cover A, then there exist χ1, . . . , χm ∈ A∗, where m = k2, such that UA(χ1, . . . , χm; π

2) ⊆
V(8).

Proof. We consider first the case when A is finitely generated. Let r = r0(A). By Lemma 5.6 there exist
%1, . . . , %s ∈ A∗, where s = 32rk2, such that

UA

(
%1, . . . , %s;

π

2

)
⊆ V(4).

Since it is finitely generated, we can identify A with Zr×F , where F is a finite abelian group. For t ∈ {1, . . . , r}
define a monomorphism it : Z ↪→ A by letting

it(n) = (0, . . . , 0, n︸ ︷︷ ︸
t

, 0, . . . , 0; 0) ∈ A.

Then each κjt = %j ◦ it, where j ∈ {1, . . . , s}, t ∈ {1, . . . , r}, is a character of Z. By Proposition 4.30 the subset

L = UZ
(
{κjt : j = 1, . . . , s, t = 1, . . . , r}; π

8r

)

of Z is infinite. Let L0 =
⋃r

t=1 it(L), i.e., this is the set of all elements of A of the form ±it(n) with n ∈ L and
t ∈ {1, . . . , r}. Then obviously L0 = −L0 ⊆ UA

(
%1, . . . , %s;

π
8r

)
, therefore,

L0
(4r) ⊆ UA

(
%1, . . . , %s;

π

2

)
⊆ V(4). (λ)

Define An = (−n, n]r × F and pick ε > 0 such that
[(

k
1−kε

)2]
= k2. As in Lemma 5.6 An satisfies the

hypotheses of Lemma 5.5 and so |V ∩ An| > (1k − ε)|An| for sufficiently large n. Moreover, we choose this
sufficiently large n from L. Let Gn = A/(2nZr) ∼= Zr

2n × F and E = q(An ∩ V) where q is the canonical
projection A→ Gn. Then q �An

is injective as (An −An) ∩ ker q = 0. So q induces a bijection between An and
Gn on one hand, and between V ∩An and E. Thus |An| = |Gn| = (2n)r|F |, |E| > (1k − ε)|An| and so

(|Gn|
|E|

)2

≤
(

k

εk − 1

)2

≤ k2.

To the finite group Gn apply the Bogoliouboff Lemma 5.4 to get ξ1n, . . . , ξmn ∈ G∗
n, where m = k2, such that

UGn

(
ξ1n, . . . , ξmn;

π

2

)
⊆ E(4).

Let χjn = ξjn ◦ q ∈ A∗. If a ∈ An ∩ UA(χ1n, . . . , χmn;
π
2), then q(a) ∈ UGn

(ξ1n, . . . , ξmn;
π
2) ⊆ E(4). Therefore

there exist b1, b2, b3, b4 ∈ An ∩ V and c = (ci) ∈ 2nZr such that a = b1 − b2 + b3 − b4 + c. Since 2n divides ci for
every i and |ci| ≤ 5n, we conclude that ci ∈ {0,±2n± 4n} for i = 1, 2, . . . , r. This means that c can be written
as a sum of at most 4r elements of L0. This gives c ∈ L0

(4r) ⊆ V(4) by (λ), consequently a ∈ V(8). Therefore

An ∩ UA

(
χ1n, . . . , χmn;

π

2

)
⊆ V(8)

36

5.3 Prodanov’s lemma and proof of Følner’s theorem 37

for n ∈ L sufficiently large n. By Lemma 4.2 there exist χ1, . . . , χm ∈ A∗ and a subsequence {nl}l of {n}n∈N+

such that χj(a) = liml χjnl
(a) for every j = 1, . . . ,m and for every a ∈ A. Being A =

⋃{An : l > k, nl ∈ L} for
every k ∈ N+ we can conclude as above that UA

(
χ1, . . . , χm; π

2

)
⊆ V(8).

Consider now the general case. Let g1, . . . , gk ∈ A be such that A =
⋃k

i=1(gi + V). Suppose that G is a

finitely generated subgroup of A containing g1, . . . , gk. Then G =
⋃k

1=1(gi+V ∩G) and so k translates of V ∩G
cover G. By the above argument and by Theorem 2.5 there exist ϕ1G, . . . , ϕmG ∈ G∗, where m = k2, such that

UG

(
ϕ1G, . . . , ϕmG;

π

2

)
⊆ (V ∩G)(8) ⊆ V(8).

By Corollary 2.6 we can extend each ϕiG to a character of A, so that we assume from now on ϕ1G, . . . , ϕmG ∈ A∗

and

G ∩ UA

(
ϕ1G, . . . , ϕmG;

π

2

)
= UG

(
ϕ1G, . . . , ϕmG;

π

2

)
⊆ V(8). (11)

Let G be the family of all finitely generated subgroups G of A containing g1, . . . , gk. It is a directed set under
inclusion. So we get m nets {ϕjG}G∈G in A∗ for j = 1, . . . ,m. By Lemma 4.2 there exist subnets {ϕjGβ

}β and
χ1, . . . , χm ∈ A∗ such that

ϕj(x) = lim
β
ϕjGβ

(x) for every x ∈ A and j = 1, . . . ,m. (12)

From (11) and (12) we conclude as before that UA(χ1, . . . , χm; π
2) ⊆ V(8).

As a corollary of Følner’s lemma we obtain the following description of the neighborhoods of 0 in the Bohr
topology of A.

Corollary 5.8. For a subset E of an abelian group A the following are equivalent:

(a) E contains V(8) for some big subset V of A;

(b) for every n ∈ N+ E contains V(2n) for some big subset V of A;

(c) E is a neighborhood of 0 in the Bohr topology of A.

Proof. The implication (c) ⇒ (b) follows from Følner’s lemma. The implication (c) ⇒ (b) follows from Corollary
4.31 and Proposition 4.30.

It follows from results of Følner [45] obtained by less elementary tools, that (b) can be replaced by the weaker
assumption V(4) ⊆ E (see also Ellis and Keynes [43] or Cotlar and Ricabarra [24] for further improvements).
Nevertheless the following old problems concerning the group Z is still open (see Cotlar and Ricabarra [24],
Ellis and Keynes [43], Følner [45], Glasner [54], Pestov [80, Question 1025] or Veech [94]):

Question 5.9. Does there exist a big set V ⊆ Z such that V − V is not a neighborhood of 0 in the Bohr
topology of G?

It is known that every infinite abelian group G admits a big set with empty interior with respect to the Bohr
topology [4] (more precisely, these authors prove that every totally bounded group has a big subset with empty
interior).

5.3 Prodanov’s lemma and proof of Følner’s theorem

Let C be a set in a real or complex vector space. Then C is said to be convex if, for all x, y ∈ C and all t ∈ [0, 1],
the point (1− t)x+ ty ∈ C.

The next lemma, due to Prodanov [84], allows us to eliminate the discontinuous characters in uniform
approximations of continuous functions via linear combinations of characters.

Lemma 5.10 (Prodanov’s lemma). Let G be a topological abelian group, let U be an open subset of G, f a
complex valued continuous function on G and M a convex closed subset of C. Let k ∈ N+ and χ1, . . . , χk ∈ G′.
Suppose that c1, . . . , ck ∈ C are such that

∑k
j=1 cjχj(x) − f(x) ∈ M for every x ∈ U . If χm1

, . . . , χms
, with

m1 < · · · < ms, s ∈ N, {m1, . . . ,ms} ⊆ {1, . . . , k}, are the continuous among χ1, . . . , χk, then
∑s

i=1 cmi
χmi

(x)−
f(x) ∈M for every x ∈ U .

37

38 5 FØLNER’S THEOREM

Proof. Let χk ∈ G∗ be discontinuous. Then it is discontinuous at 0. Consequently there exists a net {xγ}γ in
G such that limγ xγ = 0 and there exist yj = limγ χj(xγ) for all j = 1, . . . , k, but yk 6= 1. Notice that always
|yj | = 1. Moreover, yj = 1 when χj is continuous because xγ → 0, so yj = limχj(xγ) = 1.

Consider
∑k

j=1 cjχj(x+ txγ)− f(x+ txγ), where t ∈ Z. Since limγ xγ = 0, we have x+ txγ ∈ U for every

x ∈ U and for every sufficiently large γ. Thus
∑k

j=1 cjχj(x)χj(xγ)
t − f(x + txγ) ∈ M and so passing to the

limit
∑k

j=1 cjχj(x)y
t
j − f(x) ∈M , because f is continuous and M is closed.

Take an arbitrary n ∈ N. By the convexity of M and the relation above for t = 0, . . . , n, we obtain

1

n+ 1

n∑

t=0




k∑

j=1

cjχj(x)y
t
j − f(x)


 ∈M.

Note that
∑n

t=0 y
t
k =

yn+1
k −1

yk−1 because yk 6= 1. Hence we get

k−1∑

j=1

cjnχj(x) +
ck

1 + n

1− yn+1
k

1− yk
χk(x)− f(x) ∈M

for every x ∈ U , where cjn =
∑n

t=0 cjy
t
j

n+1 . Now for every j = 1, 2, . . . , k − 1

• |cjn| ≤ |cj |
∑n

t=0 |yj |t
n+1 = |cj | (because |yj | = 1), and

• if yj = 1 then cjn = cj .

By the boundedness of the sequences {cjn}∞n=1 for j = 1, . . . , k − 1, there exists a subsequence {nm}∞m=1 such
that all limits c′j = limm cjnm

exist for j = 1, . . . , k − 1. On the other hand, |yk| = 1, so

lim
n

ck
n+ 1

1− yn+1
k

1− yk
= 0.

Taking the limit for m→ ∞ in

k−1∑

j=1

cjnm
χj(x) +

ck
1 + nm

1− ynm+1
k

1− yk
χk(x)− f(x) ∈M

gives
k−1∑

j=1

c′jχj(x)− f(x) ∈M for x ∈ U ; (13)

moreover c′j = cj for every j = 1, . . . , k − 1 such that χj is continuous.
The condition (13) is obtained by the hypothesis, removing the discontinuous character χk in such a way

that the coefficients of the continuous characters remain the same. Iterating this procedure, we can remove all
discontinuous characters among χ1, . . . , χk.

Now we give an (apparently) topology-free form of the local version of the Stone-Weierstraß theorem 2.19.

Proposition 5.11. Let G be an abelian group and H be a group of characters of G. If X is a subset of G and
f is a complex valued bounded function on X then the following conditions are equivalent:

(a) f can be uniformly approximated on X by a linear combination of elements of H with complex coefficients;

(b) for every ε > 0 there exist δ > 0 and χ1, . . . , χm ∈ H such that x − y ∈ UG(χ1, . . . , χm; δ) yields
|f(x)− f(y)| < ε for every x, y ∈ X.

Proof. (a)⇒(b) Let ε > 0. By (a) there exist c1, . . . , cm ∈ C and χ1, . . . , χm ∈ H such that ‖∑m
i=1 c1χi−f‖∞ <

ε
4 , that is |

∑m
i=1 c1χi(x)− f(x)| < ε

4 for every x ∈ X.
On the other hand note that |∑m

i=1 ciχi(x) −
∑m

i=1 ciχi(y)| ≤
∑m

i=1 |ci| · |χi(x) − χi(y)| and that |χi(x −
y)− 1| = |χi(x)χi(y)

−1 − 1| = |χi(x)− χi(y)|. If we take

δ =
ε

2mmaxi=1,...,m |ci|

38

5.3 Prodanov’s lemma and proof of Følner’s theorem 39

then x−y ∈ U(χ1, . . . , χm; δ) implies
∑m

i=1 |ci|·|χi(x)−χi(y)| < ε
2 and so also |∑m

i=1 ciχi(x)−
∑m

i=1 ciχi(y)| < ε
2 .

Consequently,

|f(x)− f(y)| ≤
∣∣∣∣∣f(x)−

m∑

i=1

ciχi(x)

∣∣∣∣∣+
∣∣∣∣∣

m∑

i=1

ciχi(x)−
m∑

i=1

ciχi(y)

∣∣∣∣∣+
∣∣∣∣∣

m∑

i=1

ciχi(y)− f(y)

∣∣∣∣∣ < ε.

(b)⇒(a) Let βX be the Čech-Stone compactification of X endowed with the discrete topology. If F : X → C is
bounded, there exists a unique continuous extension F β of F to βX. Let S be the collection of all continuous
functions g on βX such that g =

∑n
j=1 cjχ

β
j with χj ∈ H, cj ∈ C and n ∈ N+. Then S is a subalgebra

of C(βX,C) closed under conjugation and contains all constants. In fact in S we have χβ
kχ

β
j = (χkχj)

β by

definition and χβ = (χ)β because χχ = 1 and so (χχ)β = χβ(χ)β = 1, that is (χ)β = (χ−1)β = χβ .
Now we will see that S separates the points of βX separated by fβ , to apply the local Stone-Weierstraß

Theorem 2.19. Let x, y ∈ βX and fβ(x) 6= fβ(y). Consider two nets {xi}i and {yi}i in X such that xi → x and
yi → y. Since fβ is continuous, we have fβ(x) = lim f(xi) and f

β(y) = lim f(yi). Along with fβ(x) 6= fβ(y) this
implies that there exists ε > 0 such that |f(xi)−f(yi)| ≥ ε for every sufficiently large i. By the hypothesis there
exist δ > 0 and χ1, . . . , χk ∈ H such that for every u, v ∈ X if u− v ∈ UG(χ1, . . . , χk; δ) then |f(u)− f(v)| < ε.

Assume χβ
j (x) = χβ

j (y) holds true for every j = 1, . . . , k. Then xi − yi ∈ UG(χ1, . . . , χk; δ) for every sufficiently

large i, this contradicts (a). So each pair of points of βX separated by fβ is also separated by S. Since βX is
compact, one can apply the local version of the Stone-Weierstraß Theorem 2.19 to S and fβ and so fβ can be
uniformly approximated by S. To conclude note that if g =

∑
cjχ

β
j on βX then g �X=

∑
cjχj .

The reader familiar with uniform spaces will note that item (b) is nothing else but uniform continuity of f
w.r.t. the uniformity on X induced by the uniformity of the whole group G determined by the topology TH .

Theorem 5.12 (Følner theorem). Let G be a topological abelian group. If k is a positive integer and E
is a subset of G such that k translates of E cover G, then for every neighborhood U of 0 in G there exist
χ1, . . . , χm ∈ Ĝ, where m = k2, and δ > 0 such that UG(χ1, . . . , χm; δ) ⊆ U − U + E(8).

Proof. By Følnerś lemma 5.7 there exist ϕ1, . . . , ϕm ∈ G∗ such that UG(ϕ1, . . . , ϕm; π
2) ⊆ E(8), where the

characters ϕj can be discontinuous. Our aim will be to replace these characters by continuous ones “enlarging”
E(8) to U − U + E(8).

It follows from Lemma 3.18 that C := E(8) + U ⊆ E(8) + U − U . Consider the open set X = U ∪ (G \ C)
and the function f : X → C defined by

f(x) =

{
0 if x ∈ U

1 if x ∈ G \ C

Then f is continuous as X = U ∪ (G \ C) is a clopen partition of X.
Let H be the group generated by ϕ1, . . . , ϕm. Take x, y ∈ X with x− y ∈ UG(ϕ1, . . . , ϕm; π

2) ⊆ E(8). So if

y ∈ U then x ∈ E(8) + U and consequently x 6∈ G \ E(8) + U , that is x ∈ U . In the same way it can be showed
that x ∈ U yields y ∈ U . This gives f(x) = f(y) by the definition of f . So by Proposition 5.11 one can uniformly
approximate f on X by characters of H. Hence one can find a finite number of m-uples j̃ = (j1, . . . , jm) of
integers and cj̃ ∈ C such that ∣∣∣∣

∑

j̃

cj̃ϕ
j1
1 (x) · . . . · ϕjm

m (x)− f(x)

∣∣∣∣ ≤
1

3
(13)

holds for every x ∈ X. Since X is open and f is continuous, we can apply Lemma 5.10 to the convex closed set
M = {z ∈ C : |z| ≤ 1

3} and this permits us to assume that all products ϕj1
1 · . . . · ϕjm

m are continuous. Letting
x = 0 in (13) one gets |∑j̃ cj̃ | ≤ 1

3 , and consequently,

2

3
≤

∣∣∣∣
∑

j̃

cj̃ − 1

∣∣∣∣. (14)

Let now Φ be the subgroup of H consisting of all continuous characters of H, i.e., Φ = H ∩ Ĝ. By Theorem
2.1 there exist χ1, . . . , χm ∈ Φ that generate Φ. Choose ε > 0 with ε

∑
j̃ |cj̃ | < 1

3 . By the continuity of

χ1, . . . , χm ∈ Φ there exists δ > 0 such that x ∈ UG(χ1, . . . , χm; δ) implies |ϕj1
1 (x) · . . . · ϕjm

m (x)− 1| ≤ ε for all

summands ϕj1
1 · . . . · ϕjm

m in (13).

39

40 6 PETER-WEYL’S THEOREM AND OTHER APPLICATIONS OF FØLNER’S THEOREM

To prove
UG(χ1, . . . , χm; δ) ⊆ U − U + E(8)

assume for a contradiction that some z ∈ UG(χ1, . . . , χm; δ) and z 6∈ U − U + E(8). Since C = E(8) + U ⊆
E(8) + U − U , then z ∈ G \ C ⊆ X. Thus, by the definition of f , (13), (14) and |ϕj1

1 (z) · . . . · ϕjm
m (z) − 1| ≤ ε,

we have

2

3
≤

∣∣∣∣
∑

j̃

cj̃ − 1

∣∣∣∣ ≤
∣∣∣∣
∑

j̃

cj̃(1− ϕj1
1 (z) · . . . · ϕjm

m (z))

∣∣∣∣+
∣∣∣∣
∑

j̃

cj̃ϕ
j1
1 (z) · . . . · ϕjm

m (z)− f(z)

∣∣∣∣ ≤ ε
∑

j̃

|cj̃ |+
1

3
.

These inequalities together give 2
3 ≤ ε

∑
j̃ |cj̃ |+ 1

3 . This contradicts the choice of ε.

6 Peter-Weyl’s theorem and other applications of Følner’s theorem

In this section we prove Peter-Weyl’s theorem using Følner’s theorem.

6.1 Precompact group topologies on abelian groups

Let us recall here that for an abelian group G and a subgroup H of G∗, the group topology TH generated by H
is the coarsest group topology on G that makes every character from H continuous. We recall its description
and properties in the next proposition:

Proposition 6.1. Let G be an abelian group and let H be a group of characters of G. A base of the neighborhoods
of 0 in (G, TH) is given by the sets U(χ1, . . . , χm; δ), where χ1, . . . , χm ∈ H and δ > 0. Moreover (G, TH) is a
Hausdorff if and only if H separates the points of G.

Now we can characterize the precompact topologies on abelian groups.

Theorem 6.2. Let (G, τ) be an abelian group. The following conditions are equivalent:

(a) τ is precompact;

(b) τ is Hausdorff on G and the neighborhoods of 0 in G are big subsets;

(c) there exists a group H of continuous characters of G that separates the points of G and such that τ = TH .

Proof. (a)⇒(b) is the definition of precompact topology.

(b)⇒(c) If H = (̂G, τ) then TH ⊆ τ . Let U and V be open neighborhoods of 0 in (G, τ) such that V(10) ⊆ U .
Then V is big and by Følner’s Theorem 5.12 there exist continuous characters χ1, . . . , χm of G such that
UG(χ1, . . . , χm; δ) ⊆ V(10) ⊆ U for some δ > 0. Thus U ∈ TH and τ ⊆ TH .

(c)⇒(a) Even if this implication is contained in Corollary 4.31, we give a direct proof here. Let i : G→ SH
be defined by i(g) = ig : H → S (if g ∈ G) with ig(χ) = χ(g) for every χ ∈ H. Since H separates the points
of G, the function i is injective. The product SH endowed with the product topology is compact and so i is
a topological immersion by Proposition 6.1. The closure of i(G) in SH is compact and G̃ is isomorphic to it,

hence G̃ is compact.

Remark 6.3. The above theorem essentially belongs to Comfort and Ross [23]. It can be given in the following
simpler “Hausdorff-free” version: τ is totally bounded iff τ = TH for some group H of continuous characters of
G.

Corollary 6.4 (Peter-Weyl’s theorem). If G is a compact abelian group, then Ĝ separates the points of G.

Proof. Let τ be the topology of G. By Theorem 6.2 there exists a group H of continuous characters of G (i.e.,

H ⊆ Ĝ) such that τ = TH . Since τ ⊇ TĜ and H ⊆ Ĝ we conclude that H = Ĝ separates the points of G.

The next theorem will allow us to sharpen this property (see Corollary 6.6).

Theorem 6.5. Let G be an abelian group. Let H be the set of all groups of characters of G separating the
points of G and P be the set of all precompact group topologies on G. Then the function T : H → P which
associates to H ∈ H the topology TH ∈ P is an order preserving bijection (if H1,H2 ∈ H then TH1

⊆ TH2
if and

only if H1 ⊆ H2).

40

Unit 5 Unit 6

6.2 Precompact group topologies determined by sequences 41

Proof. The equivalence (a)⇔(c) of Theorem 6.2 yields that TH ∈ P for every H ∈ H and that T is surjective.

Let H ∈ H and suppose that χ ∈ ̂(G, TH). To show that χ ∈ H let ε > 0. Since χ is continuous in 0,
by Proposition 6.1 there exist χ1, . . . , χm ∈ H and δ > 0 such that |χ(x) − 1| < ε for x ∈ U(χ1, . . . , χm; δ).
Therefore for every x, y ∈ G with x− y ∈ U(χ1, . . . , χm; δ) we get |χ(x− y)− 1| < ε, that is |χ(x)− χ(y)| < ε.
Apply now Proposition 5.11 to find χ1, . . . , χm ∈ H and ci, . . . , cm ∈ C such that

∣∣∑m
j=1 cjχj(x) − χ(x)

∣∣ ≤ 1
2

for every x ∈ G. This yields
∣∣∑m

j=1 cjχj(x)χ
−1(x)− 1

∣∣ ≤ 1
2 .

Suppose now that χ 6∈ H. Then each χjχ
−1 in the previous condition is non-constant. Equip G with the

indiscrete topology. Then each character χjχ
−1 is discontinuous. Applying Lemma 5.10 we get the inequality

1 ≤ 1
2 , which is a contradiction. Therefore χ ∈ H and so H = ̂(G, τH) for every H ∈ H.
If H1,H2 ∈ H and TH1 = TH2 then H1 = H2, so T is a bijection.
The last statement of the theorem is obvious.

As a corollary of Theorem 6.5 we obtain the following important fact that completes Corollary 6.4. It will
be essentially used in the proof of the duality theorem.

Corollary 6.6. If (G, τ) is a compact abelian group and H ≤ Ĝ separates the points of G, then H = Ĝ.

Proof. By Theorem 6.2 it holds τ = TĜ. Since TH ⊆ TĜ by Theorem 6.5 and TH is Hausdorff, then TH = TĜ.
Now again Theorem 6.5 yields H = Ĝ.

Definition 6.7. An abelian topological group is elementary compact if it is topologically isomorphic to Ts×F ,
where n is a positive integer and F is a finite abelian group.

Proposition 6.8. Let G be a compact abelian group and let U be an open neighborhood of 0 in G. Then
there exists a closed subgroup C of G such that C ⊆ U and G/C is an elementary compact abelian group. In
particular, G is an inverse limit of elementary compact abelian groups.

Proof. By the Peter-Weyl Theorem 6.4
⋂

χ∈Ĝ kerχ = {0} and each kerχ is a closed subgroup of G. By the

compactness of G there exists a finite subset F of Ĝ such that C =
⋂

χ∈F kerχ ⊆ U . Define now g =
∏

χ∈F χ :

G → TF . Thus ker g = C and G/C is topologically isomorphic to the closed subgroup g(G) of TF by the
compactness of G. So G/C is elementary compact abelian by Lemma 4.47.

To prove the last statement, fix for every open neighborhood Ui of 0 in G a closed subgroup Ci of G with
Ci ⊆ U and such that G/Ci is elementary compact abelian. Note that for Ci and Cj obtained in this way
the subgroup Ci ∩ Cj has the same property as G/Ci ∩ Cj is isomorphic to a closed subgroup of the product
G/Ci × G/Cj which is again an elementary compact abelian group. Enlarging the family (Ci) with all finite
intersections we obtain an inverse system of elementary compact abelian groups G/Ci where the connecting
homomorphisms G/Ci → G/Cj , when Ci ≤ Cj , are simply the induced homomorphisms. Then the inverse limit
G′ of this inverse system is a compact abelian group together with a continuous homomorphism f : G → G′

induced by the projections pi : G → G/Ci. Assume x ∈ G is non-zero. Pick on open neighborhood U of 0. By
the first part of the proof, there exists Ci ⊆ U , hence x 6∈ Ci. Therefore, pi(x) 6= 0, so f(x) 6= 0 as well. This
proves that f is injective. To check surjectivity of f take an element x′ = (xi+Ci) of the inverse limit G′. Then
the family of closed cosets xi + Ci in G has the finite intersection property, so has a non-empty intersection.
For every element x of that intersection one has f(x) = x′. Finally, the continuous isomorphism f : G → G′

must be open by the compactness of G.

For a topological abelian group G we say that G has no small subgroups, or shortly, G is NSS, if there exists
a neighborhood U of 0 such that U contain no non-trivial subgroups of G. It follows immediately from the
above proposition that the compact abelian group G has no small subgroups precisely when G is an elementary
compact abelian group.

6.2 Precompact group topologies determined by sequences

Large and lacunary sets (mainly in Z or elsewhere) are largely studied in number theory, harmonic analysis and
dynamical systems ([43], [24], [80], [52], [53], [54], [55], [59]).

Let us consider a specific problem. For a strictly increasing sequence u = (un)n≥1 of integers, the interest in
the distribution of the multiples {unα : n ∈ N} of a non-torsion element α of the group T = R/Z has roots in
number theory (Weyl’s theorem of uniform distribution modulo 1) and in ergodic theory (Sturmian sequences
and Hartman sets [99]). According to Weyl’s theorem, the set {unα : n ∈ N} will be uniformly dense in T for
almost all α ∈ T. One can consider the subset tu(T) of all elements α ∈ T such that limn unα = 0 in T. Clearly

41

42 6 PETER-WEYL’S THEOREM AND OTHER APPLICATIONS OF FØLNER’S THEOREM

it will have measure zero. Moreover, it is a subgroup of T as well as a Borel set, so it is either countable or has
size c. It was observed by Armacost [3] that when un = pn for all n and some prime p, then tu(T) = Z(p∞).
He posed the question of describing the subgroup tu(T) for the sequence un = n!, this was done by Borel [19]
(see also [36] and [31] for the more general problem concerning sequences u with un−1|un for every n).

Another motivation for the study of the subgroups of the form tu(T) come from the fact that they lead to
the description of precompact group topologies on Z that make the sequence un converge to 0 in Z (see the
comment after proposition 6.9). Let us start by an easy to prove general fact:

Proposition 6.9. [7] A sequence A = {an}n in a precompact abelian group G converges to 0 in G iff χ(an) → 0
in T for every continuous character of G.

In the case of G = Z the characters of G are simply simply elements of T, i.e., a precompact group topology
on Z has the form TH for some subgroup H of T. Thus the above proprosition for G = Z can be reformulated
as: a sequence A = {an}n in (Z, TH) converges to 0 iff anx→ 0 for every x ∈ H, i.e., simply H ⊆ ta(T).

Now we can discuss a counterpart of the notion of T -sequences (introduced in §3.5), defined with respect to
topologies induced by characters, i.e., precompact topologies.

Definition 6.10. [7, 9] A sequence A = {an}n in an abelian group G is called a TB-sequence is there exists a
precompct group topology on G such that an → 0.

Clearly, every TB-sequence is a T-sequence (see Example 6.12 for a T-sequence in Z that is not a TB-
sequence). The advantage of TB-sequences over the T-sequences is in the easier way of determining sufficient
condition for a sequence to be a TB-sequence [7, 9]. For example, a a sequence (an) in Z is a TB-sequence iff
the subgroup ta(T) of T is infinite.

Egglestone [42] proved that the asymptotic behavior of the sequence of ratios qn = un+1

un
may have an impact

on the size of the subgroup tu(T) in the following remarkable dichotomy:

Theorem 6.11. Let (an) be a sequence in Z.

• If limn
an+1

an
= +∞, then (an) is a TB-sequence and |ta(T)| = c.

• If an+1

an
is bounded, then ta(T) is countable.

Example 6.12. [9] There exists a TB-sequence (an) in Z with limn
an+1

an
= 1 .

Here is an example of a T-sequence in Z that is not a TB-sequence.

Example 6.13. For every TB-sequence A = {an} in Z such that ta(T) is countable, there exists a sequence {cn}
in Z such that the sequence qn defined by q2n = cn and q2n−1 = an, is a T -sequence, but not a TB-sequence.

Proof. Let {z1, . . . , zn, . . .} be an enumeration of ta(T).
According to Lemma 3.51 there exists a sequence bn in Z such that for every choice of the sequence (en),

where en ∈ {0, 1}, the sequence qn defined by q2n = bn + en and q2n−1 = an, is a T -sequence. Now we define
the sequence qn with q2m−1 = am and q2m = bm when m is not a prime power. Let p1, . . . , pn, . . . be all prime
numbers enumerated one-to-one. Now fix k and define ek ∈ {0, 1} depending on limn bpn

k
zk as follows:

• if limn bpn
k
zk = 0, let ek = 1,

• if limn bpn
k
zk 6= 0 (in particular, if the limit does not exists) let ek = 0.

Now let q2pn
k
= bpn

k
+ ek for n ∈ N. Hence for every k ∈ N

lim
n
q2pn

k
zk = 0 =⇒ ek = 1. (∗)

To see that (qn) is not a TB-sequence assume that χ : Z → T a character such that χ(qn) → 0 in T. Then
x = χ(1) ∈ T satisfies qnx→ 0, so x ∈ tq(T) ⊆ ta(T). So there exists k ∈ N with x = zk. By (*) ek = 1. Hence

q2pn
k
= bpn

k
+ 1 and limn bpn

k
zk = 0, so x ∈ tq(T) yields 0 = limn q2pn

k
x = 0 + x, i.e., x = 0. This proves that

every character χ : Z → T such that χ(qn) → 0 in T is trivial. In particular, (qn) not a TB-sequence.

Let us note that the above proof gives much more. Since qn → 0 in τ(qn), it shows that every τ(qn)-continuous

character of Z is trivial, i.e., ̂(Z, τ(qn) = 0.
The information accumulated on the properties of the subgroups tu(T) of T motivated the problem of

describing those subgroups H of T that can be characterized as H = tu(T) for some sequence u. As already

42

6.3 On the structure of compactly generated locally compact abelian groups 43

mentioned, such an H can be only countable or can have size c being of measure zero. A measure zero subgroup
H of T of size c that is not even contained in any proper subgroup of T of the form tu(T) was built in [7]
(under the assumption of Martin Axiom) and in later in [61, 62] (in ZFC). Much earlier Borel [19] had already
resolved in the positive the remaining part of the problem showing that every countable subgroup of T can be
characterized (in the above sense). Unaware of his result, Larcher [74], and later Kraaikamp and Liardet [71],
proved that some cyclic subgroups of T are characterizable (see also [16, 15, 12, 14, 13] for related results). The
paper [9] describes the algebraic structure of the subgroup tu(T) when the sequence u := (un) verifies a linear
recurrence relation of order ≤ k,

un = a(1)n un−1 + a(2)n un−2 + . . .+ a(k)n un−k

for every n > k with a
(i)
n ∈ Z for i = 1, . . . , k.

Three proofs of Borel’s theorem of characterizability of the countable subgroups of T were given in [13]. These
author mentioned that the theorem can be extended to compact abelian groups in place of T, without giving
any precise formulation. There is a natural way to extend the definition of tu(T) to an arbitrary topological
abelian group G by letting tu(G) = {x ∈ G : limn unx = 0 in G}. Actually, for the sequence un = pn (resp.,
un = n!) an element x satisfying limn unx = 0 has been called topologically p-torsion (resp., topologically torsion)
by Braconnier and Vilenkin in the forties of the last century and these notions played a prominent role in the
development of the theory of locally compact abelian groups. One can easily reduce the computation of tu(G)
for an arbitrary locally compact abelian group to that of tu(T) [26]. Independently on their relevance in other
questions, the subgroups tu(G) turned out to be of no help in the characterization of countable subgroups of
the compact abelian groups. Indeed, a much weaker condition, turned out the characterize the circle group T
in the class of all locally compact abelian groups:

Theorem 6.14. [31] In a locally compact abelian group G every cyclic subgroup of the group G is an intersection
of subgroups of the form tu(G) iff G ∼= T.

Actually, one can remove the “abelian” restraint in the theorem remembering that in the non-abelian case
tu(G) is just a subset of G, not a subgroup in general [31].

The above theorem suggested to use in [35] a different approach to the problem, replacing the sequence of

integers un (characters of T!) by a sequence un in the Pontryagin-van Kampen dual Ĝ. Then the subgroup
su(G) = {x ∈ G : limn un(x) = 0 in T} of G really can be used for such a characterization of all countable
subgroups of the compact metrizable groups (see [35, 33, 17] for major detail).

6.3 On the structure of compactly generated locally compact abelian groups

From now on all groups are Hausdorff; quotients are taken for closed subgroups and so they are still Hausdorff.
An abelian topological group is elementary locally compact if it is topologically isomorphic to Rn×Zm×Ts×F ,

where n,m, s are positive integers and F is a finite abelian group. Observe that the class of elementary locally
compact abelian groups is closed under taking quotient, closed subgroups and finite products (see Theorem 4.37
and Corollary 4.47).

Lemma 6.15. Let G be a locally compact monothetic group. Then G is either compact or is discrete.

Proof. If G is finite, then G is both compact and discrete. So we can suppose without loss of generality that
〈x〉 ∼= Z is infinite and so also that Z is a subgroup of G.

If G induces the discrete topology on Z, then Z is closed and so G = Z is discrete.
Suppose now that G induces on Z a non-discrete topology. Our aim is to show that it is totally bounded.

Then the density of Z in G yields that G = Z̃ = Z is compact, as G is locally compact and so complete (see
Lemma 4.7).

Every open subset of G has no maximal element. Indeed, if U is an open subset of Z that contains 0 and
it has a maximal element, then −U is an open subset of Z that contains 0 and it has a minimal element and
U ∩−U is an open finite neighborhood of 0 in Z; thus Z is discrete against the assumption. Consequently every
open subset of Z contains positive elements.

Let U be a compact neighborhood of 0 in G and V a symmetric neighborhood of 0 in G such that V +V ⊆ U .
There exist g1, . . . , gm ∈ G such that U ⊆ ⋃m

i=1(gi + V). Let n1, . . . , nm ∈ Z be positive integers such that
ni ∈ gi + V for every i = 1, . . . ,m. Equivalently gi ∈ ni − V = ni + V . Thus

U ⊆
m⋃

i=1

(gi + V) ⊆
m⋃

i=1

(ni + V + V) ⊆
m⋃

i=1

(ni + U)

43

44 6 PETER-WEYL’S THEOREM AND OTHER APPLICATIONS OF FØLNER’S THEOREM

implies

U ∩ Z ⊆
m⋃

i=1

(ni + U ∩ Z). (1)

We show that U ∩Z is big with respect to Z. Let t ∈ Z; since U ∩Z has no maximal element, then there exists
s ∈ U ∩ Z such that s ≥ t. Define st = min{s ∈ U ∩ Z : s ≥ t}. By (1) st = ni + ut for some i ≤ m and
ut ∈ U ∩Z. Since ni > 0, then ut < st and so ut < t ≤ st. Now put N = max{n1, . . . , nm} and F = {1, . . . , N}.
Hence U ∩ Z+ F = Z. This proves that the topology induced on Z by G is totally bounded.

Corollary 6.16. Let G be a locally compact abelian group and x ∈ G. Then 〈x〉 is either compact or discrete.

Proposition 6.17. Let G be a compactly generated locally compact abelian group. Then there exists a discrete
subgroup H of G such that H ∼= Zn for some n ∈ N and G/H is compact.

Proof. Suppose first that there exist g1, . . . , gm ∈ G such that G = 〈g1, . . . , gm〉. We proceed by induction. For
m = 1 apply Lemma 6.15: if G is infinite and discrete take H = G and if G is compact H = {0}. Suppose
now that the property holds for m ≥ 1 and G = 〈g1, . . . , gm+1〉. If every 〈gi〉 is compact, then so is G and
H = {0}. If 〈gm+1〉 is discrete, consider the canonical projection π : G → G1 = G/〈gm+1〉. Since G1 has a
dense subgroup generated by m elements, by the inductive hypothesis there exists a discrete subgroup H1 of
G1 such that H1

∼= Zn and G1/H1 is compact. Therefore H = π−1(H1) is a closed countable subgroup of G.
Thus H is locally compact and countable, hence discrete by Lemma 4.8.

Since H is finitely generated, it is isomorphic to H2 × F , where H2
∼= Zs for some s ∈ N and F is a finite

abelian group (see Theorem 2.1). Now G/H is isomorphic to G1/H1 and H/H2 is finite, so G/H2 is compact
thanks to Lemma 4.5.

Now consider the general case. There exists a compact subset K of G that generates G. By Lemma 4.14 we
can assume wlog that K = U , where U is a symmetric neighborhood of 0 in G with compact closure. We show
now that there exists a finite subset F of G such that

K +K ⊆ K + 〈F 〉. (2)

In fact, pick a symmetric neighborhood V of 0 in G such that V + V ⊆ U . For the compact set K satisfying
K ⊆ ⋃

x∈K(x+ V) there exists a finite subset F of K such that K ⊆ ⋃
x∈F (x+ V) = F + V . Then

K +K ⊆ F + F + V + V ⊆ 〈F 〉+ U ⊆ 〈F 〉+K.

gives (2). An easy inductive argument shows that 〈K〉 = G and (2) imply G = 〈K〉 ⊆ K + 〈F 〉.
Let G1 = 〈F 〉. By G = 〈F 〉+K the quotient π(K) = G/G1 is compact. By the first part of the proof there

exists a discrete subgroup H of the locally compact subgroup G1 of G, such that H ∼= Zn for some n ∈ N and
G1/H is compact. Since G1/H is a compact subgroup of G/H such that (G/H)/(G1/H) ∼= G/G1 is compact,
we conclude that also G/H is compact.

Proposition 6.18. Let G be a compactly generated locally compact abelian group. Then there exists a compact
subgroup K of G such that G/K is elementary locally compact abelian.

Proof. By Proposition 6.17 there exists a discrete subgroup H of G such that the quotient G/H is compact.
Consider the canonical projection π of G onto G/H. Let U be a compact symmetric neighborhood of 0 in G
such that (U + U + U) ∩H = {0}. So π(U) is a neighborhood of 0 in G/H and applying Lemma 6.8 we find a
closed subgroup L ⊇ H of G such that the closed subgroup L/H of G/H satisfies

L/H ⊆ π(U) and (G/H)/(L/H) = G/L ∼= Tt × F, (4)

where F is a finite abelian group and t ∈ N, i.e., G/L is elementary compact abelian.
The set K = L ∩ U is compact being closed in the compact neighborhood U . Let us see now that K is a

subgroup of G. To this end take x, y ∈ K. Then x− y ∈ L and π(x− y) ∈ C ⊆ π(U). Thus π(x− y) = π(u) for
some u ∈ U . As π(x−y−u) = 0 in G/H, one has x−y−u ∈ (U+U+U)∩H = {0}. Hence x−y = u ∈ L∩U = K.

Now take x ∈ L; consequently π(x) ∈ C ⊆ π(U) so π(x) = π(u) for some u ∈ U . Clearly, u ∈ L ∩ U = K,
hence π(L) = π(K). Thus L = K + H and K ∩ H = {0} yields that the canonical projection l : G → G/K
restricted to H is a continuous isomorphism of H onto l(H) = l(L). Let us see now that l(H) is discrete. The
compact set K is contained in the open set W1 = G \ (H \ {0}) = G \H ∪ {0} (H is discrete). By Lemma 4.3
(c) there exists an open neighborhood V of 0 in G such that K+V ⊆W1. This implies that (K+V)∩H = {0}
and so (K + V) ∩ (K +H) = K, that gives l(V) ∩ l(H) = {0} in G/K. Thus

l(L) = l(H) ∼= H ∼= Zs

44

6.3 On the structure of compactly generated locally compact abelian groups 45

is discrete in G/K.
Observe that (4) yields the following isomorphisms:

(G/K)/l(L) = (G/K)/(L/K) ∼= G/L ∼= Tt × F.

Denote by % the composition G/K → G/L → Tt × F . Let W be a compact neighborhood of 0 in G/K such
that W +W ⊆ l(V) and %(W) ⊆ Tt × {0}. Then % �W is injective because l(V) ∩ l(L) = {0}. In particular, %
is a local homeomorphism.

Consider now the canonical projection q : Rt → Tt. Our aim is to lift it to a continuous homomorphism
f : Rt → G/K such that % ◦ f = q. The existence of such a lifting is immediate from the facts that both q
and % are covering homomorphisms and Rt simply connected. In particular, D = f(Rt) is an open subgroup of
G/K as has a non-empty interior (as q and % are local homeomorphisms). Since Rt is divisible, by Lemma 2.8
G/K = D × B where B is a discrete subgroup of G/K because D ∩ B = {0} and D is open. Moreover B is
compactly generated as it is a quotient of G. Since it is also discrete, B is finitely generated. Then f : Rt → D
is open by Theorem 4.9 and so D is isomorphic to a quotient of Rt, which is elementary locally compact abelian.

For the reader who is not familiar with covering maps we provide now a self-contained proof.
Take an open neighborhood U of 0 in Rt such that U − U ∩ ker q = {0} and let U0 = U ∩ q−1(%(W)).

Then U0 is an open neighborhood of 0 in Rt such that q �U0
is one-to-one from U0 to %(W). Pick a symmetric

neighborhood U1 of 0 in Rt such that U1 + U1 ⊆ U0. Define a map f : Rt → G/K as follows: f �U0 is simply
the composition %−1 ◦ q. So f maps U0 onto the open subset %−1(q(U0)) of G/K. If x ∈ Rt there exists n ∈ N+

such that 1
nx ∈ U0. We put f(x) = nf(1nx) and we note that this definition does not depend on n. Moreover,

f(x1 + x2) = f(x1) + f(x2) for every x1, x2 ∈ U1.
We can prove now that f is a homomorphism. First of all we note that for every x ∈ Rt f �〈x〉 is a

homomorphism, i.e., f(kx) = kf(x) for every k ∈ Z. Now take x, y ∈ Rt. There exists an integer n > 0 such
that 1

nx,
1
ny ∈ U1 and so 1

nx+ 1
ny ∈ U0. By the the previous step

f(x+ y) = nf

(
1

n
(x+ y)

)
= nf

(
1

n
x+

1

n
y

)
= nf

(
1

n
x

)
+ nf

(
1

n
y

)
= f(x) + f(y),

for all x, y ∈ Rt.
So f is continuous and also a local homeomorphism on Rt because it is the composition of local homeomor-

phisms: restricted to the open subset U0, f is the composition of q and %−1 (note that both % �W and q �U0
are

continuous and open).

To prove the Pontryagin-van Kampen duality theorem in the general case (for G ∈ L), we need Theorem
6.19, which generalizes the Peter-Weyl Theorem 6.4.

Theorem 6.19. If G is a locally compact abelian group, then Ĝ separates the points of G.

Proof. Let V be a compact neighborhood of 0 in G. Take x ∈ G \ {0}. Then G1 = 〈V ∪ {x}〉 is an open (it
has non-void interior) compactly generated subgroup of G. In particular G1 is locally compact. By Proposition
6.17 there exists a discrete subgroup H of G1 such that H ∼= Zm for some m ∈ N and G1/H is compact. Thus⋂

n∈N+
nH = {0} and so there exists n ∈ N+ such that x 6∈ nH. Since H/nH is finite, the quotient G2 = G1/nH

is compact by Lemma 4.5. Consider the canonical projection π : G1 → G2 and note that π(x) = y 6= 0 in G2.

By the Peter-Weyl Theorem 6.4 there exists ξ ∈ Ĝ such that ξ(y) 6= 0. Consequently χ = ξ ◦ π ∈ Ĝ1 and

χ(x) 6= 0. By Theorem 2.5 there exists χ ∈ Ĝ such that χ �G1
= χ.

It follows from Theorem 6.19 and Remark 7.24 that ωG is a continuous monomorphism for every locally
compact abelian group G.

Corollary 6.20. Let G be a locally compact abelian group and K a compact subgroup of G. Then for every
χ ∈ K̂ there exists ξ ∈ Ĝ such that ξ �K= χ.

Proof. Define H = {χ ∈ K̂ : there exists ξ ∈ Ĝ with ξ �K= χ}. By Theorem 6.19 the continuous characters of
G separate the points of G. Therefore H separate the points of K. Now apply Corollary 6.6 to conclude that
H = K̂.

Here is another corollary of Theorem 6.19:

Corollary 6.21. A σ-compact and locally compact abelian group is totally disconnected iff for every continuous
character χ of G the image χ(G) is a proper subgroup of T.

45

46 7 PONTRYAGIN-VAN KAMPEN DUALITY

Proof. Assume that G is a locally compact abelian group such that χ(G) is a proper subgroup of T for every

continuous character χ of G. According to Theorem 6.19 the diagonal homomorphism f : G→ ∏{χ(G) : χ ∈ Ĝ}
of all χ ∈ Ĝ is injective. Since the proper subgroups of T are totally disconnected, the whole product will be
totally disconnected, so also G will be totally disconnected. Now assume that G is σ-compact, locally compact
and totally disconnected. Consider χ ∈ Ĝ and assume for a contradiction that χ(G) = T. Then χ : G → T
will be an open map by the open mapping theorem, so T will be a quotient of G. As total disconnectedness
is inherited by quotiens of locally compact groups (see Corollary 4.20), we conclude that T must be totally
disconnected, a contradiction.

Corollary 6.22. A compact abelian group is totally disconnected iff every continuous character of G is torsion.

Proof. For a compact abelian group G the image χ(G) under a continuous character χ of G is a compact, hence
closed subgroup of T. Hence χ(G) is a proper subgroup of T precisely when it is finite. This means that the
character χ is torsion.

Compactness plays an essential role here. We shall see examples of totally disconnected σ-compact and
locally compact abelian groups G such that no continuous character of G is torsion (e.g., G = Qp).

7 Pontryagin-van Kampen duality

7.1 The dual group

In the sequel we shall write the circle additively as (T,+) and we denote by q0 : R → T = R/Z the canonical
projection. For every k ∈ N+ let Λk = q0((− 1

3k ,
1
3k)). Then {Λk : k ∈ N+} is a base of the neighborhoods of 0

in T, because {(− 1
3k ,

1
3k) : k ∈ N+} is a base of the neighborhoods of 0 in R.

For every abelian group G∗ = Hom(G,T). For a subset K of G and a subset U of T let

WG∗(K,U) = {χ ∈ G : χ(K) ⊆ U}.

For any subgroup H of G∗ we abbreviate H ∩W (K,U) to WH(K,U). When there is no danger of confusion
we shall write only W (K,U) in place of WG∗(K,U). The group G∗ will be considered only with one topology,
namely the induced from TG compact topology (see Remark 4.1).

If G is a topological abelian group, Ĝ will denote the subgroup of G∗ consisting of continuous characters.
The group Ĝ will carry the compact open topology that has as basic neighborhoods of 0 the sets WĜ(K,U),

where K is a compact subset of G and U is neighborhood of 0 in T. We shall see below that when U ⊆ Λ1,
then WĜ(K,U) coincides with WG∗(K,U) in case K is a neighborhood of 0 in G. Therefore we shall use mainly
the notation W (K,U) when the group G is clear from the context.

Let us start with an easy example.

Example 7.1. Let G be an abelian topological group.

(1) If G is compact, then Ĝ is discrete.

(2) If G is discrete, then Ĝ is compact.

Indeed, to prove (1) it is sufficient to note that WĜ(G,Λ1) = {0} as Λ1 contains no subgroup of T beyond 0.

(2) Suppose that G is discrete. Then Ĝ = Hom(G,T) is a subgroup of the compact group TG. The compact-

open topology of Ĝ coincides with the topology inherited from TG: let F be a finite subset of G and U an open
neighborhood of 0 in T, then

⋂

x∈F

π−1
x (U) ∩ Hom(G,T) = {χ ∈ Hom(G,T) : πx ∈ U for every x ∈ F}

= {χ ∈ Hom(G,T) : χ(x) ∈ U for every x ∈ F} =W (F,U).

Moreover Hom (G,T) is closed in the compact product TG by Remark 4.1 and we can conclude that Ĝ is
compact.

Now we prove that the dual group is always a topological group. If the group G is locally compact, then its
dual is locally compact too. This is the first step of the Pontryagin-van Kampen duality theorem.

46

 Unit 6Units 7, 8

7.1 The dual group 47

Theorem 7.2. For an abelian topological group G the following assertions hold true:

(a) if x ∈ T and k ∈ N+, then x ∈ Λk if and only if x, 2x, . . . , kx ∈ Λ1;

(b) χ ∈ Hom (G,T) is continuous if and only if χ−1(Λ1) is a neighborhood of 0 in G;

(c) {WĜ(K,Λ1) : K compact ⊆ G} is a base of the neighborhoods of 0 in Ĝ, in particular Ĝ is a topological
group.

(d) WĜ(A,Λs) +WĜ(A,Λs) ⊆ WĜ(A,Λs−1) and WĜ(A,Λs) +WĜ(A,Λs) ⊆ WĜ(A,Λs−1) for every A ⊆ G
and s > 1.

(e) if F is a closed subset of T, then for every K ⊆ G the subset WG∗(K,F) of G
∗ is closed (hence, compact);

(f) if U is neighborhoodof 0 in G, then

(f1) WĜ(U, V) =WG∗(U, V) for every neighborhood of 0 V ⊆ Λ1 in T;

(f2) W (U,Λ4) has compact closure;

(f3) if U has compact closure, then W (U,Λ4) is a neighborhood of 0 in Ĝ with compact closure, so Ĝ is
locally compact.

Proof. (a) Note that for s ∈ N, sx ∈ Λ1 if and only if x ∈ As,t = Λs+πT(
t
s) for some integer t with 0 ≤ t ≤ s. On

the other hand, As,0 = Λs and Λs∩As+1,t is non-empty if and only if t = 0. Hence, if x ∈ Λs and (s+1)x ∈ Λ1,
then x ∈ Λs+1 and this holds in particular for 1 ≤ s < k. This proves that sx ∈ Λ1 for s = 1, . . . , k if and only
if x ∈ Λk.

(b) Suppose that χ−1(Λ1) is a neighborhood of 0 in G. So there exists an open neighborhood U of 0 in G
such that U ⊆ χ−1(Λ1). Moreover, there exists an other neighborhood V of 0 in G with V + · · ·+ V︸ ︷︷ ︸

k

⊆ U where

k ∈ N+. Now sχ(y) ∈ Λ1 for every y ∈ V and s = 1, . . . , k. By item (a) χ(y) ∈ Λk and so χ(V) ⊆ Λk.
(c) Let k ∈ N+ and K be a compact subset of G. Define L = K + · · ·+K︸ ︷︷ ︸

k

, which is a compact subset of

G because it is a continuous image of the compact subset Kk of Gk. Take χ ∈ W (L,Λ1). For every x ∈ K we
have sχ(x) ∈ Λ1 for s = 1, . . . , k and so χ(x) ∈ Λk by item (a). Hence W (L,Λ1) ⊆W (K,Λk).

(d) obvious.
(e) If πx : TG → T is the projection defined by the evaluation at x, for x ∈ G, then obviously

WG∗(K,F) =
⋂

x∈K

{χ ∈ G∗ : χ(x) ∈ F} =
⋂

x∈K

π−1
x (F)

is cloased as each π−1
x (F) is closed in G∗.

(f1) follows immediately from item (c).
(f2) To prove that the closure ofW0 =W (U,Λ4) is compact it is sufficient to note thatW0 ⊆W1 :=W (U,Λ4)

and prove that W1 is compact. Let τs denote the subspace topology of W1 in Ĝ. We prove in the sequel that
(W1, τs) is compact.

Consider on the set W1 also the weaker topology τ induced from G∗ and consequently from TG. By (e)
(W1, τ) is compact.

It remains to show that both topologies τs and τ of W1 coincide. Since τs is finer than τ , it suffices to show
that if α ∈ W1 and K is a compact subset of G, then (α +W (K,Λ1)) ∩W1 is also a neighborhood of α in
(W1, τ).

Since
⋃{a + U : a ∈ K} ⊇ K and K is compact, K ⊆ F + U , where F is a finite subset of K. We prove

now that

(α+W (F,Λ2)) ∩W1 ⊆ (α+W (K,Λ1)) ∩W1. (∗)
Let ξ ∈W (F,Λ2), so that α+ ξ′ ∈W1 =W (U,Λ4). As α ∈W1 as well, we deduce from items (c) and (d) that
ξ = (α+ ξ′)− α ∈W1 −W1. Hence ξ(U) ⊆ Λ2 and consequently

ξ(K) ⊆ ξ(F + U) ⊆ Λ2 + Λ2 ⊆ Λ1.

This proves ξ ∈W (K,Λ1) and (*).
(f3) Follows obviously from (f2) and the definition of the compact open topology.

47

48 7 PONTRYAGIN-VAN KAMPEN DUALITY

The above proof shows another relevant fact. The neighborhood W (U,Λ4) of 0 in the dual group Ĝ carries

the same topology in Ĝ and G∗, nevertheless the inclusion map j : Ĝ ↪→ G∗ need not be an embedding:

Corollary 7.3. For a locally compact abelian group G the following are equivalent:

(a) the inclusion map j : Ĝ ↪→ G∗ is an embedding;

(b) G is discrete;

(c) Ĝ = G∗ is compact.

Proof. Since G∗ is compact, j can be an embedding iff Ĝ itself is compact. According to Example 7.1 this
occurs precisely when G is discrete. In that case Ĝ = G∗ is compact.

Actually, it can be proved, once the duality theorem is available, that j : Ĝ ↪→ G∗ need not be even a local
homeomorphism. (If j is a local homeomorphism, then the topological subgroup j(Ĝ) of G∗ will be locally

compact, hence closed in G∗. This would yield that j(Ĝ) is compact. On the other hand, the topology of

j(Ĝ) is precisely the initial topology of all projections px restricted to Ĝ. By the Pontryagin duality theorem,

these projections form the group of all continuous characters of Ĝ. So this topology coincides with T ̂̂
G
. By a

general theorem of Glicksberg, a locally compact abelian groups H and (H, TĤ) have the same compact sets.

In particular, compactness of (H, TĤ) yields compactness of H. This proves that if j : Ĝ ↪→ G∗ is a local

homeomorphism, then Ĝ is compact and consequently G is discrete.)

7.2 Computation of some dual groups

In the next proprosition we show, roughly speaking, that the projective order between continuous surjective
open homomorphisms with the same domain corresponds to the order by inclusion of their kernels.

Proposition 7.4. Let G,H1 and H2 be topological abelian groups and let χi : G → Hi, i = 1, 2, be continuous
surjective open homomorphisms. Then there exists a continuous homomorphism ι : H1 → H2 such that χ2 =
ι ◦ χ1 iff kerχ1 ≤ kerχ2. If kerχ1 = kerχ2 then ι will be a topological isomorphism.

Proof. The necessity is obvious. So assume that kerχ1 ≤ kerχ2 holds. By the homomorphism theorem applied
to χi there exists a topological isomorphismsji : G/ kerχi → Hi such that χi = ji ◦ qi, where qi : G→ G/ kerχi

is the canonical homomorphism for i = 1, 2. As kerχ1 ≤ kerχ2 we get a continuous homomorphism t that
makes commutative the following diagram

G

q1zzvvvvvvvvv
χ1

uujjjjjjjjjjjjjjjjjjjj

q2 $$HHHHHHHHH
χ2

))TTTTTTTTTTTTTTTTTTTT

H1

ι

66G/ kerχ1
j1

oo t //_______ G/ kerχ2
j2 // H2

Obviously ι = j2 ◦ t ◦ j−1
1 works. If kerχ1 = kerχ2, then t is a topological isomorphism, hence ι will be a

topological isomorphism as well.

In the sequel we denote by k · idG the endomorphism of an abelian group G obtained by the map x 7→ kx,
for a fixed k ∈ Z. The next lemma will be used for the computation of the dual groups in Example 7.7.

Lemma 7.5. Every continuous homomorphism χ : T → T has the form k · idT, for some k ∈ Z. In particular,
the only topological isomorphisms χ : T → T are ±idT.

Proof. We prove first that the only topological isomorphisms χ : T → T are ±idT. The proof will exploit the
fact that the arcs are the only connected sets of T. Hence χ sends any arc of T to an arc, sending end points to
end points. Denote by ϕ the canonical homomorphism R → T and for n ∈ N let cn = ϕ(1/2n) be the generators
of the Prüfer subgroup Z(2∞) of T. Then, c1 is the only element of T of order 2, hence g(c1) = c1. Therefore,
the arc A1 = ϕ([0, 1/2]) either goes onto itself, or goes onto its symmetric image −A1. Let us consider the first
case. Clearly, either g(c2) = c2 or g(c2) = −c2 as o(g(c2)) = 4 and being ±c2 the only elements of order 4 of T.
By our assumption g(A1) = A1 we have g(c2) = c2 since c2 is the only element of order 4 on the arc A1. Now
the arc A2 = [0, c2] goes onto itself, hence for c3 we must have g(c3) = c3 as the only element of order 8 on the

48

7.2 Computation of some dual groups 49

arc A2, etc. We see in the same way that g(cn) = cn. Hence g is identical on the whole subgroup Z(2∞). As
this subgroup is dense in T, we conclude that g coincides with idT. In the case g(A1) = −A1 we replace g by
−g and the previous proof gives −g = idT, i.e., g = −idT.

For k ∈ N+ let πk = k · idT. Then kerπk = Zk and πk is surjective. Let now χ : T → T be a non-trivial
continuous homomorphism. Then kerχ is a closed proper subgroup of T, hence kerχ = Zk for some k ∈ N+.
Moreover, χ(T) is a connected non-trivial subgroup of T, hence χ(T) = T. By Proposition 7.4 χ = ±πk.

Obviously, χ = ±ξ for characters χ, ξ : G → T implies kerχ = ker ξ and χ(G) = ξ(G). More generally,
if χ = k · ξ for some k ∈ Z, then kerχ ≥ ker ξ and χ(G) ≤ ξ(G). Now we see that this implication can be
(partially) inverted under appropriate hypotheses.

Corollary 7.6. Let G be a σ-compact locally compact abelian group and let χ, ξ : G → T be continuous
characters such that kerχ ≥ ker ξ and χ(G) ≤ ξ(G).

(a) If χ(G) = ξ(G) = T then χ = k · ξ for some k ∈ Z; moreover, kerχ = ker ξ iff χ = ±ξ.

(b) If G is compact and |ξ(G)| = m for some m ∈ N+, then χ = kξ for some k ∈ Z; moreover, kerχ = ker ξ
iff χ(G) = ξ(G), in such a case k must be coprime to m.

(c) If ker ξ = ker ξ is open and H = χ(G) = ξ(G), then χ = ι ◦ ξ, where ι : H → H is an arbitrary
automorphism of the subgroup H of T equipped with the discrete topology.

Proof. (a) As χ(G) = ξ(G) = T and G is σ-compact, we can apply Lemma 7.4 and observe that the only ι given
by the lemma can be k · idT for some k ∈ Z in view of the previous lemma. The same lemma yields k = ±1
when kerχ = ker ξ.

(b) If G is compact and |ξ(G)| = m for some m ∈ N+, ξ(G) is a cyclic subgroup of T of order m. Note that
T has a unique such cyclic subgroup. By Proposition 7.4 there exists a homomorphism ι : ξ(G) → χ(G) such
that χ = ι ◦ ξ. The hypothesis χ(G) ≤ ξ(G) implies that there such a ι must by the multiplication by some
k ∈ Z. In case χ(G) = ξ(G) this k is coprime to m.

(c) Obvious.

Example 7.7. Let p be a prime. Then Ẑ(p∞) ∼= Jp, Ĵp ∼= Z(p∞), T̂ ∼= Z, Ẑ ∼= T and R̂ ∼= R.

Proof. The first isomorphism Ẑ(p∞) = Jp follows from our definition Jp = End(Z(p∞)) = Hom(Z(p∞),T) =

Ẑ(p∞).

To verify the isomorphism Ĵp ∼= Z(p∞) consider first the quotient homomorphism ηn : Jp → Jp/pnJp ∼= Zpn ≤
T. With this identifications we consider ηn ∈ Ĵp. It is easy to see that under this identification pηn = ηn−1.

Therefore, the subgroup H of Ĵp generated by the characters ηn is isomorphic to Z(p∞). Let us see that H = Ĵp.
Indeed, take any non-trivial character χ : Jp → T. Then N = kerχ is a closed proper subgroup of Jp. Moreover,
N 6= 0 as Jp is not isomorphic to a subgroup of T by Exercise 4.49. Thus N = pnJp for some n ∈ N+. Since
N = ker ηn, we conclude with (b) of Corollary 7.6 that χ = kηn for some k ∈ Z. This proves that χ = H and

consequently Ĵp ∼= Z(p∞).

The isomorphism g : Ẑ → T is obtained by setting g(χ) := χ(1) for every χ : Z → T. It is easy to check that
this isomorphism is topological.

According to 7.5 every χ ∈ T̂ has the form χ = k · idT for some k ∈ Z. This gives a homomorphism T̂ → Z
assigning χ 7→ k. It is obviously injective and surjective. This proves T̂ ∼= Z since both groups are discrete.

To prove R̂ ∼= R consider the character χ1 : R → T obtained simply by the canonical map R → R/Z. For
every non-zero r ∈ R consider the map ρr : R → R defined by ρr(x) = rx. Then its composition χr = χ1 ◦ ρr
with χ1 gives a continuous character of R that is surjective and kerχr = 〈1/r〉. Now consider any continuous

non-trivial character χ ∈ R̂. Then χ is surjective and N = kerχ is a proper closed subgroup of R. Hence N
is cyclic by Exercise 3.20. Let N = 〈1/r〉. Then kerχ = kerχr, so that Corollary 7.6 yields χ = ±χr. The

assignment χ 7→ ±r defines a homomorphism R̂ → R that is obviously injective and surjective. Its continuity
immediately follows from the definition of the compact-open topology of R̂. As R is σ-compact, this isomorphism
is also open by the open mapping theorem.

Exercise 7.8. Let G be an abelian group and p be a prime. Prove that

(a) χ ∈ pĜ iff χ(G[p]) = 0.

(b) pχ = 0 in Ĝ iff χ(pG) = 0.

49

50 7 PONTRYAGIN-VAN KAMPEN DUALITY

Conclude that

(i) a discrete abelian group G is divisible (resp., torsion-free) iff Ĝ is torsion-free (resp., divisible).

(ii) the groups Q̂ and Q̂p are torsion-free and divisible.

Exercise 7.9. Let G be a totally disconnected locally compact abelian group. Prove that kerχ is an open
subgroup of G for every χ ∈ Ĝ.

(Hint. Use the fact that by the continuity of χ and the total disconnectedness of G there exists an open
subgroup O of G such that χ(O) ⊆ Λ1.)

Exercise 7.10. Let p be a prime. Prove that Q̂p
∼= Qp, where Qp denotes the field of all p-adic numbers.

(Hint. Fix N = {χ ∈ Q̂p : kerχ ≥ Jp}. By the compactness of Jp, conclude that N is an open subgroup of Q̂p

topologically isomorphic to Jp using Exercise 7.9 and Corollary 7.6 (c). For every n ∈ N+ let ξn : Qp → Qp/p
nJp

be the canonical homomorphism. As Qp/p
−nJp ∼= Z(p∞) ≤ T, we can consider ξn ∈ Q̂p. Show that pξn+1 = ξn

for n ∈ N+ and pξ1 ∈ N . The subgroup of Q̂p generated by N and (ξn) is isomorphic to Qp. Using Corollary

7.6 (c) and Exercise 7.9 deduce that it coincides with the whole group Q̂p.)

Exercise 7.11. Let H be a subgroup of Rn. Prove that every χ ∈ Ĥ extends to a continuous character of Rn.

7.3 Some general properties of the dual

We prove next that the dual group of a finite product of abelian topological groups is the product of the dual
groups of each group.

Lemma 7.12. If G and H are topological abelian groups, then Ĝ×H is isomorphic to Ĝ× Ĥ.

Proof. Define Φ : Ĝ × Ĥ → Ĝ×H by Φ(χ1, χ2)(x1, x2) = χ1(x1) + χ2(x2) for every (χ1, χ2) ∈ Ĝ × Ĥ and
(x1, x2) ∈ G×H. Then Φ is a homomorphism, in fact Φ(χ1+ψ1, χ2+ψ2)(x1, x2) = (χ1+ψ1)(x1)+(χ2+ψ2)(x2) =
χ1(x1) + ψ1(x1) + χ2(x2) + ψ2(x2) = Φ(χ1, χ2)(x1, x2) + Φ(ψ1, ψ2)(x1, x2).

Moreover Φ is injective, because

kerΦ = {(χ, ψ) ∈ Ĝ× Ĥ : Φ(χ, ψ) = 0}
= {(χ, ψ) ∈ Ĝ× Ĥ : Φ(χ, ψ)(x, y) = 0 for every (x, y) ∈ G×H}
= {(χ, ψ) ∈ Ĝ× Ĥ : χ(x) + ψ(y) = 0 for every (x, y) ∈ G×H}
= {(χ, ψ) ∈ Ĝ× Ĥ : χ(x) = 0 and ψ(x) = 0 for every (x, y) ∈ G×H}
= {(0, 0)}.

To prove that Φ is surjective, take ψ ∈ Ĝ×H and note that ψ(x1, x2) = ψ(x1, 0) + ψ(0, x2). Now define

ψ1(x1) = ψ(x1, 0) for every x1 ∈ G and ψ2(x2) = ψ(0, x2) for every x2 ∈ H. Hence ψ1 ∈ Ĝ, ψ2 ∈ Ĥ and
ψ = Φ(ψ1, ψ2).

Now we show that Φ is continuous. Let W (K,U) be an open neighborhood of 0 in Ĝ×H (K is a compact
subset of G ×H and U is an open neighborhood of 0 in T). Since the projections πG and πH of G ×H onto
G and H are continuous, KG = πG(K) and KH = πH(K) are compact in G and in H respectively. Taking an
open symmetric neighborhood V of 0 in T, it follows Φ(W (KG, V)×W (KH , V)) ⊆W (K,U).

It remains to prove that Φ is open. Consider two open neighborhoodsW (KG, UG) of 0 in Ĝ andW (KH , UH)

of 0 in Ĥ, where KG ⊆ G and KH ⊆ H are compact and UG, UH are open neighborhoods of 0 in T. Then
K = (KG ∪ {0}) × (KH ∪ {0}) is a compact subset of G × H and U = UG ∩ UH is an open neighborhood of
0 in T. Thus W (K,U) ⊆ Φ(W (KG, UG) ×W (KH , UH)), because if χ ∈ W (K,U) then χ = Φ(χ1, χ2), where
χ1(x1) = χ(x1, 0) ∈ U ⊆ UG for every x1 ∈ G and χ2(x2) = χ(0, x2) ∈ U ⊆ UH for every x2 ∈ H.

It follows from Proposition 7.7 that the groups T, Z, Z(p∞), Jp e R satisfy
̂̂
G ∼= G, namely the Pontryagin-

van Kampen duality theorem. Using the next theorem this propertiy extends to all finite direct products of
these groups.

Call a topological abelian group G autodual, if G satisfies Ĝ ∼= G. We have seen already that R and Qp are
autodual. By Lemma 7.12 finite direct products of autodual groups are autodual. Now using this observation
and Lemma 7.12 we provide a large supply of groups for which the Pontryagin-van Kampen duality holds true.

50

7.3 Some general properties of the dual 51

Proposition 7.13. Let P1, P2 and P3 be finite sets of primes, m,n, k, kp ∈ N (p ∈ P3) and np,mp ∈ N+

(p ∈ P1 ∪ P2). Then every group of the form

G = Tn × Zm × Rk × F ×
∏

p∈P1

Z(p∞)np ×
∏

p∈P2

Jmp
p ×

∏

j∈P3

Qkp
p ,

where F is a finite abelian group, satisfies
̂̂
G ∼= G.

Moreover, such a group is autodual iff n = m, P1 = P2 and np = mp for all p ∈ P1 = P2. In particular,
̂̂
G ∼= G holds true for all elementary locally compact abelian groups.

Proof. Let us start by proving F̂ = F ∗ ∼= F . Recall that F has the form F ∼= Zn1
× . . . × Znm

. So applying
Theorem 7.14 we are left with the proof of the isomorphism Z∗

n
∼= Zn for every n ∈ N+. The elements x of

T satisfying nx = 0 are precisely those of the unique cyclic subgroup of order n of T, we shall denote that
subgroup by Zn. Therefore, the group Hom(Zn,Zn) of all homomorphisms Zn → Zn is isomorphic to Zn.

It follows easily from Lemma 7.12 that if
̂̂
Gi

∼= Gi (resp., Ĝi
∼= Gi) for a finite family {Gi}ni=1 of topological

abelian groups, then also G =
∏n

i=1Gi satisfies
̂̂
G ∼= G (resp., Ĝ ∼= G). Therefore, it suffices to verify that the

groups T, Z, Z(p∞), and Jp e satisfy
̂̂
G ∼= G, while R̂ ∼= R, Q̂p

∼= Qp were already checked.

It follows from Proposition 7.7 that Ẑ ∼= T and T̂ ∼= Z, hence Z ∼= ̂̂Z and T ∼= ̂̂T. Analogously, Ẑ(p∞) ∼= Jp

and Ĵp ∼= Z(p∞) yield Z(p∞) ∼= ̂̂Z(p∞) and Jp ∼= ̂̂Jp.

The problem of characterizing all autodual locally compact abelian groups is still open [47, 48].

Theorem 7.14. Let {Di}i∈I be a family of discrete abelian groups and let {Gi}i∈I be a family of compact
abelian groups. Then

⊕̂

i∈I

Di
∼=

∏

i∈I

D̂i and
∏̂

i∈I

Gi
∼=

⊕

i∈I

Ĝi. (5)

Proof. Let χ :
⊕

i∈I Di → T be a character and let χi : Di → T be its restriction to Di. Then χ 7→ (χi) ∈∏
i∈I D̂i is the first isomorphism in (5).
Let χ :

∏
i∈I Gi → T be a continuous character. Pick a neighborhood U of 0 containing no non-trivial

subgroups of T. Then there exists a neighborhood V of 0 in G =
∏

i∈I Gi with χ(V) ⊆ U . By the definition of
the Tychonov topology there exists a finite subset F ⊆ I such that V contains the subproduct B =

∏
i∈I\F Gi.

Being χ(B) a subgroup of T, we conclude that χ(B) = 0 by the choice of U . Hence χ factorizes through the
projection p : G → ∏

i∈F Gi = G/B; so there exists a character χ′ :
∏

i∈F Gi → T such that χ = χ′ ◦ p.
Obviously, χ′ ∈ ⊕i∈IĜi. Then χ 7→ χ′ is the second isomorphism in (5).

In order to extend the isomorphism (5) to the general case of locally compact abelian groups one has to
consider a specific topology on the direct sum.

Algebraic properties of the dual group Ĝ of a compact abelian group G can be described in terms of
topological properties of the group G. We saw in Corollary 6.22 that Ĝ is torsion precisely when G is totally
disconnected. Here is the counterpart of this property in the connected case:

Proposition 7.15. Let G be a topological abelian group.

(a) If G is connected, then the dual group Ĝ is torsion-free.

(b) If G is compact, then the dual group Ĝ is torsion-free iff G is connected.

Proof. (a) Since for every non-zero continuous character χ : G → T the image χ(G) is a non-trivial connected

subgroup of T, we deduce that χ(G) = T for every non-zero χ ∈ Ĝ. Hence Ĝ is torsion-free.
(b) If the group G is compact and disconnected, then by Theorem 4.19 there exists a proper open subgroup

N of G. Take any non-zero character ξ of the finite group G/N . Then mξ = 0 for some positive integer m.

Now the composition χ of ξ and the canonical homomorphism G→ G/N satisfies mχ = 0 as well. So Ĝ haas a
non-zero torsion character. This proves the implication left open by item (a).

Let G and H be abelian topological groups. If f : G→ H is a continuous homomorphism, define f̂ : Ĥ → Ĝ
putting f̂(χ) = χ ◦ f for every χ ∈ Ĥ.

51

52 7 PONTRYAGIN-VAN KAMPEN DUALITY

Lemma 7.16. If f : G → H is a continuous homomorphism of topological abelian group, then f̂(χ) = χ ◦ f is
a continuous homomorphism as well.

(a) If f(G) is dense in H, then f̂ is injective.

(b) If f is injective and f(G) is either open or dense in H, then f̂ is surjective.

(c) if f is a surjective homomorphism, such that every compact subset of H is covered by some compact subset

of G, then f̂ is an embedding.

(d) if f is a quotient homomorphism and G is locally compact, then f̂ is an embedding.

(e) If f is a topological isomorphism, then f̂ is a topological isomorphism too.

Proof. Assume K is a compact subset of G and U a neighborhood of 0 in T. Then f(K) is a compact set in H,

so W =WĜ(f(K), U) is a neighborhood of 0 in Ĥ and f̂(W) ⊆W (K,U). This proves the continuity of f̂ .

(a) If f̂(χ) = 0, then χ ◦ f = 0. By the density of f(G) in H this yields χ = 0.

(b) Let χ ∈ Ĝ. If f(G) is open in H, then any extension ξ : H → T of χ will be continuous on f(G). There

exists at least one such extension ξ by Corollary 2.6. Hence ξ ∈ Ĥ and χ = f̂(ξ). Now consider the case

when f(G) is dense in H. Then H̃ = G̃ and the characters of H can be extended to characters of G (see
Theorem 3.79).

(c) Assume L is a compact subset of G/H and U a neighborhood of 0 in T. Let K be a compact set in G

such that f(K) = L. Then f̂(WĤ(L,U)) = Imf̂ ∩WĜ(K,U), so f̂ is an embedding.

(d) Follows from (c) and Lemma 4.6.

(e) Obvious.

Exercise 7.17. Prove that Q̂/Z ∼=
∏

p Jp.

(Hint. Use the isomorphism Q/Z ∼=
⊕

p Z(p∞), Example 7.7 and Theorem 7.14.)
Now we shall see that the group Q satisfies the duality theorem (see item (b) below).

Example 7.18. Let K denote the compact group Q̂. Then:

(a) K contains a closed subgroup H isomorphic to Q̂/Z such that K/H ∼= T;

(ii) K̂ ∼= Q.

(a) Denote by H the subgroup of all χ ∈ K such that χ(Z) = 0. To prove that H is a closed subgroup of K such

that K/H is isomorphic to T. To this end consider the continuous map ρ : K → Ẑ obtained by the restriction

to Z of every χ ∈ K. Obviously, ker ρ = H, so T ∼= Ẑ ∼= K/H. To see that H ∼= Q̂/Z note that the characters
of Q/Z correspond precisely to those characters of Q that vanish on Z, i.e., precisely H.

(b) By Exercise 7.8 K is a divisible torsion-free group, every non-zero r ∈ Q defines a continuous automor-
phism λr of K by setting λr(x) = rx for every x ∈ K. Then the composition ρ ◦λr : K → T defines a character

χr ∈ K̂ with kerχr = r−1H. For the sake of completeness let χ0 = 0. By Exercise 7.17 Q̂/Z ∼=
∏

p Jp is totally

disconnected, so by Corollary 6.21 H has no surjective characters χ : H → T. Now let χ ∈ K̂ be non-zero.
Then χ(K) will be a non-zero closed divisible subgroup of T, hence χ(K) = T. On the other hand, N = kerχ is
a proper closed subgroup of K such that N +H 6= T, as χ(H) is a proper closed subgroup of T by the previous
argument. Hence, χ(H) is finite, say of order m. Then N + H contains N is a finite-index subgroup, more
precisely [H : (N ∩ H)] = [(N + H) : N] = m. Then mH ≤ N . Consider the character χm−1 of K having
kerχm−1 = mH ≤ N . By Corollary there exists k ∈ Z such that χ = kχm−1 = χr, where r = km−1 ∈ Q. This
shows that K̂ = {χr : r ∈ Q} ∼= Q.)

The compact group Q̂ is closely related to the adele rings of the field Q, more detail can be found in
[34, 38, 75, 97].

Exercise 7.19. Prove that a discrete abelian group G satisfies
̂̂
G ∼= G whenever

52

7.4 The natural transformation ω 53

(a) G is divisible;

(b) G is free;

(c) G is of finite exponent;

(d) G is torsion and every primary component of G is of finite exponent.

(Hint. (a) Use Examples 7.7 and 7.18 (b) and the fact that every divisible group is a direct sum of copies of
Q and the groups Z(p∞).

(c) and (d) Use that fact that every abelian group of finite exponent is a direct sum of cyclic subgroups (i.e.,
Prüfer’s theorem, see (d) of Example 2.3).

Exercise 7.20. Prove that every torsion compact abelian group G is bounded. More precisely, there exists
natural numbers m1, . . . ,mn and cardinals α1, . . . , αn such that G ∼=

∏n
i=1 Z(mi)

αi .

(Hint. Use the Baire category theorem for the union G =
⋃∞

n=1G[n!] of closed subgroups. Conclude that
G[n!] is open for some n, so must have finite index by the compactness of G. This yields mG = 0 for some m.

Show that this yields also mĜ = 0. Now apply Prüfer’s theorem to Ĝ and the fact that G ∼= ̂̂
G.)

7.4 The natural transformation ω

Let G be a topological abelian group. Define ωG : G → ̂̂
G such that ωG(x)(χ) = χ(x), for every x ∈ G and for

every χ ∈ Ĝ. We show now that ωG(x) ∈ ̂̂
G.

Proposition 7.21. If G is a topological abelian group. Then ωG(x) ∈ ̂̂
G and ωG : G→ ̂̂

G is a homomorphism.
If G is locally compact, then the homomorphism ωG is a continuous.

Proof. In fact,

ωG(x)(χ+ ψ) = (χ+ ψ)(x) = χ(x) + ψ(x) = ωG(x)(χ) + ωG(x)(ψ),

for every χ, ψ ∈ Ĝ. Moreover, if U is an open neighborhood of 0 in T, then ωG(x)(W ({x}, U)) ⊆ U . This

proves that ωG(x) is a character of Ĝ, i.e., ωG(x) ∈ ̂̂
G. For every x, y ∈ G and for every χ ∈ Ĝ we have

ωG(x+ y)(χ) = (χ)(x+ y) = χ(x) + χ(y) = ωG(χ)(x) + ωG(χ)(y) and so ωG is a homomorphism.
Now assume G is locally compact. To prove that ωG is continuous, pick an open neighborhood A of 0 in T and

a compact subset K of Ĝ. ThenW (K,A) is an open neighborhood of 0 in
̂̂
G. Let U be an open neighborhood of

0 in G with compact closure. Take an open symmetric neighborhood B of 0 in T with B+B ⊆ A. ThusW (U,B)

is an open neighborhood of 0 in Ĝ. Since K is compact, there exist finitely many characters χ1, . . . , χm of G
such that K ⊆ (χ1 +W (U,B)) ∪ · · · ∪ (χm +W (U,B)). For every i = 1, . . . ,m there is an open neighborhood
Vi of 0 in G such that χi(Vi) ⊆ B. Define V = U ∩ V1 ∩ · · · ∩ Vm ⊆ U and note that χi(V) ⊆ B for every
i = 1, . . . ,m. Thus ωG(V) ⊆W (K,A). Indeed, if x ∈ V and χ ∈ K, then χi(x) ∈ B for every i = 1, . . . ,m and
there exists i0 ∈ {1, . . . ,m} such that χ ∈ χi0 +W (U,B); so χ(x) = χi0(x) +ψ(x) with ψ ∈W (U,B) and then
ωG(x)(χ) = χ(x) ∈ B +B ⊆ A.

In this chapter we shall have a precise approach, by saying that a group G satisfies the Pontryagin-van
Kampen duality theorem when ωG is a topological isomorphism.

Lemma 7.22. If the topological abelian groups Gi satisfy Pontryagin-van Kampen duality theorem for i =
1, 2, . . . , n, then also G =

∏n
i=1Gi satisfies Pontryagin-van Kampen duality theorem.

Proof. Apply Lemma 7.12 twice to obtain an isomorphism j :
∏n

i=1
̂̂
Gi → ̂̂

G. It remains to verify that the

product π : G→ ∏n
i=1

̂̂
Gi of the isomorphisms ωGi : Gi →

∏n
i=1

̂̂
Gi given by our hypothesis composed with the

isomorphism j gives precisely ωG.

Consider two categories A and B. A covariant [contravariant] functor F : A → B assigns to each object
A ∈ A an object FA ∈ B and to each arrow f : A→ A′ in A an arrow Ff : FA→ FA′ [Ff : FA′ → FA] such
that FidA = idFA and F (g ◦ f) = Fg ◦ Ff [F (g ◦ f) = Ff ◦ Fg] for every arrow f : A → A′ and g : A′ → A′′

in A.

53

54 7 PONTRYAGIN-VAN KAMPEN DUALITY

Let F, F ′ : A → B be covariant functors. A natural transformation γ from F to F ′ assigns to each A ∈ A
an arrow γA : FA→ F ′A such that for every arrow f : A→ A′ in A the following diagram is commutative

FA
Ff−−−−→ FA′

γA

y
yγA′

F ′A −−−−→
F ′f

F ′A′

A natural equivalence is a natural transformation γ such that each γA is an isomorphism.
If H denote the category of all Hausdorff abelian topological groups, the Pontryagin-van Kampen duality

functor , defined by
G 7→ Ĝ and f 7→ f̂

for objects G and morphisms f of H, is a contravariant functor ̂: H → H. Let L be the full subcategory of H
having as objects all locally compact abelian groups. According to Proposition 7.2, the functor ̂ sends L to
itself, i.e., defines a functor ̂: L → L. The Pontryagin-van Kampen duality theorem states that ω is a natural

equivalence from idL to ̂̂ : L → L. We start by proving that ω is a natural transformation.

Proposition 7.23. ω is a natural transformation from idL to ̂̂ : L → L.

Proof. By Proposition 7.21 ωG is continuous for every G ∈ L. Moreover for every continuous homomorphism
f : G→ H the following diagram commutes:

G
f−−−−→ H

ωG

y
yωH

̂̂
G −−−−→

̂̂
f

̂̂
H

In fact, if x ∈ G and ξ ∈ Ĥ, then ωH(f(x))(ξ) = ξ(f(x)). On the other hand,

(
̂̂
f(ωG(x)))(ξ) = (ωG(x) ◦ f̂)(ξ) = ωG(x)(f̂(ξ)) = ωG(x)(ξ ◦ f) = ξ(f(x)).

Hence ωH(f(x)) =
̂̂
f(ωG(x)) for every x ∈ G.

Remark 7.24. Note that ωG is a monomorphism if and only if Ĝ separates the points of G. Moreover, ωG(G)

is a subgroup of
̂̂
G that separates the points of Ĝ.

Now we can prove the Pontryagin-van Kampen duality theorem in the case when G is either compact or
discrete.

Theorem 7.25. If the abelian topological group G is either compact or discrete, then ωG is a topological
isomorphism.

Proof. If G is discrete, then Ĝ separates the points of G by Corollary 2.7 and if G is compact, then Ĝ separates
the points of G by the Peter-Weyl Theorem 6.4. Therefore ωG is injective by Remark 7.24. If G is discrete,

then Ĝ is compact and ωG(G) =
̂̂
G by Corollary 6.6. Since

̂̂
G is discrete, ωG is a topological isomorphism.

Let now G be compact. Then ωG is open thanks to Theorem 4.9. Suppose that ωG(G) is a proper subgroup

of
̂̂
G. By the compactness of G,

̂̂
G is compact, hence closed in

̂̂
G. By the Peter-Weyl Theorem 6.4 applied

to
̂̂
G/ωG(G), there exists ξ ∈

̂̂̂
G \ {0} such that ξ(ωG(G)) = {0}. Since Ĝ is discrete, ωĜ is a topological

isomorphism and so there exists χ ∈ Ĝ such that ωĜ(χ) = ξ. Thus for every x ∈ G we have 0 = ξ(ωG(x)) =
ωĜ(χ)(ωG(x)) = ωG(x)(χ) = χ(x). It follows that χ ≡ 0 and so that also ξ ≡ 0, a contradiction.

Our next step is to prove the Pontryagin-van Kampen duality theorem when G is elementary locally compact
abelian:

Theorem 7.26. If G is an elementary locally compact abelian group, then ωG is a topological isomorphism of

G onto
̂̂
G.

54

7.4 The natural transformation ω 55

Proof. According to Lemma 7.22 and Theorem 7.25 it suffices to prove that ωR is a topologically isomorphism.

Of course, by the fact that R̂ is topologically isomorphic to R, one concludes immediately that also R and
̂̂R

are topologically isomorphism. A more careful analysis of the dual R̂ shows the crucial role of the (Z-)bilnear
map λ : R×R → T defined by λ(x, y) = χ1(xy), where χ1 : R → T is the character determined by the canonical
quotient map R → T = R/Z. Indeed, for every y ∈ R the map χy : R → T defined by x 7→ λ(x, y) is an element

of R̂. Hence the second copy {0}×R of R in R×R can be identified with R̂. On the other hand, every element
x ∈ R gives a continuous characterR → T defined by y 7→ λ(x, y), so can be considered as the element ωR(x) of
̂̂R. We have seen that every ξ ∈ ̂̂R has this form. This means that ωR is surjective. Since continuity of ωR, as

well as local compactness of
̂̂R are already established, ωR is a topological isomorphism by the open mapping

theorem.

For a subset X of G the annihilator of X in Ĝ is AĜ(X) = {χ ∈ Ĝ : χ(A) = {0}} and for a subset Y of Ĝ
the annihilator of Y in G is AG(Y) = {x ∈ G : χ(x) = 0 for every x ∈ Y }. When no confusion is possible we
shall omit the subscripts Ĝ and G.

The next lemma will help us in computing the dual of a subgroup and a quotient group.

Lemma 7.27. Let G be a locally compact abelian group. If M is a subset of G, then AĜ(M) is a closed subgroup

of Ĝ.

Proof. It suffices to note that

AĜ(M) =
⋂

x∈M

{χ ∈ Ĝ : χ(x)} =
⋂

{kerωG(x) : x ∈M},

where each kerω(x) is a closed subgroup of Ĝ.

Call a continuous homomorphism f : G→ H of topological groups proper if f : G→ f(G) is open, whenever
f(G) carries the topology inherited from H. In particular, a surjective continuous homomorphism is proper iff
it is open.

A short sequence 0 → G1
f−→ G

h−→ G2 → 0 in L, where f and h are continuous homomorphisms, is exact if
f is injective, h is surjective and im f = kerh. It is proper if f and h are proper.

Lemma 7.28. Let G be a locally compact abelian group, H a subgroup of G and i : H → G the canonical
inclusion of H in G. Then

(a) î : Ĝ→ Ĥ is surjective if H is dense or open or compact;

(b) î is injective if and only if H is dense in G;

(c) if H is closed and π : G→ G/H is the canonical projection, then the sequence

0 → Ĝ/H
π̂−→ Ĝ

î−→ Ĥ

is exact, π̂ is proper and im π̂ = AĜ(H). If H is open or compact, then î is open and surjective.

Proof. (a) Note that î is surjective if and only if for every χ ∈ Ĥ there exists ξ ∈ Ĝ such that ξ �H= χ. If H is
compact apply Corollary 6.20. Otherwise Lemma 7.16 applies.

(b) If H is dense, then î is injective by Lemma 7.16. Conversely, assume that H is a proper subgroup of G

and let q : G→ G/H be the canonical projection. By Theorem 6.19 there exists χ ∈ Ĝ/H not identically zero.

Then ξ = χ ◦ q ∈ Ĝ is non-zero and satisfies ξ(H) = {0}, i.e., î(ξ) = 0. This implies that î is not injective.

(c) According to Lemma 7.16 π̂ is a monomorphism, since π is surjective. We have that î ◦ π̂ = π̂ ◦ i = 0.

If ξ ∈ ker î = {χ ∈ Ĝ : χ(H) = {0}}, then ξ(H) = {0}. So there exists ξ1 ∈ Ĝ/H such that ξ = ξ1 ◦ π (i.e.

ξ = π̂(ξ1)) and we can conclude that ker î = im π̂. So the sequence is exact and im π̂ = ker î = AĜ(H).
To show that π̂ is proper it suffices to apply Lemma 7.16.
If H is open or compact, (a) implies that î is surjective. It remains to show that î is open. If H is compact

then Ĥ is discrete by Example 7.1(2), so î is obviously open. If H is open, let K be a compact neighborhood

of 0 in G such that K ⊆ H. Then W = WĜ(K,Λ4) is a compact neighborhood of 0 in Ĝ. Since î is surjective,

V = î(W) = WĤ(K,Λ4) is a neighborhood of 0 in Ĥ. Now M = 〈W 〉 and M1 = 〈V 〉 are open compactly

generated subgroups respectively of Ĝ and Ĥ, and î(M) =M1. Since M is σ-compact by Lemma 4.12, we can

apply Theorem 4.9 to the continuous surjective homomorphism î �M :M →M1 and so also î is open.

55

56 7 PONTRYAGIN-VAN KAMPEN DUALITY

The lemma gives these immediate corollaries:

Corollary 7.29. Let G be a locally compact abelian group and let H be a closed subgroup of G. Then Ĝ/H ∼=
AĜ(H). Moreover, if H is open or compact, then Ĥ ∼= Ĝ/AĜ(H).

The next corollary says that the duality functor preserves proper exactness for some sequences.

Corollary 7.30. If the sequence 0 → G1
f−→ G

h−→ G2 → 0 in L is proper exact, with G1 compact or G2 discrete,

then 0 → Ĝ2
ĥ−→ Ĝ

f̂−→ Ĝ1 → 0 is proper exact with the same property.

Now we can prove prove the Pontryagin-van Kampen duality theorem, namely ω is a natural equivalence

from idL tô̂: L → L.

Theorem 7.31. If G is a locally compact abelian group, then ωG is a topological isomorphism of G onto
̂̂
G.

Proof. We know by Proposition 7.23 that ω is a natural transformation from idL to ̂̂: L → L. Our plan is to
chase the given locally compact abelian group G into an appropriately chosen proper exact sequence

0 → G1
f−→ G

h−→ G2 → 0

in L, with G1 compact or G2 discrete, such that G1 and G2 satisfy the duality theorem. By Corollary 7.30 the
sequences

0 → Ĝ2
ĥ−→ Ĝ

f̂−→ Ĝ2 → 0 and 0 → ̂̂
G1

̂̂
f−→ ̂̂
G

̂̂
h−→ ̂̂
G2 → 0

are proper exact. According to Proposition 7.23 the following diagram commutes:

0 −−−−→ G1
f−−−−→ G

h−−−−→ G2 −−−−→ 0

ωG1

y
yωG

yωG2

0 −−−−→ ̂̂
G1 −−−−→

̂̂
f

̂̂
G −−−−→

̂̂
h

̂̂
G2 −−−−→ 0

According to Theorem 6.19, ωG1
, ωG, ωG2

are injective. Moreover, ωG1
and ωG2

are surjective by our

choice of G1 and G2. Then ωG must be surjective too. (Indeed, if x ∈ ker
̂̂
h, then there exists y ∈ ωG(G) with

̂̂
h(x) =

̂̂
h(y), because

̂̂
h(ωG(G)) =

̂̂
G2. Now y − x ∈ ker

̂̂
h ⊆ ωG(G) and so x ∈ y + ωG(G) = ωG(G).)

If G is locally compact abelian and compactly generated, by Proposition 6.18 we can choose G1 compact
and G2 elementary locally compact abelian. Then G1 and G2 satisfy the duality theorem by Theorems 7.25
and 7.26, hence ωG is surjective. Since ωG is a continuous isomorphism and G is σ-compact, we conclude with
Theorem 4.9 that ωG is a topological isomorphism.

In the general case of locally compact abelian group G, we can take an open compactly generated subgroup

G1 of G. This will produce a proper exact sequence 0 → G1
f−→ G

h−→ G2 → 0 with G1 compactly generated and
G2

∼= G/G1 discrete. By the previous case ωG1
is a topological isomorphism and ωG2

is an isomorphism thanks
to Theorem 7.25. Therefore ωG is a continuous isomorphism.

Moreover ωG �f(G1): f(G1) → ̂̂
f(

̂̂
G1) is a topological isomorphism (as ωG1

, f : G1 → f(G1) and
̂̂
f :

̂̂
G1 →

̂̂
f(

̂̂
G1) are topological isomorphisms) and f(G1) and

̂̂
f(

̂̂
G1) are open subgroups respectively of G and

̂̂
G. Thus

ωG is a topological isomorphism.

Our last aim is to prove that the annihilators define an inclusion-inverting bijection between the family of
all closed subgroups of a locally compact group G and the family of all closed subgroups of Ĝ. We use that fact

that one can identify G and
̂̂
G by the topological isomorphism ωG. In more precise terms:

Exercise 7.32. Let G be a locally compact abelian group and Y be a subset of Ĝ. Then A ̂̂
G
(Y) = ωG(AG(Y)).

Lemma 7.33. Let G be a locally compact abelian group and H a closed subgroup of G. If a ∈ G \H then there
exists χ ∈ A(H) such that χ(x) 6= 0.

Proof. Let ρ : Ĝ/H → A(H) be the topological isomorphism of Corollary 7.29. By Theorem 6.19 there exists

ψ ∈ Ĝ/H such that ψ(a+H) 6= 0. Therefore χ = ρ(ψ) ∈ A(H) and χ(a) = ρ(ψ)(a) = ψ(a+H) 6= 0.

56

7.4 The natural transformation ω 57

Corollary 7.34. If G is a locally compact abelian group and H a closed subgroup of G, then

H = AG(AĜ(H))) = ω−1
G (A ̂̂

G
(AĜ(H))).

Proof. The first equality follows immediately from the above lemma.
The last equality follows from the equality H = AG(AĜ(H))) and Exercise 7.32.

By Lemma 7.29 the equality H = AG(AĜ(H))) holds if and only if H is a closed subgroup of G.

Proposition 7.35. Let G be a locally compact abelian group and H a closed subgroup of G. Then Ĥ ∼= Ĝ/A(H).

Proof. Since H = ω−1
G (A ̂̂

G
(AĜ(H))) by Lemma 7.34 we have a topological isomorphism φ from H to ̂̂G/A(H)

given by φ(h)(α+A(H)) = α(h) for every h ∈ H and α ∈ Ĝ. This gives rise to another topological isomorphism

φ̂ :
̂̂

Ĝ/A(H) → Ĥ. By Pontryagin’s duality theorem 7.31 ωĜ/A(H) is a topological isomorphism from Ĝ/A(H)

to
̂̂

Ĝ/A(H). The composition gives the desired isomorphism.

Finally, let us resume for reader’s benefit some of the most relevant points of Pontryagin-van Kampen duality
theorem established so far:

Theorem 7.36. Let G be a locally compact abelian group. Then Ĝ is a locally compact abelian group and:

(a) the correspondence H 7→ AĜ(H), N 7→ AG(N), where H is a closed subgroup of G and N is a closed

subgroup of Ĝ, defines an order-inverting bijection between the family of all closed subgroups of G and the
family of all closed subgroups of Ĝ;

(b) for every closed subgroup H of G the dual group Ĥ is isomorphic to Ĝ/A(H), while A(H) is isomorphic

to the dual Ĝ/H;

(c) ωG : G→ ̂̂
G is a topological isomorphism;

(d) G is compact (resp., discrete) if and only if Ĝ is discrete (resp., compact);

Proof. The first sentence is proved in Theorem 7.2. (a) is Corollary 7.34 while (b) is Proposition 7.35. (c) is
Theorem 7.31. To prove (d) apply Theorem 7.31 and Lemma 7.1.

Using the full power of the duality theorem one can prove the following structure theorem on compactly
generated locally compact abelian groups.

Theorem 7.37. Let G be a locally compact compactly generated abelian group. Prove that G ∼= Rn × Zm ×K,
where n,m ∈ N and K is a compact abelian group.

Proof. According to Theorem 6.18 there exists a compact subgroup K of G such that G/K is an elementary
locally compact abelian group. Taking a bigger compact subgroup one can get the quotient G/K to be of the

form Rn × Zm for some n,m ∈ N. Now the dual group Ĝ has an open subgroup A(K) ∼= Ĝ/K ∼= Rn × Tm.

Since this subgroup is divisible, one has Ĝ ∼= Rn ×Tm ×D, where D ∼= Ĝ/A(K) is discrete and D ∼= K̂. Taking

duals gives G ∼= ̂̂
G ∼= Rn × Zm ×K.

Making sharp use of the annihilators one can prove the structure theorem on locally compact abelian groups
(see [67, 36] for a proof).

Theorem 7.38. Let G be a locally compact abelian group. Then G ∼= Rn ×G0, where G0 is a closed subgroup
of G containing an open compact subgroup K.

As a corollary one can prove:

Corollary 7.39. Every locally compact abelian group is isomorphic to a subgroup of a group of the form
Rn ×D ×K, where n ∈ N, D is a discrete abelian group and K is a compact abelian group.

Exercise 7.40. Let G be a locally compact abelian group. Prove that for χ1, . . . , χn ∈ Ĝ and δ > 0 one has

UG(χ1, . . . , χn; δ) = ω−1
G (W ̂̂

G
({χ1, . . . , χn}, U),

where U is the neighborhood of 0 in T ∼= S determined by |Argz| < δ.

57

58 8 APPENDIX

Exercise 7.41. Let G be a compact connected abelian group. Prove that t(G) is dense in G iff Ĝ is reduced.
Deduce that every compact connected abelian group G has the form G ∼= G1 × Qα for some cardinal α, where
the compact subgroup G1 coincides with the closure of the subgroup t(G) of G.

(Hint. Note first that Ĝ is torsion-free. Deduce that Ĝ is reduced iff
⋂∞

n=1 nĜ = 0. Show that this equality
is equivalent to density of t(G) =

⋃∞
n=1G[n] in G. To prove the second assertion consider the torsion-free dual

Ĝ and its decomposition Ĝ = d(Ĝ)×R, where R is a reduced subgroup of Ĝ. Now apply the first part and the

isomorphism G ∼= ̂̂
G.)

Exercise 7.42. Give example of a reduced abelian group G such that
⋂∞

n=1 nG 6= 0.

(Hint. Fix a prime number p and take an appropriate quotient of the group
⊕∞

n=1 Z(pn).

8 Appendix

8.1 Uniqueness of Pontryagin-van Kampen duality

For topological abelian groups G,H denote by Chom(G,H) the group of all continuous homomorphisms G→ H
equipped with the compact-open topology. It was pointed out already by Pontryagin that the group T is the
unique locally compact group L with the property Chom(Chom(T, L), L) ∼= T (note that this is much weaker
than asking Chom(−, L) to define a duality of L). Much later Roeder [91] proved that Pontryagin-van Kampen
dualityis the unique functorial duality of L, i.e., the unique involutive contravariant endofunctor L → L. Several
years later Prodanov [85] rediscovered this result in the following much more general setting. Let R be a locally
compact commutative ring and LR be the category of locally compact topological R-modules. A functorial
duality # : LR → LR is a contravariant functor such that # · # is naturally equivalent to the identity of LR

and for each morphism f : M → N in LR and r ∈ R (rf)# = rf# (where, as usual, rf is the morphism
M → N defined by (rf)(x) = rf(x)). It is easy to see that the restriction of the Pontryagin-van Kampen

duality functor on LR is a functorial duality, since the Pontryagin-van Kampen dual M̂ of an M ∈ LR has a
natural structure of an R-module. So there is always a functorial duality in LR. This stimulated Prodanov
to raise the question how many functorial dualities can carry LR and extend this question to other well known
dualities and adjunctions, such as Stone duality13, the spectrum of a commutative rings [86], etc. at his Seminar
on dualities (Sofia University, 1979/83). Uniqueness of the functorial duality was obtained by L. Stoyanov [93]
in the case of a compact commutative ring R. In 1988 Gregorio [56] extended this result to the general case of
compact (not necessarily commutative) ring R (here left and right R-modules should be distinguished, so that
the dualities are no more endofunctors). Later Gregorio jointly with Orsatti [58] offered another approach to
this phenomenon.

Surprisingly the case of a discrete ring R turned out to be more complicated. For each functorial duality
: LR → LR the module T = R# (the torus of the duality #) is compact and for every X ∈ LR the module
∆T (X) := ChomR(X,T) of all continuous R-module homomorphisms X → T , equipped with the compact-open
topology, is algebraically isomorphic to X#. The duality # is called continuous if for each X this isomorphism
is also topological, otherwise # is discontinuous. Clearly, continuous dualities are classified by their tori, which
in turn can be classified by means of the Picard group Pic(R) of R. In particular, the unique continuous
functorial duality on LR is the Pontryagin-van Kampen duality if and only if Pic(R) = 0 ([29, Theorem 5.17]).
Prodanov [85] (see also [36, §3.4]) proved that every functorial duality on L = LZ is continuous, which in view
of Pic(Z) = 0 gives another proof of Roeder’s theorem of uniqueness. Continuous dualities were studied in the
non-commutative context by Gregorio [57]. While the Picard group provides a good tool to measure the failure
of uniqueness for continuous dualities, there is still no efficient way to capture it for discontinuous ones. The
first example of a discontinuous duality was given in [29, Theorem 11.1]. Discontinuous dualities of LQ and its
subcategories are discussed in [34]. It was conjectured by Prodanov that in case R is an algebraic number ring
uniqueness of dualities is available if and only if R is a principal ideal domain. This conjecture was proved to
be true for real algebraic number rings, but Prodanov’s conjecture was shown to fail in case R is an order in an
imaginary quadratic number field [25].

We will not touch other well-known dualities for module categories such as Morita duality (see [76]) or more
general setting of dualities of (representable dualities, adjunctions rather than involutions, etc. [40], [41] and
[83]).

13his conjecture that the Stone duality is the unique functorial duality between compact totally disconnected Hausdorff spaces
and Boolean algebras was proved to be true by Dimov [39].

58

8.2 Non-abelian or non-locally compact groups 59

8.2 Non-abelian or non-locally compact groups

The Pontryagin-van Kampen duality theorem was extended to some non-locally compact abelian topological
groups (e.g., infinite powers of the reals, the underlying additive groups of certain linear topological spaces,
etc.). A characterization of the abelian topological groups admitting duality were proposed by Venkatamaran
[95] and Kye [73], but they contained flaws. These gaps were removed in the recent paper of Hernández [63].
An important class of abelian groups (nuclear groups) were introduced and studied in the monograph [6] (see
also [5]) in relation to the duality theorem. Further reference can be found also in [21, 51, 65]

We do not discuss here non-commutative versions of duality for locally compact groups. The difficulties
arise already in the compact case – there is no appropriate (or at least, comfortable) structure on the set of
irreducible unitary representations of a compact non-abelian group. The reader is referred to [67] for a historical
panorama of this trend (Tanaka-Kĕın duality, etc.). In the locally compact case one should see the pioneering
paper of H. Chu [22], as well as the monograph of Heyer [68] (see also [69]). In the recent survey of Galindo,
Hernández, and Wu [53] the reader can find the last achievements in this field (see also [64]).

8.3 Relations to the topological theory of topological groups

The Pontryagin-van Kampen dual of a compact abelian group K carries a lot of useful information about the
topology of H. For example,

- w(K) = |K̂|,
- d(K) = log |K̂| = min{κ : 2κ ≥ |K̂|},
- K is connected iff K̂ is torsion-free,
- K is totally connected iff K̂ is torsion,
- c(K) = A(t(K̂)), where t(K̂) is the torsion subgroup of K̂,

- dimK = r0(K̂),

- H1(K,Z) ∼= K̂ if K is connected (here H1(K,Z) denotes the first cohomology group),
- for two compact connected abelian groups K1 and K2 the following are equivalent: (i) K1 and K2 are

homotopically equivalent as topological spaces; (ii) K1 and K2 are homeomorphic as topological spaces; (iii)

K̂1
∼= K̂2; (iv) K1

∼= K2 as topological groups.

The first equality can be generalized to w(K) = w(K̂) for all locally compact abelian groups K.
The Pontryagin-van Kampen duality can be used to easily build the Bohr compactification bG of a locally

compact abelian group G (this is the reflection of G into the subcategory of compact abelian groups). In the
case when G is discrete, bG is simply the completion of G#, the group G equipped with its Bohr topology. One

can prove that bG ∼= ̂̂
Gd, where Ĝd denotes the group Ĝ equipped with the discrete topology. For a comment

on the non-abelian case see [28, 53].
Many nice properties of Z# can be found in Kunnen and Rudin [72]. For a fast growing sequence (an) in

Z# the range is a closed discrete set of Z# (see [53] for further properties of the lacunary sets in Z#), whereas
for a polynomial function n 7→ an = P (n) the range has no isolated points [72, 44, Theorem 5.4]. Moreover,
the range P (Z) is closed when P (x) = xk is a monomial. For quadratic polynomials P (x) = ax2 + bx + c,
(a, b, c,∈ Z, a 6= 0) the situation is already more complicated: the range P (Z) is closed iff there is at most one
prime that divides a, but does not divide b [72, 44, Theorem 5.6]. This leaves open the general question [26,
Problem 954].

Problem 8.1. Characterize the polynomials P (x) ∈ Z[x] such that P (Z) is closed in Z#.

8.4 Relations to dynamical systems

Among the known facts relating the dynamical systems with the topic of these notes let us mention just two.

• A compact group G admits ergodic translations Ta(x) = ax iff G is monothetic. The ergodic rotations Ta
of G are precisely those defined by a topological generator a of G.

• A continuous surjective endomorphism T : K → K of a compact abelian group is ergodic iff the dual
T̂ : K̂ → K̂ has no periodic points except x = 0.

The Pontryagin-van Kampen duality has an important impact also on the computation of the entropy of
endomorphisms of (topological) abelian groups. Adler, Konheim, and McAndrew introduced the notion of
topological entropy of continuous self-maps of compact topological spaces in the pioneering paper [1]. In 1975
Weiss [98] developed the definition of entropy for endomorphisms of abelian groups briefly sketched in [1]. He

59

60 8 APPENDIX

called it “algebraic entropy”, and gave detailed proofs of its basic properties. His main result was that the
topological entropy of a continuous endomorphism φ of a profinite abelian group coincides with the algebraic
entropy of the adjoint map φ̂ of φ (note that pro-finite abelian groups are precisely the Pontryagin duals of the
torsion abelian groups).

In 1979 Peters [82] extended Weiss’s definition of entropy for automorphisms of a discrete abelian group G.
He generalized Weiss’s main result to metrizable compact abelian groups, relating again the opological entropy
of a continuous automorphism of such a group G to the entropy of the adjoint automorphism of the dual group
Ĝ. The definition of entropy of automorphisms given by Peters is easily adaptable to endomorphisms of Abelian
groups, but it remains unclear whether his theorem can be extended to the computation of the topological
entropy of a continuous endomorphism of compact abelian groups.

60

Elective Paper
MATP 3.4
Block - II

Marks : 50 (SSE : 40; IA : 10)
Measure Theory (Pure Stream)

6

CHAPTER 1

MEASURES

Introduction

The Riemann integral, dealt with in calculus courses, is well suited for com-
putations but less suited for dealing with limit processes. In this course we
will introduce the so called Lebesgue integral, which keeps the advantages of
the Riemann integral and eliminates its drawbacks. At the same time we will
develop a general measure theory which serves as the basis of contemporary
analysis and probability.
In this introductory chapter we set forth some basic concepts of measure

theory, which will open for abstract Lebesgue integration.

1.1. �-Algebras and Measures

Throughout this course

N = f0; 1; 2; :::g (the set of natural numbers)
Z = f:::;�2;�1; 0; 1; ; 2; :::g (the set of integers)
Q = the set of rational numbers
R = the set of real numbers
C = the set of complex numbers.

If A � R; A+ is the set of all strictly positive elements in A:
If f is a function from a set A into a set B; this means that to every x 2 A

there corresponds a point f(x) 2 B and we write f : A ! B: A function is
often called a map or a mapping. The function f is injective if

(x 6= y)) (f(x) 6= f(y))

Unit 19

62

7

and surjective if to each y 2 B; there exists an x 2 A such that f(x) = y:
An injective and surjective function is said to be bijective.
A set A is �nite if either A is empty or there exist an n 2 N+ and a

bijection f : f1; :::; ng ! A: The empty set is denoted by �: A set A is said
to be denumerable if there exists a bijection f : N+ ! A: A subset of a
denumerable set is said to be at most denumerable.
Let X be a set. For any A � X; the indicator function �A of A relative

to X is de�ned by the equation

�A(x) =

�
1 if x 2 A
0 if x 2 Ac:

The indicator function �A is sometimes written 1A: We have the following
relations:

�Ac = 1� �A

�A\B = min(�A; �B) = �A�B

and
�A[B = max(�A; �B) = �A + �B � �A�B:

De�nition 1.1.1. Let X be a set.
a) A collection A of subsets of X is said to be an algebra in X if A has

the following properties:

(i) X 2 A:
(ii) A 2 A)Ac 2 A; where Ac is the complement of A relative to X:
(iii) If A;B 2 A then A [B 2 A:

(b) A collectionM of subsets of X is said to be a �-algebra in X ifM
is an algebra with the following property:

If An 2 M for all n 2 N+, then [1n=1An 2 M:

63

8

If M is a �-algebra in X; (X;M) is called a measurable space and the
members of M are called measurable sets. The so called power set P(X),
that is the collection of all subsets of X, is a �-algebra in X: It is simple to
prove that the intersection of any family of �-algebras in X is a �-algebra. It
follows that if E is any subset of P(X); there is a unique smallest �-algebra
�(E) containing E ; namely the intersection of all �-algebras containing E :
The �-algebra �(E) is called the �-algebra generated by E : The �-algebra

generated by all open intervals in R is denoted by R. It is readily seen that
the �-algebra R contains every subinterval of R. Before we proceed, recall
that a subset E of R is open if to each x 2 E there exists an open subinterval
of R contained in E and containing x; the complement of an open set is said
to be closed. We claim that R contains every open subset U of R: To see
this suppose x 2 U and let x 2]a; b[� U; where �1 < a < b < 1: Now
pick r; s 2 Q such that a < r < x < s < b: Then x 2]r; s[� U and it follows
that U is the union of all bounded open intervals with rational boundary
points contained in U: Since this family of intervals is at most denumberable
we conclude that U 2 R: In addition, any closed set belongs to R since its
complements is open. It is by no means simple to grasp the de�nition of R at
this stage but the reader will successively see that the �-algebra R has very
nice properties. At the very end of Section 1.3, using the so called Axiom of
Choice, we will exemplify a subset of the real line which does not belong to
R. In fact, an example of this type can be constructed without the Axiom
of Choice (see Dudley�s book [D]).
In measure theory, inevitably one encounters 1: For example the real

line has in�nite length. Below [0;1] = [0;1[[f1g : The inequalities x � y
and x < y have their usual meanings if x; y 2 [0;1[. Furthermore, x � 1
if x 2 [0;1] and x < 1 if x 2 [0;1[: We de�ne x +1 = 1 + x = 1 if
x; y 2 [0;1] ; and

x � 1 =1 � x =
�
0 if x = 0
1 if 0 < x � 1:

Sums and multiplications of real numbers are de�ned in the usual way.
If An � X; n 2 N+, and Ak \An = � if k 6= n, the sequence (An)n2N+ is

called a disjoint denumerable collection. If (X;M) is a measurable space, the
collection is called a denumerable measurable partition of A if A = [1n=1An
and An 2 M for every n 2 N+: Some authors call a denumerable collection
of sets a countable collection of sets.

64

9

De�nition 1.1.2. (a) Let A be an algebra of subsets of X: A function
� : A ! [0;1] is called a content if

(i) �(�) = 0
(ii) �(A [B) = �(A) + �(B) if A;B 2 A and A \B = �:

(b) If (X;M) is a measurable space a content � de�ned on the �-algebraM
is called a positive measure if it has the following property:

For any disjoint denumerable collection (An)n2N+
of members ofM

�([1n=1An) = �1n=1�(An):

If (X;M) is a measurable space and the function � : M ! [0;1] is a
positive measure, (X;M; �) is called a positive measure space. The quantity
�(A) is called the �-measure of A or simply the measure of A if there is
no ambiguity. Here (X;M; �) is called a probability space if �(X) = 1; a
�nite positive measure space if �(X) < 1; and a �-�nite positive measure
space if X is a denumerable union of measurable sets with �nite �-measure.
The measure � is called a probability measure, �nite measure, and �-�nite
measure, if (X;M; �) is a probability space, a �nite positive measure space,
and a �-�nite positive measure space, respectively. A probability space is
often denoted by (
;F ; P): A member A of F is called an event.
As soon as we have a positive measure space (X;M; �), it turns out to

be a fairly simple task to de�ne a so called �-integralZ
X

f(x)d�(x)

as will be seen in Chapter 2.

65

10

The class of all �nite unions of subintervals of R is an algebra which is
denoted by R0: If A 2 R0 we denote by l(A) the Riemann integralZ 1

�1
�A(x)dx

and it follows from courses in calculus that the function l : R0 ! [0;1] is a
content. The algebra R0 is called the Riemann algebra and l the Riemann
content. If I is a subinterval of R, l(I) is called the length of I: Below we
follow the convention that the empty set is an interval.
If A 2 P(X), cX(A) equals the number of elements in A, when A is a

�nite set, and cX(A) =1 otherwise. Clearly, cX is a positive measure. The
measure cX is called the counting measure on X:
Given a 2 X; the probability measure �a de�ned by the equation �a(A) =

�A(a); if A 2 P(X); is called the Dirac measure at the point a: Sometimes
we write �a = �X;a to emphasize the set X:
If � and � are positive measures de�ned on the same �-algebraM, the

sum � + � is a positive measure onM:More generally, �� + �� is a positive
measure for all real �; � � 0: Furthermore, if E 2 M; the function �(A) =
�(A \ E); A 2 M; is a positive measure. Below this measure � will be
denoted by �E and we say that �E is concentrated on E: If E 2M; the class
ME = fA 2M; A � Eg is a �-algebra of subsets of E and the function
�(A) = �(A), A 2 ME; is a positive measure. Below this measure � will be
denoted by �jE and is called the restriction of � toME:
Let I1; :::; In be subintervals of the real line. The set

I1 � :::� In = f(x1; :::; xn) 2 Rn; xk 2 Ik; k = 1; :::; ng

is called an n-cell in Rn; its volume vol(I1 � :::� In) is, by de�nition, equal
to

vol(I1 � :::� In) = �
n
k=1l(Ik):

If I1; :::; In are open subintervals of the real line, the n-cell I1 � :::� In is
called an open n-cell. The �-algebra generated by all open n-cells in Rn is
denoted by Rn: In particular, R1 = R. A basic theorem in measure theory
states that there exists a unique positive measure vn de�ned on Rn such that
the measure of any n-cell is equal to its volume. The measure vn is called the
volume measure on Rn or the volume measure on Rn: Clearly, vn is �-�nite.
The measure v2 is called the area measure on R2 and v1 the linear measure
on R:

66

11

Theorem 1.1.1. The volume measure on Rn exists.

Theorem 1.1.1 will be proved in Section 1.5 in the special case n = 1. The
general case then follows from the existence of product measures in Section
3.4. An alternative proof of Theorem 1.1.1 will be given in Section 3.2. As
soon as the existence of volume measure is established a variety of interesting
measures can be introduced.
Next we prove some results of general interest for positive measures.

Theorem 1.1.2. Let A be an algebra of subsets of X and � a content
de�ned on A. Then,
(a) � is �nitely additive, that is

�(A1 [::: [An) = �(A1) + :::+ �(An)

if A1; :::; An are pairwise disjoint members of A:
(b) if A;B 2 A;

�(A) = �(A nB) + �(A \B):

Moreover, if �(A \B) <1; then

�(A [B) = �(A) + �(B)� �(A \B)

(c) A � B implies �(A) � �(B) if A;B 2 A:
(d) � �nitely sub-additive, that is

�(A1 [::: [An) � �(A1) + :::+ �(An)

if A1; :::; An are members of A:

If (X;M; �) is a positive measure space

67

12

(e) �(An)! �(A) if A = [n2N+An; An 2M; and

A1 � A2 � A3 � ::: :

(f) �(An)! �(A) if A = \n2N+An; An 2M;

A1 � A2 � A3 � :::

and �(A1) <1:
(g) � is sub-additive, that is for any denumerable collection (An)n2N+

of
members of M,

�([1n=1An) � �1n=1�(An):

PROOF (a) If A1; :::; An are pairwise disjoint members of A;

�([nk=1Ak) = �(A1 [([nk=2Ak))

= �(A1) + �([nk=2Ak)
and, by induction, we conclude that � is �nitely additive.

(b) Recall that
A nB = A \Bc:

Now A = (A nB) [(A \B) and we get

�(A) = �(A nB) + �(A \B):

Moreover, since A [B = (A nB) [B;

�(A [B) = �(A nB) + �(B)

and, if �(A \B) <1; we have

�(A [B) = �(A) + �(B)� �(A \B).

(c) Part (b) yields �(B) = �(B n A) + �(A \ B) = �(B n A) + �(A); where
the last member does not fall below �(A):

68

13

(d) If (Ai)ni=1is a sequence of members of A de�ne the so called disjunction
(Bk)

n
k=1 of the sequence (Ai)

n
i=1 as

B1 = A1 and Bk = Ak n [k�1i=1Ai for 2 � k � n:

Then Bk � Ak; [ki=1Ai = [ki=1Bi; k = 1; ::; n; and Bi\Bj = � if i 6= j: Hence,
by Parts (a) and (c),

�([nk=1Ak) = �nk=1�(Bk) � �nk=1�(Ak):

(e) Set B1 = A1 and Bn = An n An�1 for n � 2: Then An = B1 [:::: [Bn;
Bi \Bj = � if i 6= j and A = [1k=1Bk: Hence

�(An) = �
n
k=1�(Bk)

and
�(A) = �1k=1�(Bk):

Now e) follows, by the de�nition of the sum of an in�nite series.

(f) Put Cn = A1 n An; n � 1: Then C1 � C2 � C3 � :::;

A1 n A = [1n=1Cn

and �(A) � �(An) � �(A1) <1: Thus

�(Cn) = �(A1)� �(An)

and Part (e) shows that

�(A1)� �(A) = �(A1 n A) = lim
n!1

�(Cn) = �(A1)� lim
n!1

�(An):

This proves (f).

(g) The result follows from Parts d) and e).
This completes the proof of Theorem 1.1.2.

69

14

The hypothesis ��(A1) <1 �in Theorem 1.1.2 (f) is not super�uous. If
cN+ is the counting measure onN+ and An = fn; n+ 1; :::g ; then cN+(An) =
1 for all n but A1 � A2 � :::: and cN+(\1n=1An) = 0 since \1n=1An = �:
If A;B � X; the symmetric di¤erence A�B is de�ned by the equation

A�B =def (A nB) [(B n A):

Note that
�A�B =j �A � �B j :

Moreover, we have
A�B = Ac�Bc

and
([1i=1Ai)�([1i=1Bi) � [1i=1(Ai�Bi):

Example 1.1.1. Let � be a �nite positive measure on R: We claim that
to each set E 2 R and " > 0; there exists a set A; which is �nite union of
intervals (that is, A belongs to the Riemann algebra R0), such that

�(E�A) < ":

To see this let S be the class of all sets E 2 R for which the conclusion
is true. Clearly � 2 S and, moreover, R0 � S: If A 2 R0, Ac 2 R0 and
therefore Ec 2 S if E 2 S: Now suppose Ei 2 S; i 2 N+: Then to each " > 0
and i there is a set Ai 2 R0 such that �(Ei�Ai) < 2�i": If we set

E = [1i=1Ei

then
�(E�([1i=1Ai)) � �1i=1�(Ei�Ai) < ":

Here
E�([1i=1Ai) = fE \ (\1i=1Aci)g [fEc \ ([1i=1Ai)g

and Theorem 1.1.2 (f) gives that

�(fE \ (\ni=1Aci)g [f(Ec \ ([1i=1Ai)g) < "

if n is large enough (hint: \i2I(Di [F) = (\i2IDi) [F): But then

�(E� [ni=1 Ai) = �(fE \ (\ni=1Aci)g [fEc \ ([ni=1Ai)g) < "

70

17

and
d(A;B) � d(A;C) + d(C;B):

12. Let (X;M; �) be a �nite positive measure space. Prove that

�([ni=1Ai) � �ni=1�(Ai)� �1�i<j�n�(Ai \ Aj)

for all A1; :::; An 2M and integers n � 2:

13. Let (X;M; �) be a probability space and suppose the sets A1; :::; An 2M
satisfy the inequality

Pn
1 �(Ai) > n� 1: Show that �(\n1Ai) > 0:

1.2. Measure Determining Classes

Suppose � and � are probability measures de�ned on the same �-algebraM,
which is generated by a class E : If � and � agree on E ; is it then true that �
and � agree onM? The answer is in general no. To show this, let

X = f1; 2; 3; 4g

and
E = ff1; 2g ; f1; 3gg :

Then �(E) = P(X): If � = 1
4
cX and

� =
1

6
�X;1 +

1

3
�X;2 +

1

3
�X;3 +

1

6
�X;4

then � = � on E and � 6= �:
In this section we will prove a basic result on measure determining classes

for �-�nite measures. In this context we will introduce so called �-systems
and �-additive classes, which will also be of great value later in connection
with the construction of so called product measures in Chapter 3.

 Unit 210

71

18

De�nition 1.2.1. A class G of subsets of X is a �-system if A \ B 2 G
for all A;B 2 G:

The class of all open n-cells in Rn is a �-system.

De�nition 1.2.2. A class D of subsets of X is called a �-additive class if
the following properties hold:
(a) X 2 D:
(b) If A;B 2 D and A � B; then B n A 2 D:
(c) If (An)n2N+ is a disjoint denumerable collection of members of the
class D; then [1n=1An 2 D:

Theorem 1.2.1. If a �-additive class M is a �-system, then M is a �-
algebra.

PROOF. If A 2 M; then Ac = X n A 2 M since X 2 M and M is a �-
additive class. Moreover, if (An)n2N+ is a denumerable collection of members
ofM;

A1 [::: [An = (Ac1 \ ::: \ Acn)c 2M
for each n; sinceM is a �-additive class and a �-system. Let (Bn)1n=1 be the
disjunction of (An)1n=1: Then (Bn)n2N+ is a disjoint denumerable collection of
members ofM and De�nition 1.2.2(c) implies that [1n=1An = [1n=1Bn 2M:

Theorem 1.2.2. Let G be a �-system and D a �-additive class such that
G � D: Then �(G) � D:

PROOF. Let M be the intersection of all �-additive classes containing G:
The classM is a �-additive class and G �M � D. In view of Theorem 1.2.1
M is a �-algebra, ifM is a �-system and in that case �(G) �M: Thus the
theorem follows if we show thatM is a �-system.
Given C � X; denote by DC be the class of all D � X such that D\C 2

M.

72

19

CLAIM 1. If C 2M; then DC is a �-additive class.

PROOF OF CLAIM 1. First X 2 DC since X \ C = C 2 M: Moreover, if
A;B 2 DC and A � B; then A \ C;B \ C 2M and

(B n A) \ C = (B \ C) n (A \ C) 2M:

Accordingly from this, BnA 2 DC : Finally, if (An)n2N+ is a disjoint denumer-
able collection of members of DC , then (An\C)n2N+ is disjoint denumerable
collection of members ofM and

([n2N+An) \ C = [n2N+(An \ C) 2M:

Thus [n2N+An 2 DC :

CLAIM 2. If A 2 G; thenM� DA:

PROOF OF CLAIM 2. If B 2 G; A \ B 2 G �M: Thus B 2 DA: We
have proved that G � DA and remembering thatM is the intersection of all
�-additive classes containing G Claim 2 follows since DA is a �-additive class.

To complete the proof of Theorem 1.2.2, observe that B 2 DA if and only
if A 2 DB: By Claim 2, if A 2 G and B 2M; then B 2 DA that is A 2 DB:
Thus G � DB if B 2 M. Now the de�nition ofM implies thatM� DB if
B 2 M: The proof is almost �nished. In fact, if A;B 2 M then A 2 DB
that is A \B 2M: Theorem 1.2.2 now follows from Theorem 1.2.1.

Theorem 1.2.3. Let � and � be positive measures on M = �(G), where
G is a �-system, and suppose �(A) = �(A) for every A 2 G:
(a) If � and � are probability measures, then � = �:
(b) Suppose there exist En 2 G; n 2 N+; such that X = [1n=1En;

73

20

E1 � E2 � :::; and

�(En) = �(En) <1; all n 2 N+:

Then � = �:

PROOF. (a) Let
D = fA 2M; �(A) = �(A)g :

It is immediate that D is a �-additive class and Theorem 1.2.2 implies that
M = �(G) � D since G � D and G is a �-system.

(b) If �(En) = �(En) = 0 for all all n 2 N+, then

�(X) = lim
n!1

�(En) = 0

and, in a similar way, �(X) = 0: Thus � = �: If �(En) = �(En) > 0; set

�n(A) =
1

�(En)
�(A \ En) and �n(A) =

1

�(En)
�(A \ En)

for each A 2M: By Part (a) �n = �n and we get

�(A \ En) = �(A \ En)

for each A 2M: Theorem 1.1.2(e) now proves that � = �:

Theorem 1.2.3 implies that there is at most one positive measure de�ned
on Rn such that the measure of any open n-cell in Rn equals its volume.
Next suppose f : X ! Y and let A � X and B � Y: The image of A

and the inverse image of B are

f(A) = fy; y = f(x) for some x 2 Ag

and
f�1(B) = fx; f(x) 2 Bg

74

21

respectively. Note that
f�1(Y) = X

and
f�1(Y nB) = X n f�1(B):

Moreover, if (Ai)i2I is a collection of subsets of X and (Bi)i2I is a collection
of subsets of Y

f([i2IAi) = [i2If(Ai)
and

f�1([i2IBi) = [i2If�1(Bi):
Given a class E of subsets of Y; set

f�1(E) =
�
f�1(B); B 2 E

	
:

If (Y;N) is a measurable space, it follows that the class f�1(N) is a �-algebra
in X: If (X;M) is a measurable space�

B 2 P(Y); f�1(B) 2M
	

is a �-algebra in Y . Thus, given a class E of subsets of Y;

�(f�1(E)) = f�1(�(E)):

De�nition 1.2.3. Let (X;M) and (Y;N) be measurable spaces. The func-
tion f : X ! Y is said to be (M;N)-measurable if f�1(N) �M. If we say
that f : (X;M) ! (Y;N) is measurable this means that f : X ! Y is an
(M;N)-measurable function.

Theorem 1.2.4. Let (X;M) and (Y;N) be measurable spaces and suppose
E generates N : The function f : X ! Y is (M;N)-measurable if

f�1(E)�M:

PROOF. The assumptions yield

�(f�1(E))�M:

75

22

Since
�(f�1(E)) = f�1(�(E)) = f�1(N)

we are done.

Corollary 1.2.1. A function f : X ! R is (M;R)-measurable if and only
if the set f�1(]�;1[) 2M for all � 2 R:

If f : X ! Y is (M;N)-measurable and � is a positive measure onM,
the equation

�(B) = �(f�1(B)), B 2 N
de�nes a positive measure � on N : We will write � = �f�1; � = f(�) or
� = �f : The measure � is called the image measure of � under f and f is
said to transport � to �: Two (M;N)-measurable functions f : X ! Y and
g : X ! Y are said to be �-equimeasurable if f(�) = g(�):
As an example, let a 2 Rn and de�ne f(x) = x+a if x 2 Rn: If B � Rn;

f�1(B) = fx; x+ a 2 Bg = B � a:

Thus f�1(B) is an open n-cell if B is, and Theorem 1.2.4 proves that f is
(Rn;Rn)-measurable. Now, granted the existence of volume measure vn; for
every B 2 Rn de�ne

�(B) = f(vn)(B) = vn(B � a):

Then �(B) = vn(B) if B is an open n-cell and Theorem 1.2.3 implies that
� = vn: We have thus proved the following

Theorem 1.2.5. For any A 2 Rn and x 2 Rn

A+ x 2 Rn

and
vn(A+ x) = vn(A):

76

23

Suppose (
;F ; P) is a probability space. A measurable function � de�ned
on
 is called a random variable and the image measure P� is called the
probability law of �: We sometimes write

L(�) = P�:

Here are two simple examples.
If the range of a random variable � consists of n points S = fs1; :::; sng

(n � 1) and P� = 1
n
cS; � is said to have a uniform distribution in S. Note

that

P� =
1

n
�nk=1�sk :

Suppose � > 0 is a constant. If a random variable � has its range in N
and

P� = �
1
n=0

�n

n!
e���n

then � is said to have a Poisson distribution with parameter �:

Exercises

1. Let f : X ! Y , A � X; and B � Y: Show that

f(f�1(B)) � B and f�1(f(A)) � A:

2. Let (X;M) be a measurable space and suppose A � X: Show that the
function �A is (M;R)-measurable if and only if A 2M:

3. Suppose (X;M) is a measurable space and fn : X ! R; n 2 N; a
sequence of (M;R)-measurable functions such that

lim
n!1

fn(x) exists and = f(x) 2 R

for each x 2 X: Prove that f is (M;R)-measurable.

77

24

4. Suppose f : (X;M) ! (Y;N) and g : (Y;N) ! (Z;S) are measurable.
Prove that g � f is (M;S)-measurable.

5. Granted the existence of volume measure vn, show that vn(rA) = rnvn(A)
if r � 0 and A 2 Rn:

6. Let � be the counting measure on Z2 and f(x; y) = x; (x; y) 2 Z2: The
positive measure � is �-�nite. Prove that the image measure f(�) is not a
�-�nite positive measure.

7. Let �; � : R! [0;1] be two positive measures such that �(I) = �(I) <1
for each open subinterval of R: Prove that � = �:

8. Let f : Rn ! Rk be continuous. Prove that f is (Rn;Rk)-measurable.

9. Suppose � has a Poisson distribution with parameter �: Show that P� [2N] =
e�� cosh�:

9. Find a �-additive class which is not a �-algebra.

1.3. Lebesgue Measure

Once the problem about the existence of volume measure is solved the exis-
tence of the so called Lebesgue measure is simple to establish as will be seen
in this section. We start with some concepts of general interest.
If (X;M; �) is a positive measure space, the zero set Z� of � is, by

de�nition, the set at all A 2 M such that �(A) = 0: An element of Z� is
called a null set or �-null set. If

(A 2 Z� and B � A)) B 2M

78

25

the measure space (X;M; �) is said to be complete. In this case the measure
� is also said to be complete. The positive measure space (X; f�;Xg ; �);
whereX = f0; 1g and � = 0; is not complete sinceX 2 Z� and f0g =2 f�;Xg :

Theorem 1.3.1 If (En)1n=1 is a denumerable collection of members of Z�
then [1n=1En 2 Z�:

PROOF We have

0 � �([1n=1En) � �1n=1�(En) = 0

which proves the result.

Granted the existence of linear measure v1 it follows from Theorem 1.3.1
that Q 2 Zv1 since Q is countable and fag 2 Zv1 for each real number a.
Suppose (X;M; �) is an arbitrary positive measure space. It turns out

that � is the restriction to M of a complete measure. To see this suppose
M� is the class of all E � X is such that there exist sets A;B 2M such that
A � E � B and B nA 2 Z�: It is obvious that X 2M� sinceM�M�: If
E 2 M�; choose A;B 2 M such that A � E � B and B n A 2 Z�: Then
Bc � Ec � Ac and Ac nBc = B nA 2 Z� and we conclude that Ec 2M�: If
(Ei)

1
i=1 is a denumerable collection of members ofM�; for each i there exist

sets Ai; Bi 2M such that Ai � E � Bi and Bi n Ai 2 Z�: But then

[1i=1Ai � [1i=1Ei � [1i=1Bi

where [1i=1Ai;[1i=1Bi 2M. Moreover, ([1i=1Bi) n ([1i=1Ai) 2 Z� since

([1i=1Bi) n ([1i=1Ai) � [1i=1(Bi n Ai):

Thus [1i=1Ei 2M� andM� is a �-algebra.
If E 2M; suppose Ai; Bi 2M are such that Ai � E � Bi and Bi nAi 2

Z� for i = 1; 2: Then for each i; (B1 \B2) n Ai 2 Z� and

�(B1 \B2) = �((B1 \B2) n Ai) + �(Ai) = �(Ai):

Thus the real numbers �(A1) and �(A2) are the same and we de�ne ��(E) to
be equal to this common number. Note also that �(B1) = ��(E): It is plain

79

26

that ��(�) = 0: If (Ei)1i=1 is a disjoint denumerable collection of members
of M; for each i there exist sets Ai; Bi 2 M such that Ai � Ei � Bi and
Bi n Ai 2 Z�: From the above it follows that

��([1i=1Ei) = �([1i=1Ai) = �1n=1�(Ai) = �1n=1��(Ei):

We have proved that �� is a positive measure on M�. If E 2 Z�� the
de�nition of �� shows that any set A � E belongs to the �-algebra M�: It
follows that the measure �� is complete and its restriction toM equals �:
The measure �� is called the completion of � andM� is called the com-

pletion ofM with respect to �:

De�nition 1.3.1 The completion of volume measure vn on Rn is called
Lebesgue measure on Rn and is denoted by mn: The completion of Rn with
respect to vn is called the Lebesgue �-algebra in Rn and is denoted by R�

n :
A member of the class R�

n is called a Lebesgue measurable set in R
n or a

Lebesgue set inRn: A function f : Rn ! R is said to be Lebesgue measurable
if it is (R�

n ;R)-measurable. Below, m1 is written m if this notation will not
lead to misunderstanding. Furthermore, R�

1 is written R�.

Theorem 1.3.2. Suppose E 2 R�
n and x 2Rn: Then E + x 2 R�

n and
mn(E + x) = mn(E):

PROOF. Choose A;B 2 Rn such that A � E � B and B n A 2 Zvn : Then,
by Theorem 1.2.5, A + x;B + x 2 Rn; vn(A + x) = vn(A) = mn(E); and
(B + x) n (A + x) = (B n A) + x 2 Zvn : Since A + x � E + x � B + x the
theorem is proved.

The Lebesgue �-algebra in Rn is very large and contains each set of
interest in analysis and probability. In fact, in most cases, the �-algebraRn is
su¢ ciently large but there are some exceptions. For example, if f : Rn ! Rn

is continuous and A 2 Rn, the image set f(A) need not belong to the class
Rn (see e.g. the Dudley book [D]). To prove the existence of a subset of the
real line, which is not Lebesgue measurable we will use the so called Axiom
of Choice.

80

27

Axiom of Choice. If (Ai)i2I is a non-empty collection of non-empty sets,
there exists a function f : I ! [i2IAi such that f(i) 2 Ai for every i 2 I:

Let X and Y be sets. The set of all ordered pairs (x; y); where x 2 X
and y 2 Y is denoted by X � Y: An arbitrary subset R of X � Y is called a
relation. If (x; y) 2 R , we write x s y: A relation is said to be an equivalence
relation on X if X = Y and

(i) x s x (re�exivity)
(ii) x s y) y s x (symmetry)
(iii) (x s y and y s z)) x s z (transitivity)

The equivalence class R(x) =def fy; y s xg : The de�nition of the equiv-
alence relation s implies the following:

(a) x 2 R(x)
(b) R(x) \R(y) 6= �) R(x) = R(y)
(c) [x2XR(x) = X:

An equivalence relation leads to a partition of X into a disjoint collection
of subsets of X:
Let X =

�
�1
2
; 1
2

�
and de�ne an equivalence relation for numbers x; y in X

by stating that x s y if x� y is a rational number. By the Axiom of Choice
it is possible to pick exactly one element from each equivalence class. Thus
there exists a subset NL of X which contains exactly one element from each
equivalence class.
If we assume that NL 2 R� we get a contradiction as follows. Let (ri)1i=1

be an enumeration of the rational numbers in [�1; 1]. Then

X � [1i=1(ri +NL)

and it follows from Theorem 1.3.1 that ri + NL =2 Zm for some i: Thus, by
Theorem 1.3.2, NL =2 Zm:

81

28

Now assume (ri + NL) \ (rj + NL) 6= �: Then there exist a0; a00 2 NL
such that ri + a0 = rj + a00 or a0 � a00 = rj � ri: Hence a0 s a00 and it follows
that a0 and a00 belong to the same equivalence class. But then a0 = a00: Thus
ri = rj and we conclude that (ri + NL)i2N+ is a disjoint enumeration of
Lebesgue sets. Now, since

[1i=1(ri +NL) �
�
�3
2
;
3

2

�
it follows that

3 � m([1i=1(ri +NL)) = �1n=1m(NL):

But then NL 2 Zm; which is a contradiction. Thus NL =2 R�:

In the early 1970�Solovay [S] proved that it is consistent with the usual
axioms of Set Theory, excluding the Axiom of Choice, that every subset of
R is Lebesgue measurable.
From the above we conclude that the Axiom of Choice implies the exis-

tence of a subset of the set of real numbers which does not belong to the class
R: Interestingly enough, such an example can be given without any use of
the Axiom of Choice and follows naturally from the theory of analytic sets.
The interested reader may consult the Dudley book [D] :

Exercises

1. (X;M; �) is a positive measure space. Prove or disprove: If A � E � B
and �(A) = �(B) then E belongs to the domain of the completion ��:

2. Prove or disprove: If A and B are not Lebesgue measurable subsets of
R; then A [B is not Lebesgue measurable.

3. Let (X;M; �) be a complete positive measure space and suppose A;B 2
M, where B n A is a �-null set. Prove that E 2 M if A � E � B (stated
otherwiseM� =M).

82

29

4. Suppose E � R and E =2 R�. Show there is an " > 0 such that

m(B n A) � "

for all A;B 2 R� such that A � E � B:

5. Suppose (X;M; �) is a positive measure space and (Y;N) a measurable
space. Furthermore, suppose f : X ! Y is (M;N)-measurable and let
� = �f�1; that is �(B) = �(f�1(B)); B 2 N : Show that f is (M�;N�)-
measurable, whereM� denotes the completion ofM with respect to � and
N� the completion of N with respect to �:

1.4. Carathéodory�s Theorem

In these notes we exhibit two famous approaches to Lebesgue measure: One
is based on the Carathéodory Theorem, which we present in this section, and
the other one, due to F. Riesz, is a representation theorem of positive linear
functionals on spaces of continuous functions in terms of positive measures.
The latter approach, is presented in Chapter 3. Both methods depend on
topological concepts such as compactness.

De�nition 1.4.1. A function � : P(X) ! [0;1] is said to be an outer
measure if the following properties are satis�ed:

(i) �(�) = 0:
(ii) �(A) � �(B) if A � B:
(iii) for any denumerable collection (An)1n=1 of subsets of X

�([1n=1An) � �1n=1�(An):

83

30

Since
E = (E \ A) [(E \ Ac)

an outer measure � satis�es the inequality

�(E) � �(E \ A) + �(E \ Ac):

If � is an outer measure on X we de�ne M(�) as the set of all A � X
such that

�(E) = �(E \ A) + �(E \ Ac) for all E � X

or, what amounts to the same thing,

�(E) � �(E \ A) + �(E \ Ac) for all E � X:

The next theorem is one of the most important in measure theory.

Theorem 1.4.1. (Carathéodory�s Theorem) Suppose � is an outer
measure. The class M(�) is a �-algebra and the restriction of � toM(�) is
a complete measure.

PROOF. Clearly, � 2 M(�) and Ac 2 M(�) if A 2 M(�): Moreover, if
A;B 2M(�) and E � X;

�(E) = �(E \ A) + �(E \ Ac)

= �(E \ A \B) + �(E \ A \Bc)

+�(E \ Ac \B) + �(E \ Ac \Bc):

But
A [B = (A \B) [(A \Bc) [(Ac \B)

and
Ac \Bc = (A [B)c

and we get
�(E) � �(E \ (A [B)) + �(E \ (A [B)c):

It follows that A[B 2M(�) and we have proved that the classM(�) is an
algebra. Now if A;B 2M(�) are disjoint

�(A [B) = �((A [B) \ A) + �((A [B) \ Ac) = �(A) + �(B)

84

31

and therefore the restriction of � toM(�) is a content.
Next we prove thatM(�) is a �-algebra. Let (Ai)1i=1 be a disjoint denu-

merable collection of members ofM(�) and set for each n 2 N

Bn = [1�i�nAi and B = [1i=1Ai

(here B0 = �). Then for any E � X;

�(E \Bn) = �(E \Bn \ An) + �(E \Bn \ Acn)

= �(E \ An) + �(E \Bn�1)
and, by induction,

�(E \Bn) = �ni=1�(E \ Ai):
But then

�(E) = �(E \Bn) + �(E \Bc
n)

� �ni=1�(E \ Ai) + �(E \Bc)

and letting n!1;

�(E) � �1i=1�(E \ Ai) + �(E \Bc)

� �([1i=1(E \ Ai)) + �(E \Bc)

= �(E \B) + �(E \Bc) � �(E):

All the inequalities in the last calculation must be equalities and we conclude
that B 2M(�) and, choosing E = B; results in

�(B) = �1i=1�(Ai):

Thus M(�) is a �-algebra and the restriction of � to M(�) is a positive
measure.
Finally we prove that the the restriction of � to M(�) is a complete

measure. Suppose B � A 2M(�) and �(A) = 0: If E � X;

�(E) � �(E \B) + �(E \Bc) � �(E \Bc) � �(E)

and so B 2M(�): The theorem is proved.

85

32

Exercises

1. Suppose �i : P(X) ! [0;1] ; i = 1; 2; are outer measures. Prove that
� = max(�1; �2) is an outer measure.

2. Suppose a; b 2 R and a 6= b: Set � = max(�a; �b): Prove that

fag ; fbg =2M(�):

1.5. Existence of Linear Measure

The purpose of this section is to show the existence of linear measure on R
using the Carathéodory Theorem and a minimum of topology.
First let us recall the de�nition of in�mum and supremum of a non-

empty subset of the extended real line. Suppose A is a non-empty subset
of [�1;1] = R[f�1;1g : We de�ne �1 � x and x � 1 for all x 2
[�1;1] : An element b 2 [�1;1] is called a majorant of A if x � b for all
x 2 A and a minorant if x � b for all x 2 A: The Supremum Axiom states
that A possesses a least majorant, which is denoted by supA. From this
follows that if A is non-empty, then A possesses a greatest minorant, which
is denoted by inf A. (Actually, the Supremum Axiom is a theorem in courses
where time is spent on the de�nition of real numbers.)

Theorem 1.5.1. (The Heine-Borel Theorem; weak form) Let [a; b] be
a closed bounded interval and (Ui)i2I a collection of open sets such that

[i2IUi � [a; b] :

Then
[i2JUi � [a; b]

for some �nite subset J of I:

Unit 11

86

33

PROOF. Let A be the set of all x 2 [a; b] such that

[i2JUi � [a; x]

for some �nite subset J of I: Clearly, a 2 A since a 2 Ui for some i: Let
c = supA: There exists an i0 such that c 2 Ui0 : Let c 2]a0; b0[� Ui0 ; where
a0 < b0: Furthermore, by the very de�nition of least upper bound, there
exists a �nite set J such that

[i2JUi � [a; (a0 + c)=2] :

Hence
[i2J[fi0gUk � [a; (c+ b0)=2]

and it follows that c 2 A and c = b. The lemma is proved.

A subset K of R is called compact if for every family of open subsets Ui;
i 2 I; with [i2IUi � K we have [i2JUi � K for some �nite subset J of I:
The Heine-Borel Theorem shows that a closed bounded interval is compact.
If x; y 2 R and E; F � R; let

d(x; y) =j x� y j

be the distance between x and y; let

d(x;E) = inf
u2E

d(x; u)

be the distance from x to E; and let

d(E;F) = inf
u2E;v2F

d(u; v)

be the distance between E and F (here the in�mum of the emty set equals
1): Note that for any u 2 E;

d(x; u) � d(x; y) + d(y; u)

and, hence
d(x;E) � d(x; y) + d(y; u)

87

34

and
d(x;E) � d(x; y) + d(y; E):

By interchanging the roles of x and y and assuming that E 6= �; we get

j d(x;E)� d(y; E) j� d(x; y):

Note that if F � R is closed and x =2 F; then d(x; F) > 0:
An outer measure � : P(R)! [0;1] is called a metric outer measure if

�(A [B) = �(A) + �(B)

for all A;B 2 P(R) such that d(A;B) > 0:

Theorem 1.5.2. If � : P(R)! [0;1] is a metric outer measure, then
R �M(�):

PROOF. Let F 2 P(R) be closed. It is enough to show that F 2M(�): To
this end we choose E � X with �(E) <1 and prove that

�(E) � �(E \ F) + �(E \ F c):

Let n � 1 be an integer and de�ne

An =

�
x 2 E \ F c; d(x; F) � 1

n

�
:

Note that An � An+1 and

E \ F c = [1n=1An:

Moreover, since � is a metric outer measure

�(E) � �((E \ F) [An) = �(E \ F) + �(An)

and, hence, proving
�(E \ F c) = lim

n!1
�(An)

we are done.

88

35

Let Bn = An+1 \ Acn: It is readily seen that

d(Bn+1; An) �
1

n(n+ 1)

since if x 2 Bn+1 and
d(x; y) <

1

n(n+ 1)

then
d(y; F) � d(y; x) + d(x; F) <

1

n(n+ 1)
+

1

n+ 1
=
1

n
:

Now
�(A2k+1) � �(B2k [A2k�1) = �(B2k) + �(A2k�1)

� ::: � �ki=1�(B2i)
and in a similar way

�(A2k) � �ki=1�(B2i�1):
But �(An) � �(E) <1 and we conclude that

�1i=1�(Bi) <1:

We now use that
E \ F c = An [([1i=nBi)

to obtain
�(E \ F c) � �(An) + �

1
i=n�(Bi):

Now, since �(E \ F c) � �(An),

�(E \ F c) = lim
n!1

�(An)

and the theorem is proved.

PROOF OF THEOREM 1.1.1 IN ONE DIMENSION. Suppose � > 0: If
A � R; de�ne

��(A) = inf �
1
k=1l(Ik)

the in�mum being taken over all open intervals Ik with l(Ik) < � such that

A � [1k=1Ik:

89

36

Obviously, ��(�) = 0 and ��(A) � ��(B) if A � B: Suppose (An)1n=1 is a
denumerable collection of subsets of R and let " > 0: For each n there exist
open intervals Ikn; k 2 N+; such that l(Ikn) < �;

An � [1k=1Ikn

and
�1k=1l(Ikn) � ��(An) + "2�n:

Then
A =def [1n=1An � [1k;n=1Ikn

and
�1k;n=1l(Ikn) � �1n=1��(An) + ":

Thus
��(A) � �1n=1��(An) + "

and, since " > 0 is arbitrary,

��(A) � �1n=1��(An):

It follows that �� is an outer measure.
If I is an open interval it is simple to see that

��(I) � l(I):

To prove the reverse inequality, choose a closed bounded interval J � I: Now,
if

I � [1k=1Ik
where each Ik is an open interval of l(Ik) < �; it follows from the Heine-Borel
Theorem that

J � [nk=1Ik
for some n: Hence

l(J) � �nk=1l(Ik) � �1k=1l(Ik)

and it follows that
l(J) � ��(I)

and, accordingly from this,
l(I) � ��(I):

90

37

Thus, if I is an open interval, then

��(I) = l(I).

Note that ��1 � ��2 if 0 < �1 � �2: We de�ne

�0(A) = lim
�!0

��(A) if A � R:

It obvious that �0 is an outer measure such that �0(I) =l(I); if I is an open
interval.
To complete the proof we show that �0 is a metric outer measure. To this

end let A;B � R and d(A;B) > 0: Suppose 0 < � < d(A;B) and

A [B � [1k=1Ik

where each Ik is an open interval with l(Ik) < �: Let

� = fk; Ik \ A 6= �g

and
� = fk; Ik \B 6= �g :

Then � \ � = �;
A � [k2�Ik

and
B � [k2�Ik

and it follows that

�1k=1l(Ik) � �k2�l(Ik) + �k2�l(Ik)

� ��(A) + ��(B):

Thus
��(A [B) � ��(A) + ��(B)

and by letting � ! 0 we have

�0(A [B) � �0(A) + �0(B)

and
�0(A [B) = �0(A) + �0(B):

91

38

Finally by applying the Carathéodory Theorem and Theorem 1.5.2 it
follows that the restriction of �0 to R equals v1.

We end this section with some additional results of great interest.

Theorem 1.5.3. For any � > 0; �� = �0: Moreover, if A � R

�0(A) = inf �
1
k=1l(Ik)

the in�mum being taken over all open intervals Ik; k 2 N+; such that
[1k=1Ik � A:

PROOF. It follows from the de�nition of �0 that �� � �0: To prove the
reverse inequality let A � R and choose open intervals Ik; k 2 N+; such that
[1k=1Ik � A: Then

�0(A) � �0([1k=1Ik) � �1k=1�0(Ik)

= �1k=1l(Ik):

Hence
�0(A) � inf �1k=1l(Ik)

the in�mum being taken over all open intervals Ik; k 2 N+; such that
[1k=1Ik � A: Thus �0(A) � ��(A); which completes the proof of Theorem
1.5.3.

Theorem 1.5.4. If A � R;

�0(A) = inf
U�A
U open

�0(U):

Moreover, if A 2M(�0);

�0(A) = sup
K�A

K closed bounded

�0(K):

92

39

PROOF. If A � U , �0(A) � �0(U): Hence

�0(A) � inf
U�A
U open

�0(U):

Next let " > 0 be �xed and choose open intervals Ik; k 2 N+; such that
[1k=1Ik � A and

�1k=1l(Ik) � �0(A) + "

(here observe that it may happen that �0(A) = 1). Then the set U =def
[1k=1Ik is open and

�0(U) � �1k=1�0(Ik) = �1k=1l(Ik) � �0(A) + ":

Thus
inf
U�A
U open

�0(U) � �0(A)

and we have proved that

�0(A) = inf
U�A
U open

�0(U):

If K � A; �0(K) � �0(A) and, accordingly from this,

sup
K�A

K closed bounded

�0(K) � �0(A):

To prove the reverse inequality we �rst assume that A 2M(�0) is bounded.
Let " > 0 be �xed and suppose J is a closed bounded interval containing A:
Then we know from the �rst part of Theorem 1.5.4 already proved that there
exists an open set U � J r A such that

�0(U) < �0(J r A) + ":

But then

�0(J) � �0(J r U) + �0(U) < �0(J r U) + �0(J r A) + "

and it follows that
�0(A)� " < �0(J n U):

93

40

Since J r U is a closed bounded set contained in A we conclude that

�0(A) � sup
K�A

K closed bounded

�0(K):

If A 2 M(�0) let An = A \ [�n; n] ; n 2 N+: Then given " > 0 and n 2
N+; let Kn be a closed bounded subset of An such that �0(Kn) > �0(An)�":
Clearly, there is no loss of generality to assume that K1 � K2 � K3 � :::
and by letting n tend to plus in�nity we get

lim
n!1

�0(Kn) � �0(A)� ":

Hence
�0(A) = sup

K�A
K compact

�0(K):

and Theorem 1.5.4 is completely proved.

Theorem 1.5.5. Lebesgue measure m1 equals the restriction of �0 toM(�0):

PROOF. Recall that linear measure v1 equals the restriction of �0 to R and
m1 = �v1: First suppose E 2 R� and choose A;B 2 R such that A � E � B
and BrA 2 Zv1 : But then �0(ErA) = 0 and E = A[(ErA) 2M(�0) since
the Carathéodory Theorem gives us a complete measure. Hence m1(E) =
v1(A) = �0(E).
Conversely suppose E 2M(�0):We will prove that E 2 R� andm1(E) =

�0(E). First assume thatE is bounded. Then for each positive integer n there
exist open Un � E and closed bounded Kn � E such that

�0(Un) < �0(E) + 2
�n

and

�0(Kn) > �0(E)� 2�n:
The de�nitions yield A = [11 Kn; B = \11 Un 2 R and

�0(E) = �0(A) = �0(B) = v1(A) = v1(B) = m1(E):

94

45

CHAPTER 2

INTEGRATION

Introduction

In this chapter Lebesgue integration in abstract positive measure spaces is
introduced. A series of famous theorems and lemmas will be proved.

2.1. Integration of Functions with Values in [0;1]

Recall that [0;1] = [0;1[[f1g : A subinterval of [0;1] is de�ned in the
natural way. We denote by R0;1 the �-algebra generated by all subintervals
of [0;1] : The class of all intervals of the type]�;1] ; 0 � � < 1; (or of
the type [�;1] ; 0 � � < 1) generates the �-algebra R0;1 and we get the
following

Theorem 2.1.1. Let (X;M) be a measurable space and suppose f : X !
[0;1] :
(a) The function f is (M;R0;1)-measurable if f�1(]�;1]) 2 M for

every 0 � � <1:
(b) The function f is (M;R0;1)-measurable if f�1([�;1]) 2 M for

every 0 � � <1:

Note that the set ff > �g 2M for all real � if f is (M;R0;1)-measurable.
If f; g : X ! [0;1] are (M;R0;1)-measurable, thenmin(f; g); max(f; g),

and f + g are (M;R0;1)-measurable, since, for each � 2 [0;1[;

min(f; g) � �, (f � � and g � �)

max(f; g) � �, (f � � or g � �)

Unit 212

95

46

and
ff + g > �g =

[
q2Q

(ff > �� qg \ fg > qg):

Given functions fn : X ! [0;1] ; n = 1; 2; :::; f = supn�1 fn is de�ned
by the equation

f(x) = sup ffn(x); n = 1; 2; :::g :

Note that
f�1(]�;1]) = [1n=1f�1n (]�;1])

for every real � � 0 and, accordingly from this, the function supn�1 fn is
(M;R0;1)-measurable if each fn is (M;R0;1)-measurable. Moreover, f =
infn�1 fn is given by

f(x) = inf ffn(x); n = 1; 2; :::g :

Since
f�1([0; �[) = [1n=1f�1n ([0; �[)

for every real � � 0 we conclude that the function f = infn�1 fn is (M;R0;1)-
measurable if each fn is (M;R0;1)-measurable.
Below we write

fn " f

if fn; n = 1; 2; :::; and f are functions from X into [0;1] such that fn � fn+1
for each n and fn(x)! f(x) for each x 2 X as n!1:
An (M;R0;1)-measurable function ' : X ! [0;1] is called a simple

measurable function if '(X) is a �nite subset of [0;1[: If it is neccessary to
be more precise, we say that ' is a simpleM-measurable function.

Theorem 2.1.2. Let f : X ! [0;1] be (M;R0;1)-measurable. There exist
simple measurable functions 'n; n 2 N+; on X such that 'n " f :

PROOF. Given n 2 N+, set

Ein = f�1(

�
i� 1
2n

;
i

2n

�
); i 2 N+

96

47

and

�n =

1X
i=1

i� 1
2n

�Ein +1�f�1(f1g):

It is obvious that �n � f and that �n � �n+1: Now set 'n = min(n; �n) and
we are done.

Let (X;M; �) be a positive measure space and ' : X ! [0;1[a simple
measurable function: If �1; :::; �n are the distinct values of the simple function
', and if Ei = '�1(f�ig); i = 1; :::; n; then

' = �ni=1�i�Ei :

Furthermore, if A 2M we de�ne

�(A) =

Z
A

'd� = �ni=1�i�(Ei \ A) = �nk=1�i�Ei(A):

Note that this formula still holds if (Ei)n1 is a measurable partition of X and
' = �i on Ei for each i = 1; :::; n: Clearly, � is a positive measure since each
term in the right side is a positive measure as a function of A. Note thatZ

A

�'d� = �

Z
A

'd� if 0 � � <1

and Z
A

'd� = a�(A)

if a 2 [0;1[and ' is a simple measurable function such that ' = a on A:
If is another simple measurable function and ' � ;Z

A

'd� �
Z
A

 d�:

To see this, let �1; :::; �p be the distinct values of and Fj = �1(
�
�j
	
);

j = 1; :::; p: Now, putting Bij = Ei \ Fj;Z
A

'd� = �([ij(A \Bij))

= �ij�(A \Bij) = �ij
Z
A\Bij

'd� = �ij

Z
A\Bij

�id�

97

48

� �ij
Z
A\Bij

�jd� =

Z
A

 d�:

In a similar way one proves thatZ
A

('+)d� =

Z
A

'd�+

Z
A

 d�:

From the above it follows thatZ
A

'�Ad� =

Z
A

�ni=1�i�Ei\Ad�

= �ni=1�i

Z
A

�Ei\Ad� = �
n
i=1�i�(Ei \ A)

and Z
A

'�Ad� =

Z
A

'd�:

If f : X ! [0;1] is an (M;R0;1)-measurable function and A 2 M, we
de�ne Z

A

fd� = sup

�Z
A

'd�; 0 � ' � f; ' simple measurable
�

= sup

�Z
A

'd�; 0 � ' � f; ' simple measurable and ' = 0 on Ac
�
:

The left member in this equation is called the Lebesgue integral of f over A
with respect to the measure �: Sometimes we also speek of the �-integral of f
over A: The two de�nitions of the �-integral of a simple measurable function
' : X ! [0;1[over A agree.
From now on in this section, an (M;R0;1)-measurable function f : X !

[0;1] is simply called measurable.
The following properties are immediate consequences of the de�nitions.

The functions and sets occurring in the equations are assumed to be mea-
surable.

(a) If f; g � 0 and f � g on A; then
R
A
fd� �

R
A
gd�:

98

49

(b)
R
A
fd� =

R
X
�Afd�:

(c) If f � 0 and � 2 [0;1[, then
R
A
�fd� = �

R
A
fd�:

(d)
R
A
fd� = 0 if f = 0 and �(A) =1:

(e)
R
A
fd� = 0 if f =1 and �(A) = 0:

If f : X ! [0;1] is measurable and 0 < � <1; then f � ��f�1([�;1]) =
��ff��gand Z

X

fd� �
Z
X

��ff��gd� = �

Z
X

�ff��gd�:

This proves the so called Markov Inequality

�(f � �) � 1

�

Z
X

fd�

where we write �(f � �) instead of the more precise expression �(ff � �g):

Example 2.1.1. Suppose f : X ! [0;1] is measurable andZ
X

fd� <1:

We claim that
ff =1g = f�1(f1g) 2 Z�:

To prove this we use the Markov Inequality and have

�(f =1) � �(f � �) � 1

�

Z
X

fd�

99

50

for each � 2]0;1[: Thus �(f =1) = 0:

Example 2.1.2. Suppose f : X ! [0;1] is measurable andZ
X

fd� = 0:

We claim that
ff > 0g = f�1(]0;1]) 2 Z�:

To see this, note that

f�1(]0;1]) = [1n=1f�1(
�
1

n
;1
�
)

Furthermore, for every �xed n 2 N+; the Markov Inequality yields

�(f >
1

n
) � n

Z
X

fd� = 0

and we get ff > 0g 2 Z� since a countable union of null sets is a null set.

We now come to one of the most important results in the theory.

Theorem 2.1.3. (Monotone Convergence Theorem) Let fn : X !
[0;1] , n = 1; 2; 3; ::::; be a sequence of measurable functions and suppose
that fn " f; that is 0 � f1 � f2 � ::: and

fn(x)! f(x) as n!1, for every x 2 X:

Then f is measurable andZ
X

fnd�!
Z
X

fd� as n!1:

PROOF. The function f is measurable since f = supn�1 fn:

100

51

The inequalities fn � fn+1 � f yield
R
X
fnd� �

R
X
fn+1d� �

R
X
fd� and

we conclude that there exists an � 2 [0;1] such thatZ
X

fnd�! � as n!1

and

� �
Z
X

fd�:

To prove the reverse inequality, let ' be any simple measurable function
such that 0 � ' � f , let 0 < � < 1 be a constant, and de�ne, for �xed
n 2 N+;

An = fx 2 X; fn(x) � �'(x)g :
If �1; :::; �p are the distinct values of ';

An = [pk=1(fx 2 X; fn(x) � ��kg \ f' = �kg)

and it follows that An is measurable. Clearly, A1 � A2 � ::: . Moreover, if
f(x) = 0; then x 2 A1 and if f(x) > 0; then �'(x) < f(x) and x 2 An for
all su¢ ciently large n. Thus [1n=1An = X: Now

� �
Z
An

fnd� � �

Z
An

'd�

and we get

� � �

Z
X

'd�

since the map A!
R
A
'd� is a positive measure onM: By letting � " 1,

� �
Z
X

'd�

and, hence

� �
Z
X

fd�:

The theorem follows.

Theorem 2.1.4. (a) Let f; g : X ! [0;1] be measurable functions. ThenZ
X

(f + g)d� =

Z
X

fd�+

Z
X

gd�:

101

52

(b) (Beppo Levi�s Theorem) If fk : X ! [0;1] , k = 1; 2; ::: are mea-
surable, Z

X

�1k=1fkd� = �
1
k=1

Z
X

fkd�

PROOF. (a) Let ('n)
1
n=1 and (n)

1
n=1 be sequences of simple and measurable

functions such that 0 � 'n " f and 0 � n " g: We proved above thatZ
X

('n + n)d� =

Z
X

'nd�+

Z
X

 nd�

and, by letting n ! 1; Part (a) follows from the Monotone Convergence
Theorem.

(b) Part (a) and induction imply thatZ
X

�nk=1fkd� = �
n
k=1

Z
X

fkd�

and the result follows from monotone convergence.

Theorem 2.1.5. Suppose w : X ! [0;1] is a measurable function and
de�ne

�(A) =

Z
A

wd�; A 2M:

Then � is a positive measure andZ
A

fd� =

Z
A

fwd�; A 2M

for every measurable function f : X ! [0;1] :

PROOF. Clearly, �(�) = 0. Suppose (Ek)1k=1 is a disjoint denumerable col-
lection of members ofM and set E = [1k=1Ek: Then

�([1k=1Ek) =
Z
E

wd� =

Z
X

�Ewd� =

Z
X

�1k=1�Ekwd�

102

53

where, by the Beppo Levi Theorem, the right member equals

�1k=1

Z
X

�Ekwd� = �
1
k=1

Z
Ek

wd� = �1k=1�(Ek):

This proves that � is a positive measure.
Let A 2 M. To prove the last part in Theorem 2.1.5 we introduce the

class C of all measurable functions f : X ! [0;1] such thatZ
A

fd� =

Z
A

fwd�:

The indicator function of a measurable set belongs to C and from this we
conclude that every simple measurable function belongs to C: Furthermore, if
fn 2 C; n 2 N; and fn " f ; the Monotone Convergence Theorem proves that
f 2 C: Thus in view of Theorem 2.1.2 the class C contains every measurable
function f : X ! [0;1] : This completes the proof of Theorem 2.1.5.

The measure � in Theorem 2.1.5 is written

� = w�

or
d� = wd�:

Let (�n)1n=1 be a sequence in [�1;1] : First put �k = inf f�k; �k+1; �k+2; :::g
and
 = sup f�1; �2; �3; ::g = limn!1 �n:We call
 the lower limit of (�n)

1
n=1

and write

 = lim inf

n!1
�n:

Note that

 = lim

n!1
�n

if the limit exists. Now put �k = sup f�k; �k+1; �k+2; :::g and
 = inf f�1; �2; �3; ::g =
limn!1 �n: We call
 the upper limit of (�n)

1
n=1 and write

 = lim sup
n!1

�n:

Note that

 = lim

n!1
�n

103

54

if the limit exists.
Given measurable functions fn : X ! [0;1] ; n = 1; 2; :::; the function

lim infn!1 fn is measurable. In particular, if

f(x) = lim
n!1

fn(x)

exists for every x 2 X; then f is measurable.

Theorem 2.1.6. (Fatou�s Lemma) If fn : X ! [0;1] ; n = 1; 2; :::; are
measurable Z

X

lim inf
n!1

fnd� � lim inf
n!1

Z
X

fnd�:

PROOF. Introduce
gk = inf

n�k
fn:

The de�nition gives that gk " lim infn!1 fn and, moreover,Z
X

gkd� �
Z
X

fnd�; n � k

and Z
X

gkd� � inf
n�k

Z
X

fnd�:

The Fatou Lemma now follows by monotone convergence.

Below we often write Z
E

f(x)d�(x)

instead of Z
E

fd�:

Example 2.1.3. Suppose a 2 R and f : (R;R�) ! ([0;1] ;R0;1) is
measurable. We claim thatZ

R

f(x+ a)dm(x) =

Z
R

f(x)dm(x):

104

55

First if f = �A; where A 2 R�,Z
R

f(x+ a)dm(x) =

Z
R

�A�a(x)dm(x) = m(A� a) =

m(A) =

Z
R

f(x)dm(x):

Next it is clear that the relation we want to prove is true for simple mea-
surable functions and �nally, we use the Monotone Convergence Theorem to
deduce the general case.

Example 2.1.3, Suppose �11 an is a positive convergent series and let E be
the set of all x 2 [0; 1] such that

min
p2f0;:::;ng

j x� p

n
j< an

n

for in�nitely many n 2 N+: We claim that E is a Lebesgue null set.
To prove this claim for �xed n 2 N+; let En be the set of all x 2 [0; 1]

such that
min
p2N+

j x� p

n
j< an

n
:

Then if B(x; r) =]x� r; x+ r[; x 2 [0; 1] ; r > 0; we have

En �
n[
p=0

B(
p

n
;
an
n
)

and

m(En) � (n+ 1)
2an
n
� 4an:

Hence
1X
1

m(En) <1

and by the Beppo Levi theoremZ 1

0

1X
1

�Endm <1:

105

56

Accordingly from this the set

F =

(
x 2 [0; 1] ;

1X
1

�En(x) <1
)

is of Lebesgue measure 1. Since E � [0; 1] n F we have m(E) = 0:

Exercises

1. Suppose fn : X ! [0;1] ; n = 1; 2; :::; are measurable and

�1n=1�(fn > 1) <1:

Prove that �
lim sup
n!1

fn > 1

�
2 Z� .

2. Set fn = n2�[0; 1n]
; n 2 N+: Prove thatZ

R

lim inf
n!1

fndm = 0 <1 = lim inf
n!1

Z
R

fndm

(the inequality in the Fatou Lemma may be strict).

3. Suppose f : (R;R�)! ([0;1] ;R0;1) is measurable and set

g(x) = �1k=1f(x+ k); x 2 R:

Show that Z
R

gdm <1 if and only if ff > 0g 2 Zm:

4. Let (X;M; �) be a positive measure space and f : X ! [0;1] an
(M;R0;1)-measurable function such that

f(X) � N

106

57

and Z
X

fd� <1:

For every t � 0, set

F (t) = �(f > t) and G(t) = �(f � t):

Prove that Z
X

fd� = �1n=0F (n) = �
1
n=1G(n):

2.2. Integration of Functions with Arbitrary Sign

As usual suppose (X;M; �) is a positive measure space. In this section when
we speak of a measurable function f : X ! R it is understood that f is an
(M;R)-measurable function, if not otherwise stated. If f; g : X ! R are
measurable, the sum f + g is measurable since

ff + g > �g =
[
q2Q

(ff > �� qg \ fg > qg)

for each real �: Besides the function �f and the di¤erence f � g are mea-
surable. It follows that a function f : X ! R is measurable if and only if
the functions f+ = max(0; f) and f� = max(0;�f) are measurable since
f = f+ � f�:
We write f 2 L1(�) if f : X ! R is measurable andZ

X

j f j d� <1

and in this case we de�neZ
X

fd� =

Z
X

f+d��
Z
X

f�d�:

Note that

j
Z
X

fd� j�
Z
X

j f j d�

107

75

CHAPTER 3

Further Construction Methods of Measures

Introduction

In the �rst section of this chapter we collect some basic results on metric
spaces, which every mathematician must know about. Section 3.2 gives a
version of the Riesz Representation Theorem, which leads to another and
perhaps simpler approach to Lebesgue measure than the Carathéodory The-
orem. A reader can skip Section 3.2 without losing the continuity in this
paper. The chapter also treats so called product measures and Stieltjes in-
tegrals.

3.1. Metric Spaces

The construction of our most important measures requires topological con-
cepts. For our purpose it will be enough to restrict ourselves to so called
metric spaces.
A metric d on a set X is a mapping d : X �X ! [0;1[such that

(a) d(x; y) = 0 if and only if x = y
(b) d(x; y) = d(y; x) (symmetry)
(c) d(x; y) � d(x; z) + d(z; y) (triangle inequality).

Here recall, if A1; :::; An are sets,

A1 � :::� An = f(x1; :::; xn); xi 2 Ai for all i = 1; :::; ng

A set X equipped with a metric d is called a metric space. Sometimes we
write X = (X; d) to emphasize the metric d: If E is a subset of the metric

Unit 13

108

76

space (X; d); the function djE�E(x; y) = d(x; y); if x; y 2 E; is a metric on
E: Thus (E; djE�E) is a metric space.
The function '(t) = min(1; t); t � 0; satis�es the inequality

'(s+ t) � '(s) + '(t):

Therefore, if d is a metric on X, min(1; d) is a metric on X: The metric
min(1; d) is a bounded metric.
The set R equipped with the metric d1(x; y) =j x� y j is a metric space.

More generally, Rn equipped with the metric

dn(x; y) = dn((x1; :::; xn); (y1; :::; yn)) = max
1�k�n

j xk � yk j

is a metric space. If not otherwise stated, it will always be assumed that Rn

is equipped with this metric.
Let C [0; T] denote the vector space of all real-valued continuous functions

on the interval [0; T] ; where T > 0: Then

d1(x; y) = max
0�t�T

j x(t)� y(t) j

is a metric on C [0; T] :
If (Xk; ek); k = 1; :::; n, are metric spaces,

d(x; y) = max
1�k�n

ek(xk; yk); x = (x1; :::; xn) ; y = (y1; :::; yn)

is a metric on X1 � ::: � Xn: The metric d is called the product metric on
X1 � :::�Xn:
If X = (X; d) is a metric space and x 2 X and r > 0; the open ball with

centre at x and radius r is the set B(x; r) = fy 2 X; d(y; x) < rg : If E � X
and E is contained in an appropriate open ball in X it is said to be bounded.
The diameter of E is, by de�nition,

diam E = sup
x;y2E

d(x; y)

and it follows that E is bounded if and only if diam E <1. A subset of X
which is a union of open balls in X is called open. In particular, an open
ball is an open set. The empty set is open since the union of an empty family
of sets is empty. An arbitrary union of open sets is open. The class of all

109

77

open subsets of X is called the topology of X: The metrics d and min(1; d)
determine the same topology. A subset E of X is said to be closed if its
complement Ec relative to X is open. An intersection of closed subsets of
X is closed. If E � X, E� denotes the largest open set contained in E and
E� (or �E) the smallest closed set containing E: E� is the interior of E and
E� its closure. The �-algebra generated by the open sets in X is called the
Borel �-algebra in X and is denoted by B(X). A positive measure on B(X)
is called a positive Borel measure.
A sequence (xn)1n=1 in X converges to x 2 X if

lim
n!1

d(xn; x) = 0:

If, in addition, the sequence (xn)1n=1 converges to y 2 X; the inequalities

0 � d(x; y) � d(xn; x) + d(xn; y)

imply that y = x and the limit point x is unique.
If E � X and x 2 X; the following properties are equivalent:

(i) x 2 E�:
(ii) B(x; r) \ E 6= �; all r > 0:
(iii) There is a sequence (xn)1n=1 in E which converges to x:

If B(x; r) \ E = �, then B(x; r)c is a closed set containing E but not x:
Thus x =2 E�: This proves that (i))(ii). Conversely, if x =2 E�; since �Ec is
open there exists an open ball B(y; s) such that x 2 B(y; s) � �Ec � Ec: Now
choose r = s� d(x; y) > 0 so that B(x; r) � B(y; s): Then B(x; r) \ E = �:
This proves (ii))(i).
If (ii) holds choose for each n 2 N+ a point xn 2 E with d(xn; x) < 1

n

and (iii) follows. If there exists an r > 0 such that B(x; r) \ E = �; then
(iii) cannot hold. Thus (iii))(ii).
If E � X, the set E� nE� is called the boundary of E and is denoted by

@E:
A set A � X is said to be dense in X if A� = X: The metric space X is

called separable if there is an at most denumerable dense subset of X: For
example, Qn is a dense subset of Rn: The space Rn is separable.

110

78

Theorem 3.1.1. B(Rn) = Rn:

PROOF. The �-algebra Rn is generated by the open n-cells in Rn and an
open n-cell is an open subset of Rn: Hence Rn � B(Rn): Let U be an open
subset in Rn and note that an open ball in Rn = (Rn; dn) is an open n-cell.
If x 2 U there exist an a 2Qn \ U and a rational number r > 0 such that
x 2 B(a; r) � U: Thus U is an at most denumerable union of open n-cells
and it follows that U 2 Rn: Thus B(Rn) � Rn and the theorem is proved.

Let X = (X; d) and Y = (Y; e) be two metric spaces. A mapping f :
X ! Y (or f : (X; d)! (Y; e) to emphasize the underlying metrics) is said
to be continuous at the point a 2 X if for every " > 0 there exists a � > 0
such that

x 2 B(a; �)) f(x) 2 B(f(a); "):
Equivalently this means that for any sequence (xn)1n=1 in X which converges
to a in X; the sequence (f(xn))1n=1 converges to f(a) in Y: If f is continuous
at each point of X, the mapping f is called continuous. Stated otherwise
this means that

f�1(V) is open if V is open

or
f�1(F) is closed if F is closed.

The mapping f is said to be Borel measurable if

f�1(B) 2 B(X) if B 2 B(Y)

or, what amounts to the same thing,

f�1(V) 2 B(X) if V is open.

A Borel measurable function is sometimes called a Borel function. A
continuous function is a Borel function.

Example 3.1.1. Let f : (R;d1)! (R;d1) be a continuous strictly increasing
function and set �(x; y) =j f(x)� f(y) j; x; y 2 R: Then � is a metric on R.

111

79

De�ne j(x) = x; x 2 R: The mapping j : (R;d1)! (R;�) is continuous. We
claim that the map j : (R;�)! (R;d1) is continuous: To see this, let a 2 R
and suppose the sequence (xn)1n=1 converges to a in the metric space (R;�);
that is j f(xn)� f(a) j! 0 as n!1: Let " > 0: Then

f(xn)� f(a) � f(a+ ")� f(a) > 0 if xn � a+ "

and
f(a)� f(xn) � f(a)� f(a� ") > 0 if xn � a� ":

Thus xn 2]a� "; a+ "[if n is su¢ ciently large. This proves that he map
j : (R;�)! (R;d1) is continuous.
The metrics d1 and � determine the same topology and Borel subsets of

R:

A mapping f : (X; d) ! (Y; e) is said to be uniformly continuous if for
each " > 0 there exists a � > 0 such that e(f(x); f(y)) < " as soon as
d(x; y) < �:
If x 2 X and E; F � X; let

d(x;E) = inf
u2E

d(x; u)

be the distance from x to E and let

d(E;F) = inf
u2E;v2F

d(u; v)

be the distance between E and F: Note that d(x;E) = 0 if and only if x 2 �E:
If x; y 2 X and u 2 E;

d(x; u) � d(x; y) + d(y; u)

and, hence
d(x;E) � d(x; y) + d(y; u)

and
d(x;E) � d(x; y) + d(y; E):

Next suppose E 6= �: Then by interchanging the roles of x and y; we get

j d(x;E)� d(y; E) j� d(x; y)

112

80

and conclude that the distance function d(x;E); x 2 X; is continuous. In
fact, it is uniformly continuous. If x 2 X and r > 0; the so called closed ball
�B(x; r) = fy 2 X; d(y; x) � rg is a closed set since the map y ! d(y; x);
y 2 X; is continuous.
If F � X is closed and " > 0, the continuous function

�XF;" = max(0; 1�
1

"
d(�; F))

ful�ls 0 � �XF;" � 1 and �XF;" = 1 on F: Furthermore, �XF;"(a) > 0 if and only
if a 2 F" =def fx 2 X; d(x; F) < "g : Thus

�F � �XF;" � �F" :

Let X = (X; d) be a metric space. A sequence (xn)1n=1 in X is called
a Cauchy sequence if to each " > 0 there exists a positive integer p such
that d(xn; xm) < " for all n;m � p: If a Cauchy sequence (xn)1n=1 contains a
convergent subsequence (xnk)

1
k=1 it must be convergent. To prove this claim,

suppose the subsequence (xnk)
1
k=1 converges to a point x 2 X: Then

d(xm; x) � d(xm; xnk) + d(xnk ; x)

can be made arbitrarily small for all su¢ ciently large m by choosing k su¢ -
ciently large. Thus (xn)1n=1 converges to x:
A subset E of X is said to be complete if every Cauchy sequence in E

converges to a point in E: If E � X is closed and X is complete it is clear
that E is complete. Conversely, if X is a metric space and a subset E of X
is complete, then E is closed:
It is important to know that R is complete equipped with its standard

metric. To see this let (xn)1n=1 be a Cauchy sequence. There exists a positive
integer such that j xn � xm j< 1 if n;m � p: Therefore

j xn j�j xn � xp j + j xp j� 1+ j xp j

for all n � p: We have proved that the sequence (xn)1n=1 is bounded (the
reader can check that every Cauchy sequence in a metric space has this
property). Now de�ne

a = sup fx 2 R; there are only �nitely many n with xn � xg :

The de�nition implies that there exists a subsequence (xnk)
1
k=1; which con-

verges to a (since for any r > 0; xn 2 B(a; r) for in�nitely many n). The

113

81

original sequence is therefore convergent and we conclude that R is complete
(equipped with its standard metric d1): It is simple to prove that the product
of n complete spaces is complete and we conclude that Rn is complete.
Let E � X: A family (Vi)i2I of subsets of X is said to be a cover of E

if [i2IVi � E and E is said to be covered by the V 0
i s: The cover (Vi)i2I is

said to be an open cover if each member Vi is open. The set E is said to be
totally bounded if, for every " > 0; E can be covered by �nitely many open
balls of radius ": A subset of a totally bounded set is totally bounded.
The following de�nition is especially important.

De�nition 3.1.1. A subset E of a metric space X is said to be compact if
to every open cover (Vi)i2I of E, there is a �nite subcover of E, which means
there is a �nite subset J of I such that (Vi)i2J is a cover of E:

If K is closed, K � E; and E is compact, then K is compact. To see this,
let (Vi)i2I be an open cover of K: This cover, augmented by the set X n K
is an open cover of E and has a �nite subcover since E is compact. Noting
that K \ (X nK) = �; the assertion follows.

Theorem 3.1.2. The following conditions are equivalent:
(a) E is complete and totally bounded.
(b) Every sequence in E contains a subsequence which converges to a
point of E:
(c) E is compact.

PROOF. (a))(b). Suppose (xn)1n=1 is a sequence in E: The set E can be
covered by �nitely many open balls of radius 2�1 and at least one of them
must contain xn for in�nitely many n 2 N+: Suppose xn 2 B(a1; 2

�1) if
n 2 N1 � N0 =def N+; where N1 is in�nite. Next E \ B(a1; 2�1) can be
covered by �nitely many balls of radius 2�2 and at least one of them must
contain xn for in�nitely many n 2 N1: Suppose xn 2 B(a2; 2

�1) if n 2 N2;
where N2 � N1 is in�nite. By induction, we get open balls B(aj; 2�j) and
in�nite sets Nj � Nj�1 such that xn 2 B(aj; 2

�j) for all n 2 Nj and j � 1:

114

82

Let n1 < n2 < :::, where nk 2 Nk; k = 1; 2; ::: . The sequence (xnk)
1
k=1 is a

Cauchy sequence, and since E is complete it converges to a point of E .

(b))(a). If E is not complete there is a Cauchy sequence in E with no
limit in E: Therefore no subsequence can converge in E; which contradicts
(b). On the other hand if E is not totally bounded, there is an " > 0 such
that E cannot be covered by �nitely many balls of radius ": Let x1 2 E
be arbitrary. Having chosen x1; :::; xn�1; pick xn 2 En [n�1i=1 B(xi; "); and
so on. The sequence (xn)1n=1 cannot contain any convergent subsequence as
d(xn; xm) � " if n 6= m; which contradicts (b).

f(a) and (b)g)(c). Let (Vi)i2I be an open cover of E: Since E is totally
bounded it is enough to show that there is an " > 0 such that any open
ball of radius " which intersects E is contained in some Vi: Suppose on the
contrary that for every n 2 N+ there is an open ball Bn of radius � 2�n

which intersects E and is contained in no Vi: Choose xn 2 Bn \ E and
assume without loss of generality that (xn)1n=1 converges to some point x in
E by eventually going to a subsequence. Suppose x 2 Vi0 and choose r > 0
such that B(x; r) � Vi0 : But then Bn � B(x; r) � Vi0 for large n, which
contradicts the assumption on Bn:

(c))(b). If (xn)1n=1 is a sequence in E with no convergent subsequence in
E, then for every x 2 E there is an open ball B(x; rx) which contains xn for
only �nitely many n: Then (B(x; rx))x2E is an open cover of E without a
�nite subcover.

Corollary 3.1.1. A subset of Rn is compact if and only if it is closed and
bounded.

PROOF. Suppose K is compact. If xn 2 K and xn =2 B(0; n) for every
n 2 N+; the sequence (xn)1n=1 cannot contain a convergent subsequence.
Thus K is bounded. Since K is complete it is closed.

115

91

###

3.2. Linear Functionals and Measures

Let X be a metric space. A mapping T : Cc(X)! R is said to be a linear
functional on Cc(X) if

T (f + g) = Tf + Tg; all f; g 2 Cc(X)

and
T (�f) = �Tf; all � 2 R; f 2 Cc(X):

If in addition Tf � 0 for all f � 0; T is called a positive linear functional
on Cc(X): In this case Tf � Tg if f � g since g � f � 0 and Tg � Tf =
T (g � f) � 0: Note that Cc(X) = C(X) if X is compact.
The main result in this section is the following

Theorem 3.2.1. (The Riesz Representation Theorem) Suppose X is
a compact metric space and let T be a positive linear functional on C(X):
Then there exists a unique �nite positive Borel measure � in X with the
following properties:
(a)

Tf =

Z
X

fd�; f 2 C(X):

(b) For every E 2 B(X)

�(E) = sup
K�E

K compact

�(K):

(c) For every E 2 B(X)

�(E) = inf
V�E
V open

�(V):

116

92

The property (c) is a consequence of (b), since for each E 2 B(X) and
" > 0 there is a compact K � X n E such that

�(X n E) < �(K) + ":

But then
�(X nK) < �(E) + "

and X n K is open and contains E: In a similar way, (b) follows from (c)
since X is compact.
The proof of the Riesz Representation Theorem depends on properties of

continuous functions of independent interest. Suppose K � X is compact
and V � X is open. If f : X ! [0; 1] is a continuous function such that

f � �V and suppf � V

we write
f � V

and if
�K � f � �V and suppf � V

we write
K � f � V:

Theorem 3.2.2. Let K be compact subset X.
(a) Suppose K � V where V is open. There exists a function f on X

such that
K � f � V:

(b) Suppose X is compact and K � V1[:::[Vn; where K is compact and
V1; :::; Vn are open. There exist functions h1; :::; hn on X such that

hi � Vi; i = 1; :::; n

and
h1 + :::+ hn = 1 on K:

117

93

PROOF. (a) Suppose " = 1
2
minK d(�; V c): By Corollary 3.1.2, " > 0: The

continuous function f = �XK;" satis�es �K � f � �K"
; that is K � f � K":

Part (a) follows if we note that the closure (K")
� of K" is contained in V:

(b) For each x 2 K there exists an rx > 0 such that B(x; rx) � Vi for some
i. Let Ux = B(x; 1

2
rx): It is important to note that (Ux)� � Vi and (Ux)�

is compact since X is compact. There exist points x1; :::; xm 2 K such that
[mj=1Uxi � K: If 1 � i � n; let Fi denote the union of those (Uxj)

� which are
contained in Vi: By Part (a), there exist continuous functions fi such that
Fi � fi � Vi; i = 1; :::; n: De�ne

h1 = f1

h2 = (1� f1)f2

::::

hn = (1� f1):::(1� fn�1)fn:

Clearly, hi � Vi; i = 1; :::; n: Moreover, by induction, we get

h1 + :::+ hn = 1� (1� f1):::(1� fn�1)(1� fn):

Since [ni=1Fi � K we are done.

The uniqueness in Theorem 3.2.1 is simple to prove. Suppose �1 and
�2 are two measures for which the theorem holds. Fix " > 0 and compact
K � X and choose an open set V so that �2(V) � �2(K)+ ": If K � f � V;

�1(K) =

Z
X

�Kd�1 �
Z
X

fd�1 = Tf

=

Z
X

fd�2 �
Z
X

�V d�2 = �2(V) � �2(K) + ":

Thus �1(K) � �2(K): If we interchange the roles of the two measures, the
opposite inequality is obtained, and the uniqueness of � follows.
To prove the existence of the measure � in Theorem 3.2.1; de�ne for every

open V in X,
�(V) = sup

f�V
Tf:

118

94

Here �(�) = 0 since the supremum over the empty set, by convention, equals
0: Note also that �(X) = T1: Moreover, �(V1) � �(V2) if V1 and V2 are open
and V1 � V2: Now set

�(E) = inf
V�E
V open

�(V) if E 2 B(X):

Clearly, �(E1) � �(E2); if E1 � E2 and E1;E2 2 B(X): We therefore say
that � is increasing.

Lemma 3.2.1. (a) If V1; :::; Vn are open,

�([ni=1Vi) � �ni=1�(Vi):

(b) If E1; E2; ::: 2 B(X);

�([1i=1Ei) � �1i=1�(Ei):

(c) If K1; :::; Kn are compact and pairwise disjoint,

�([ni=1Ki) = �
n
i=1�(Ki):

PROOF. (a) It is enough to prove (a) for n = 2: To this end �rst choose
g � V1[V2 and then hi � Vi, i = 1; 2; such that h1+h2 = 1 on supp g: Then

g = h1g + h2g

and it follows that

Tg = T (h1g) + T (h2g) � �(V1) + �(V2):

Thus
�(V1 [V2) � �(V1) + �(V2):

119

95

(b) Choose " > 0 and for each i 2 N+, choose an open Vi � Ei such �(Vi) <
�(Ei) + 2

�i": Set V = [1i=1Vi and choose f � V: Since suppf is compact,
f � V1 [::: [Vn for some n: Thus, by Part (a),

Tf � �(V1 [::: [Vn) � �ni=1�(Vi) � �1i=1�(Ei) + "

and we get
�(V) � �1i=1�(Ei)

since " > 0 is arbitrary. But [1i=1Ei � V and it follows that

�([1i=1Ei) � �1i=1�(Ei):

(c) It is enough to treat the special case n = 2: Choose " > 0: Set � =
d(K1; K2) and V1 = (K1)�=2 and V2 = (K2)�=2: There is an open set U �
K1[K2 such that �(U) < �(K1[K2)+" and there are functions fi � U \Vi
such that Tfi > �(U \ Vi)� " for i = 1; 2: Now, using that � increases

�(K1) + �(K2) � �(U \ V1) + �(U \ V2)

� Tf1 + Tf2 + 2" = T (f1 + f2) + 2":

Since f1 + f2 � U;

�(K1) + �(K2) � �(U) + 2" � �(K1 [K2) + 3"

and, by letting "! 0;

�(K1) + �(K2) � �(K1 [K2):

The reverse inequality follows from Part (b). The lemma is proved.

Next we introduce the class

M =

8<:E 2 B(X); �(E) = sup
K�E

K compact

�(K)

9=;

120

96

Since � is increasingM contains every compact set. Recall that a closed
set inX is compact, sinceX is compact. Especially, note that � andX 2M.

COMPLETION OF THE PROOF OF THEOREM 3.2.1:

CLAIM 1. M contains every open set.

PROOF OF CLAIM 1. Let V be open and suppose � < �(V): There exists
an f � V such that � < Tf: If U is open and U � K =defsuppf; then f � U;
and hence Tf � �(U): But then Tf � �(K): Thus � < �(K) and Claim 1
follows since K is compact and K � V:

CLAIM 2. Let (Ei)1i=1 be a disjoint denumerable collection of members of
M and put E = [1i=1Ei: Then

�(E) = �1i=1�(Ei)

and E 2M:

PROOF OF CLAIM 2. Choose " > 0 and for each i 2 N+, choose a compact
Ki � Ei such that �(Ki) > �(Ei)� 2�i": Set Hn = K1 [::: [Kn: Then, by
Lemma 3.2.1 (c),

�(E) � �(Hn) = �
n
i=1�(Ki) > �

n
i=1�(Ei)� "

and we get
�(E) � �1i=1�(Ei):

Thus, by Lemma 3.2.1 (b), �(E) = �1i=1�(Ei). To prove that E 2M; let "
be as in the very �rst part of the proof and choose n such that

�(E) � �ni=1�(Ei) + ":

121

97

Then
�(E) < �(Hn) + 2"

and this shows that E 2M:

CLAIM 3. Suppose E 2 M and " > 0: Then there exist a compact K and
an open V such that K � E � V and �(V nK) < ":

PROOF OF CLAIM 3. The de�nitions show that there exist a compact K
and an open V such that

�(V)� "

2
< �(E) < �(K) +

"

2
:

The set V nK is open and V nK 2 M by Claim 1. Thus Claim 2 implies
that

�(K) + �(V nK) = �(V) < �(K) + "

and we get �(V nK) < ":

CLAIM 4. If A 2M; then X n A 2M:

PROOF OF CLAIM 4. Choose " > 0: Furthermore, choose compact K � A
and open V � A such that �(V nK) < ": Then

X n A � (V nK) [(X n V):

Now, by Lemma 3.2.1 (b),

�(X n A) � "+ �(X n V):

Since X n V is a compact subset of X n A; we conclude that X n A 2M:

Claims 1, 2 and 4 prove thatM is a �-algebra which contains all Borel
sets. ThusM = B(X):

122

98

We �nally prove (a). It is enough to show that

Tf �
Z
X

fd�

for each f 2 C(X): For once this is known

�Tf = T (�f) �
Z
X

�fd� � �
Z
X

fd�

and (a) follows.
Choose " > 0: Set f(X) = [a; b] and choose y0 < y1 < ::: < yn such that

y1 = a, yn�1 = b; and yi � yi�1 < ": The sets

Ei = f�1([yi�1; yi[); i = 1; :::; n

constitute a disjoint collection of Borel sets with the unionX: Now, for each i;
pick an open set Vi � Ei such that �(Vi) � �(Ei)+

"
n
and Vi � f�1(]�1; yi[):

By Theorem 3.2.2 there are functions hi � Vi; i = 1; :::; n; such that �ni=1hi =
1 on suppf and hif � yihi for all i: From this we get

Tf = �ni=1T (hif) � �ni=1yiThi � �ni=1yi�(Vi)

� �ni=1yi�(Ei) + �ni=1yi
"

n

� �ni=1(yi � ")�(Ei) + "�(X) + (b+ ")"

� �ni=1
Z
Ei

fd�+ "�(X) + (b+ ")"

=

Z
X

fd�+ "�(X) + (b+ ")":

Since " > 0 is arbitrary, we get

Tf �
Z
X

fd�:

This proves Theorem 3.2.1.

It is now simple to show the existence of volume measure in Rn: For
pedagogical reasons we �rst discuss the so called volume measure in the unit
cube Q = [0; 1]n in Rn:

123

99

The Riemann integral Z
Q

f(x)dx;

is a positive linear functional as a function of f 2 C(Q): Moreover, T1 = 1
and the Riesz Representation Theorem gives us a Borel probability measure
� in Q such that Z

Q

f(x)dx =

Z
Q

fd�:

Suppose A � Q is a closed n-cell and i 2 N+: Then

vol(A) �
Z
Q

�Q
A;2�i(x)dx � vol(A2�i)

and
�Q
A;2�i(x)! �A(x) as i!1

for every x 2Rn: Thus
�(A) = vol(A):

The measure � is called the volume measure in the unit cube. In the special
case n = 2 it is called the area measure in the unit square and if n = 1 it is
called the linear measure in the unit interval.

PROOF OF THEOREM 1.1.1. Let �R=R[f�1;1g be the two-point com-
pacti�cation of R introduced in Example 3.1.3 and let R̂n denote the product
of n copies of the metric space R̂: Clearly,

B(Rn) =
n
A \Rn; A 2 B(R̂n)

o
:

Moreover, let w : Rn !]0;1[be a continuous map such thatZ
Rn

w(x)dx = 1:

Now we de�ne

Tf =

Z
Rn

f(x)w(x)dx; f 2 C(R̂n):

124

100

Note that T1 = 1. The function T is a positive linear functional on C(R̂n)
and the Riesz Representation Theorem gives us a Borel probability measure
� on R̂n such thatZ

Rn

f(x)w(x)dx =

Z
R̂n

fd�; f 2 C(R̂n):

As above we get Z
A

w(x)dx = �(A)

for each compact n-cell in Rn: Thus

�(Rn) = lim
i!1

Z
[�i;i]n

w(x)dx = 1

and we conclude that � is concentrated on Rn: Set �0(A) = �(A); A 2
B(Rn); and

dmn =
1

w
d�0:

Then, if f 2 Cc(Rn); Z
Rn

f(x)w(x)dx =

Z
Rn

fd�0

and by replacing f by f=w;Z
Rn

f(x)dx =

Z
Rn

fdmn:

From this mn(A) =vol(A) for every compact n-cell A and it follows that mn

is the volume measure on Rn. Theorem 1.1.1 is proved.

"""

3.3 q-Adic Expansions of Numbers in the Unit Interval

To begin with in this section we will discuss so called q-adic expansions of
real numbers and give some interesting consequences. As an example of an

125

104

is by de�nition equal to Z
E

hd�:

If a; b 2 R, a < b; and F is continuous at the points a and b; we de�neZ b

a

h(x)dF (x) =

Z
I

hd�

where I is any interval with boundary points a and b:
The reader should note that the integralZ

R

h(x)dF (x)

in general is di¤erent from the integralZ
R

h(x)F 0(x)dx:

For example, if G is the Cantor function and G is extended so that G(x) = 0
for negative x and G(x) = 1 for x larger than 1, clearlyZ

R

h(x)G0(x)dx = 0

since G0(x) = 0 a.e. [m] : On the other hand, if we choose h = �[0;1];Z
R

h(x)dG(x) = 1:

3.4. Product Measures

Suppose (X;M) and (Y;N) are two measurable spaces. If A 2 M and
B 2 N ; the set A�B is called a measurable rectangle in X�Y: The product
�-algebraM
N is, by de�nition, the �-algebra generated by all measurable
rectangles in X � Y: If we introduce the projections

�X(x; y) = x; (x; y) 2 X � Y

and
�Y (x; y) = y; (x; y) 2 X � Y;

126

105

the product �-algebraM
N is the least �-algebra S of subsets of X � Y ,
which makes the maps �X : (X � Y;S) ! (X;M) and �Y : (X � Y;S) !
(Y;N) measurable, that isM
N = �(��1X (M)[��1Y (N)):.
Suppose E generatesM; whereX 2 E ; and F generatesN ; where Y 2 F .

We claim that the class

E � F = fE � F ;E 2 E and F 2 Fg

generates the �-algebraM
N : First it is clear that

�(E � F) �M
N :

Moreover, the class

fE 2M;E � Y 2 �(E � F) g =M\
�
E � X; ��1X (E) 2 �(E � F)

	
is a �-algebra, which contains E and therefore equals M. Thus A � Y 2
�(E � F) for all A 2 M and, in a similar way, X � B 2 �(E � F) for all
B 2 N and we conclude that A � B = (A � Y) \ (X � B) 2 �(E � F) for
all A 2M and all B 2 N : This proves that

M
N ��(E � F)

and it follows that
�(E � F) =M
N :

Thus
�(E � F) = �(E)
 �(F) if X 2 E and Y 2 F :

Since the �-algebraRn is generated by all open n-cells inRn, we conclude
that

Rk+n = Rk
Rn:

Given E � X � Y; de�ne

Ex = fy; (x; y) 2 Eg if x 2 X

and
Ey = fx; (x; y) 2 Eg if y 2 Y:

If f : X � Y ! Z is a function and x 2 X; y 2 Y , let

fx(y) = f(x; y); if y 2 Y

127

106

and
f y(x) = f(x; y); if x 2 X:

Theorem 3.4.1 (a) If E 2 M
N ; then Ex 2 N and Ey 2 M for every
x 2 X and y 2 Y:
(b) If f : (X � Y;M
N) ! (Z;O) is measurable, then fx is (N ;O)-

measurable for each x 2 X and f y is (M;O)-measurable for each y 2 Y:

Proof. (a) Choose y 2 Y and de�ne ' : X ! X�Y by '(x) = (x; y): Then

M = �('�1(M�N)) = '�1(�(M�N)) = '�1(M
N)

and it follows that Ey 2M: In a similar way Ex 2 N for every x 2 X:
(b) For any set V 2 O;

(f�1(V))x = (fx)
�1(V)

and
(f�1(V))y = (f y)�1(V):

Part (b) now follows from (a).

Below an (M;R0;1)-measurable or (M;R)-measurable function is simply
calledM-measurable.

Theorem 3.4.2. Suppose (X;M; �) and (Y;N ; �) are positive �-�nite
measurable spaces and suppose E 2M
N . If

f(x) = �(Ex) and g(y) = �(Ey)

for every x 2 X and y 2 Y; then f is M-measurable, g is N -measurable,
and Z

X

fd� =

Z
Y

gd�:

Proof. We �rst assume that (X;M; �) and (Y;N ; �) are �nite positive
measure spaces.

128

107

Let D be the class of all sets E 2 M
N for which the conclusion of
the theorem holds. It is clear that the class G of all measurable rectangles
in X � Y is a subset of D and G is a �-system. Furthermore, the Beppo
Levi Theorem shows that D is a �-additive class. Therefore, using Theorem
1.2.2,M
N = �(G) � D and it follows that D =M
N :
In the general case, choose a denumerable disjoint collection (Xk)

1
k=1of

members ofM and a denumerable disjoint collection (Yn)1n=1of members of
N such that

[1k=1Xk = X and [1n=1 Yn = Y:

Set
�k = �Xk�, k = 1; 2; :::

and
�n = �Yn�, n = 1; 2; ::: .

Then, by the Beppo Levi Theorem, the function

f(x) =

Z
Y

�1n=1�E(x; y)�Yn(y)d�(y)

= �1n=1

Z
Y

�E(x; y)�Yn(y)d�(y) = �
1
n=1�n(Ex)

isM-measurable. Again, by the Beppo Levi Theorem,Z
X

fd� = �1k=1

Z
X

fd�k

and Z
X

fd� = �1k=1(�
1
n=1

Z
X

�n(Ex)d�k(x)) = �
1
k;n=1

Z
X

�n(Ex)d�k(x):

In a similar way, the function g is N -measurable andZ
Y

gd� = �1n=1(�
1
k=1

Z
Y

�k(E
y)d�n(y)) = �

1
k;n=1

Z
Y

�k(E
y)d�n(y):

Since the theorem is true for �nite positive measure spaces, the general case
follows.

129

125

4. Compute the n-dimensional Lebesgue integralZ
jxj<1

ln(1� j x j)dx

where j x j denotes the Euclidean norm of the vector x 2 Rn: (Hint:
�(Sn�1) = 2�n=2

�(n=2)
:)

5. Suppose f 2 L1(m2): Show that limn!1 f(nx) = 0 for m2-almost all
x 2 R2:

###
3.6. Independence in Probability

Suppose (
;F ; P) is a probability space. The random variables �k : (
; P)!
(Sk;Sk); k = 1; :::; n are said to be independent if

P(�1;:::;�n) = �
n
k=1P�k :

A family (�i)i2I of random variables is said to be independent if �i1 ; :::; �in
are independent for any i1; :::in 2 I with ik 6= il if k 6= l: A family of
events (Ai)i2I is said to be independent if (�Ai)i2I is a family of independent
random variables. Finally a family (Ai)i2I of sub-�-algebras of F is said to
be independent if, for any Ai 2 Ai; i 2 I; the family (Ai)i2I is a family of
independent events.

Example 3.6.1. Let q � 2 be an integer. A real number ! 2 [0; 1[has a
q-adic expansion

! = �1k=1
�
(q)
k

qk
:

The construction of the Cantor set shows that (�(q)k)
1
k=1 is a sequence of

independent random variables based on the probability space

([0; 1[; v1j[0;1[;B([0; 1[)):

 Unit 14

130

127

Theorem 3.6.1. Suppose �1; :::; �n are independent random variables and
�k 2 N(0; 1); k = 1; :::; n: If �1; :::; �n 2 R; then

�nk=1�k�k 2 N(0;�nk=1�2k)

PROOF. The case �1; :::; �n = 0 is trivial so assume �k 6= 0 for some k: We
have for each open interval A;

P [�nk=1�k�k 2 A] =
Z
�nk=1�kxk2A

d
1(x1):::d
1(xn)

Z
�nk=1�kxk2A

1p
2�

n e
� 1
2
(x21+:::+x

2
n)dx1:::dxn:

Set � =
p
�21 + :::+ �2n and let y = Gx be an orthogonal transformation

such that
y1 =

1

�
(�1x1 + :::+ �nxn):

Then, since detG = 1;

P [�1k=1�k�k 2 A] =
Z
�y12A

1p
2�

n e
� 1
2
(y21+:::+y

2
n)dy1:::dyn

=

Z
�y12A

1p
2�
e�

1
2
y21dy1

where we used Fubini�s theorem in the last step. The theorem is proved.

Finally, in this section, we prove a basic result about the existence of
in�nite product measures. Let �k; k 2 N+ be Borel probability measures
in R. The space RN+ is, by de�nition, the set of all sequences x = (xk)1k=1
of real numbers. For each k 2 N+; set �k(x) = xk: The �-algebra RN+

is the least �-algebra S of subsets of RN+ which makes all the projections
�k : (R

N+ ;S) ! (R;R); k 2 N+; measurable. Below, (�1; :::; �n) denotes
the mapping of RN+ into Rn de�ned by the equation

(�1; :::; �n)(x) = (�1(x); :::; �n(x)):

131

128

Theorem 3.6.1. There is a unique probability measure � on RN+ such that

�(�1;:::;�n) = �1 � :::� �n

for every n 2 N+:

The measure � in Theorem 3.6.1 is called the product of the measures
�k; k 2 N+; and is often denoted by

�1k=1�k:

PROOF OF THEOREM 3.6.1. Let (
; P;F) = ([0; 1[; v1j[0;1[;B([0; 1[) and
set

�(!) = �1k=1
�
(2)
k (!)

2k
; ! 2
:

We already know that P� = P: Now suppose (ki)1i=1 is a strictly increasing
sequence of positive integers and introduce

�0 = �1i=1
�
(2)
ki
(!)

2i
; ! 2
:

Note that for each �xed positive integer n; the Rn-valued maps (�(2)1 ; :::; �(2)n)

and (�(2)k1 ; :::; �
(2)
kn
) are P -equimeasurable. Thus, if f :
! R is continuous,Z

f(�)dP = lim
n!1

Z

f(�nk=1
�
(2)
k (!)

2k
)dP (!)

= lim
n!1

Z

f(�ni=1
�
(2)
ki
(!)

2i
)dP (!) =

Z

f(�0)dP

and it follows that P�0 = P� = P:
By induction, we de�ne for each k 2 N+ an in�nite subset Nk of the set

N+n[k�1i=1Ni such that the setN+n[ki=1Ni contains in�nitely many elements
and de�ne

�k = �
1
i=1

�(2)nik(!)

2i

where (nik)1i=1 is an enumeration of Nk: The map

	(!) = (�k(!))
1
k=1

132

129

is a measurable map of (
;F) into (RN+ ;RN+) and

P	 = �1k=1�i

where �i = P for each i 2 N+:
For each i 2 N+ there exists a measurable map 'i of (
;F) into (R;R)

such that P'i = �i (see Section 1.6). The map

�(x) = ('i(xi))
1
i=1

is a measurable map of (RN+ ;RN+) into itself and we get � = (P)�. This
completes the proof of Theorem 3.6.1.

"""

133

130

CHAPTER 4

MODES OF CONVERGENCE

Introduction

In this chapter we will treat a variety of di¤erent sorts of convergence notions
in measure theory. So called L2-convergence is of particular importance.

4.1. Convergence in Measure, in L1(�); and in L2(�)

Let (X;M; �) be a positive measure space and denote by F(X) the class of
measurable functions f : (X;M)! (R;R). For any f 2 F(X); set

k f k1=
Z
X

j f(x) j d�(x)

and

k f k2=

sZ
X

f 2(x)d�(x):

The Cauchy-Schwarz inequality states thatZ
X

j fg j d� �k f k2k g k2 if f; g 2 F(X):

To prove this, without loss of generality, it can be assumed that

0 <k f k2<1 and 0 <k g k2<1:

We now use the inequality

�� � 1

2
(�2 + �2); �; � 2 R

Unit 15

134

131

to obtain Z
X

j f j
k f k2

j g j
k g k2

d� �
Z
1

2
(
f 2

k f k22
+

g2

k g k22
)d� = 1

and the Cauchy-Schwarz inequality is immediate.
If not otherwise stated, in this section p is a number equal to 1 or 2: If it

is important to emphasize the underlying measure k f kp is written k f kp;� :
We now de�ne

Lp(�) = ff 2 F(X); k f kp<1g :

The special case p = 1 has been introduced earlier. We claim that the
following so called triangle inequality holds, viz.

k f + g kp�k f kp + k g kp if f; g 2 Lp(�):

The case p = 1; follows by �-integration of the relation

j f + g j�j f j + j g j :

To prove the case p = 2; we use the Cauchy-Schwarz inequality and have

k f + g k22�kj f j + j g jk22

=k f k22 +2
Z
X

j fg j d�+ k g k22

�k f k22 +2 k f k2k g k2 + k g k22= (k f k2 + k g k2)2

and the triangle inequality is immediate.
Suppose f; g 2 Lp(�): The functions f and g are equal almost everywhere

with respect to � if ff 6= gg 2 Z�: This is easily seen to be an equivalence
relation and the set of all equivalence classes is denoted by Lp(�): Below
we consider the elements of Lp(�) as members of Lp(�) and two members
of Lp(�) are identi�ed if they are equal a.e. [�] : From this convention it is
straight-forward to de�ne f + g and �f for all f; g 2 Lp(�) and � 2 R and
the function d(p)(f; g) =k f � g kp is a metric on Lp(�): Convergence in the
metric space Lp(�) = (Lp(�),d(p)) is called convergence in Lp(�): A sequence
(fk)

1
k=1 in F(X) converges in measure to a function f 2 F(X) if

lim
k!1

�(j fk � f j> ") = 0 all " > 0:

135

132

If the sequence (fk)1k=1 in F(X) converges in measure to a function f
2 F(X) as well as to a function g 2 F(X); then f = g a.e. [�] since

fj f � g j> "g �
n
j f � fk j>

"

2

o
[
n
j fk � g j> "

2

o
and

�(j f � g j> ") � �(j f � fk j>
"

2
) + �(j fk � g j> "

2
)

for every " > 0 and positive integer k: A sequence (fk)1k=1 in F(X) is said
to be Cauchy in measure if for every " > 0;

�(j fk � fn j> ")! 0 as k; n!1:

By the Markov inequality, a Cauchy sequence in Lp(�) is Cauchy in measure.

Example 4.1.1. (a) If fk =
p
k�[0; 1k]

; k 2 N+; then

k fk k2;m= 1 and k fk k1;m=
1p
k
:

Thus fk ! 0 in L1(m) as k !1 but fk 9 0 in L2(m) as k !1:

(b) L1(m) * L2(m) since

�[1;1[(x)
1

j x j 2 L
2(m) n L1(m)

and L2(m) * L1(m) since

�]0;1](x)
1p
j x j

2 L1(m) n L2(m):

Theorem 4.1.1. Suppose p = 1 or 2:
(a) Convergence in Lp(�) implies convergence in measure:

136

133

(b) If �(X) <1; then L2(�) � L1(�) and convergence in L2(�) implies
convergence in L1(�):

Proof. (a) Suppose the sequence (fn)1n=1 converges to f in L
p(�) and let

" > 0: Then, by the Markov inequality,

�(j fn � f j� ") � 1

"p

Z
X

j fn � f jp d� = 1

"p
k fn � f kpp

and (a) follows at once.

(b) The Cauchy-Schwarz inequality gives for any f 2 F(X);

(

Z
X

j f j �1d�)2 �
Z
X

f 2d�

Z
X

1d�

or
k f k1�k f k2

p
�(X)

and Part (b) is immediate.

Theorem 4.1.2. Suppose fn 2 F(X); n 2 N+:
(a) If (fn)1n=1 is Cauchy in measure, there is a measurable function f :

X ! R such that fn ! f in measure as n ! 1 and a strictly increasing
sequence of positive integers (nj)1j=1 such that fnj ! f a.e. [�] as j !1.
(b) If � is a �nite positive measure and fn ! f 2 F(X) a.e. [�] as

n!1; then fn ! f in measure.
(c) (Egoro¤�s Theorem) If � is a �nite positive measure and fn !

f 2 F(X) a.e. [�] as n!1; then for every " > 0 there exists E 2M such
that �(E) < " and

sup
k�n
x2Ec

j fk(x)� f(x) j! 0 as n!1:

PROOF. (a) For each positive integer j; there is a positive integer nj such
that

�(j fk � fl j> 2�j) < 2�j; all k; l � nj:

137

134

There is no loss of generality to assume that n1 < n2 < ::: : Set

Ej =
�
j fnj � fnj+1 j> 2�j

	
and

Fk = [1j=kEj:
If x 2 F ck and i � j � k

j fni(x)� fnj(x) j�
X
j�l<i

j fnl+1(x)� fnl(x) j

�
X
j�l<i

2�l < 2�j+1

and we conclude that (fnj(x))
1
j=1 is a Cauchy sequence for every x 2 F ck : Let

G = [1k=1F ck and note that for every �xed positive integer k;

�(Gc) � �(Fk) <

1X
j=k

2�j = 2�k+1:

Thus Gc is a �-null set. We now de�ne f(x) = limj!1 fnj(x) if x 2 G and
f(x) = 0 if x =2 G:
We next prove that the sequence (fn)1n=1 converges to f in measure. If

x 2 F ck and j � k we get

j f(x)� fnj(x) j� 2�j+1:

Thus, if j � k
�(j f � fnj j> 2�j+1) � �(Fk) < 2

�k+1:

Since

�(j fn � f j> ") � �(j fn � fnj j>
"

2
) + �(j fnj � f j> "

2
)

if " > 0; Part (a) follows at once.

(b) For each " > 0;

�(j fn � f j> ") =

Z
X

�]";1[(j fn � f j)d�

138

135

and Part (c) follows from the Lebesgue Dominated Convergence Theorem.

(c) Set for �xed k; n 2 N+;

Ekn = [1j=n
�
j fj � f j> 1

k

�
:

We have
\1n=1Ekn 2 Z�

and since � is a �nite measure

�(Ekn)! 0 as n!1:

Given " > 0 pick nk 2 N+ such that �(Eknk) < "2�k: Then, if E = [1k=1Eknk ,
�(E) < ". Moreover, if x =2 E and j � nk

j fj(x)� f(x) j� 1

k
:

The theorem is proved.

Corollary 4.1.1. The spaces L1(�) and L2(�) are complete.

PROOF. Suppose p = 1 or 2 and let (fn)1n=1 be a Cauchy sequence in L
p(�):

We know from the previous theorem that there exists a subsequence (fnj)
1
j=1

which converges pointwise to a function f 2 F(X) a.e. [�] : Thus, by Fatou�s
Lemma, Z

X

j f � fk jp d� � lim inf
j!1

Z
X

j fnj � fk jp d�

and it follows that f � fk 2 Lp(�) and, hence f = (f � fk) + fk 2 Lp(�):
Moreover, we have that k f � fk kp! 0 as k !1: This concludes the proof
of the theorem.

Corollary 4.1.2. Suppose �n 2 N(0; �2n); n 2 N+; and �n ! � in L2(P) as
n!1: Then � is a centred Gaussian random variable.

139

136

PROOF. We have that k �n k2=
q
E
�
�2n
�
= �n and k �n k2!k � k2=def �

as n!1:
Suppose f is a bounded continuous function on R. Then, by dominated

convergence,

E [f(�n)] =

Z
R

f(�nx)d
1(x)!
Z
R

f(�x)d
1(x)

as n ! 1. Moreover, there exists a subsequence (�nk)
1
k=1 which converges

to � a.s. Hence, by dominated convergence

E
�
f(�nk)

�
! E [f(�)]

as k !1 and it follows that

E [f(�)] =

Z
R

f(�x)d
1(x):

By using Corollary 3.1.3 the theorem follows at once.

Theorem 4.1.3. Suppose X is a standard space and � a positive �-�nite
Borel measure on X. Then the spaces L1(�) and L2(�) are separable.

PROOF. Let (Ek)1k=1 be a denumerable collection of Borel sets with �nite
�-measures and such that Ek � Ek+1 and [1k=1Ek = X: Set �k = �Ek� and
�rst suppose that the set Dk is at most denumerable and dense in Lp(�k)
for every k 2 N+: Without loss of generality it can be assumed that each
member of Dk vanishes o¤ Ek: By monotone convergenceZ

X

fd� = lim
k!1

Z
X

fd�k, f � 0 measurable,

and it follows that the set [1k=1Dk is at most denumerable and dense in Lp(�):
From now on we can assume that � is a �nite positive measure. Let A

be an at most denumerable dense subset of X and and suppose the subset
frn; n 2 N+; g of]0;1[is dense in]0;1[: Furthermore, denote by U the

140

137

class of all open sets which are �nite unions of open balls of the type B(a; rn);
a 2 A; n 2 N+. If U is any open subset of X

U = [[V : V � U and V 2 U]

and, hence, by the Ulam Theorem

�(U) = sup f�(V); V 2 U and V � Ug :

Let K be the class of all functions which are �nite sums of functions of
the type ��U ; where � is a positive rational number and U 2 U . It follows
that K is at most denumerable.
Suppose " > 0 and that f 2 Lp(�) is non-negative. There exists a

sequence of simple measurable functions ('i)
1
i=1 such that

0 � 'i " f a.e. [�] :

Since j f �'i jp� fp; the Lebesgue Dominated Convergence Theorem shows
that k f � 'k kp< "

2
for an appropriate k: Let �1; :::; �l be the distinct

positive values of 'k and set

C = 1 + �lk=1�k:

Now for each �xed j 2 f1; :::; lg we use Theorem 3.1.3 to get an open
Uj � '�1k (f�jg) such that k �Uj � �'�1k (f�jg) kp<

"
4C
and from the above we

get a Vj 2 U such that Vj � Uj and k �Uj � �Vj kp<
"
4C
: Thus

k �Vj � �'�1k (f�jg) kp<
"

2C

and
k f � �lk=1�j�Vj kp< "

Now it is simple to �nd a 2 K such that k f � kp< ": From this we
deduce that the set

K �K = fg � h; g; h 2 Kg

is at most denumerable and dense in Lp(�):

141

138

The set of all real-valued and in�nitely many times di¤erentiable functions
de�ned on Rn is denoted by C(1)(Rn) and

C(1)c (Rn) =
�
f 2 C(1)(Rn); suppf compact

	
:

Recall that the support suppf of a real-valued continuous function f de�ned
on Rn is the closure of the set of all x where f(x) 6= 0: If

f(x) =

nY
k=1

f'(1 + xk)'(1� xk)g ; x = (x1; :::; xn) 2 Rn

where '(t) = exp(�t�1); if t > 0; and '(t) = 0; if t � 0; then f 2 C1c (Rn) .
The proof of the previous theorem also gives Part (a) of the following

Theorem 4.1.4. Suppose � is a positive Borel measure in Rn such that
�(K) <1 for every compact subset K of Rn: The following sets are dense
in L1(�); and L2(�) :
(a) the linear span of the functions

�I ; I open bounded n-cell in R
n;

(b) C(1)c (Rn):

PROOF. a) The proof is almost the same as the proof of Theorem 4.1.3.
First the Ek:s can be chosen to be open balls with their centres at the origin
since each bounded set in Rn has �nite �-measure. Moreover, as in the proof
of Theorem 4.1.3 we can assume that � is a �nite measure. Now let A be an
at most denumerable dense subset of Rn and for each a 2 A let

R(a) = fr > 0; �(fx 2 X; j xk � ak j= rg) > 0 for some k = 1; :::; ng :

Then [a2AR(a) is at most denumerable and there is a subset frn; n 2 N+g
of]0;1[n [a2AR(a) which is dense in]0;1[: Finally, let U denote the class
of all open sets which are �nite unions of open balls of the type B(a; rn);
a 2 A; n 2 N+; and proceed as in the proof of Theorem 4.1.3. The result
follows by observing that the characteristic function of any member of U
equals a �nite sum of characteristic functions of open bounded n-cells a.e.
[�] :

142

139

Part (b) in Theorem 4.1.4 follows from Part (a) and the following

Lemma 4.1.1. Suppose K � U � Rn, where K is compact and U is open.
Then there exists a function f 2 C(1)c (Rn) such that

K � f � U

that is
�K � f � �U and suppf � U:

PROOF. Suppose � 2 C1c (Rn) is non-negative, supp � � B(0; 1); andZ
Rn

�dmn = 1:

Moreover, let " > 0 be �xed. For any g 2 L1(vn) we de�ne

f"(x) = "�n
Z
Rn

g(y)�("�1(x� y))dy:

Since

j g j max
Rn

j @
k1+:::+kn�

@xk11 :::@x
kn
n

j2 L1(vn); all k1; :::; kn 2 N

the Lebesgue Dominated Convergent Theorem shows that f" 2 C1(Rn):
Here f" 2 C1c (Rn) if g vanishes o¤ a bounded subset of Rn: In fact,

supp f" � (supp g)":

Now choose a positive number " � 1
2
d(K;U c) and de�ne g = �K"

: Since

f"(x) =

Z
Rn

g(x� "y)�(y)dy

we also have that f"(x) = 1 if x 2 K: The lemma is proved.

143

145

4.2 Orthogonality

Suppose (X;M; �) is a positive measure space. If f; g 2 L2(�); let

hf; gi =def
Z
X

fgd�

be the so called scalar product of f and g: The Cauchy-Schwarz inequality

j hf; gi j�k f k2k g k2

shows that the map f ! hf; gi of L2(�) into R is continuous. Observe that

k f + g k22=k f k22 +2hf; gi+ k g k22

and from this we get the so called Parallelogram Law

k f + g k22 + k f � g k22= 2(k f k22 + k g k22):

We will say that f and g are orthogonal (abbr. f ? g) if hf; gi = 0: Note
that

k f + g k22=k f k22 + k g k22 if and only if f ? g:

Since f ? g implies g ? f; the relation ? is symmetric. Moreover, if
f ? h and g ? h then (�f + �g) ? h for all �; � 2R. Thus h? =def
ff 2 L2(�); f ? hg is a subspace of L2(�); which is closed since the map
f ! hf; hi; f 2 L2(�) is continuous. If M is a subspace of L2(�); the set

M? =def \h2Mh?

is a closed subspace of L2(�): The function f = 0 if and only if f ? f:
If M is a subspace of L2(�) and f 2 L2(�) there exists at most one point

g 2 M such that f � g 2 M?: To see this, let g0; g1 2 M be such that
f � gk 2M?; k = 0; 1: Then g1 � g0 = (f � g0)� (f � g1) 2M? and hence
g1 � g0 ? g1 � g0 that is g0 = g1:

Theorem 4.2.1. Let M be a closed subspace in L2(�) and suppose f 2
L2(�): Then there exists a unique point g 2M such that

k f � g k2�k f � h k2 all h 2M:

144

146

Moreover,
f � g 2M?:

The function g in Theorem 4.2.1 is called the projection of f on M and
is denoted by ProjM f:

PROOF OF THEOREM 4.2.1. Set

d =def d
(2)(f;M) = inf

g2M
k f � g k2 :

and let (gn)1n=1 be a sequence in M such that

d = lim
n!1

k f � gn k2 :

Then, by the Parallelogram Law

k (f�gk)+(f�gn) k22 + k (f�gk)�(f�gn) k22= 2(k f�gk k22 + k f�gn k22)

that is

4 k f � 1
2
(gk + gn) k22 + k gn � gk k22= 2(k f � gk k22 + k f � gn k22)

and, since 1
2
(gk + gn) 2M; we get

4d2+ k gn � gk k22� 2(k f � gk k22 + k f � gn k22):

Here the right hand converges to 4d2 as k and n go to in�nity and we conclude
that (gn)1n=1 is a Cauchy sequence. Since L

2(�) is complete and M closed
there exists a g 2M such that gn ! g as n!1: Moreover,

d =k f � g k2 :

We claim that f � g 2 M?: To prove this choose h 2 M and � > 0
arbitrarily and use the inequality

k (f � g) + �h k22�k f � g k22

to obtain
k f � g k22 +2�hf � g; hi+ �2 k h k22�k f � g k22

145

147

and
2hf � g; hi+ � k h k22� 0:

By letting �! 0; hf � g; hi � 0 and replacing h by �h; hf � g; hi � 0: Thus
f � g 2 h? and it follows that f � g 2M?:
The uniqueness in Theorem 4.2.1 follows from the remark just before the

formulation of Theorem 4.2.1. The theorem is proved.

A linear mapping T : L2(�) ! R is called a linear functional on L2(�):
If h 2 L2(�); the map h ! hf; hi of L2(�) into R is a continuous linear
functional on L2(�): It is a very important fact that every continuous linear
functional on L2(�) is of this type.

Theorem 4.2.2. Suppose T is a continuous linear functional on L2(�):
Then there exists a unique w 2 L2(�) such that

Tf = hf; wi all f 2 L2(�):

PROOF. Uniqueness: If w;w0 2 L2(�) and hf; wi= hf; w0i for all f 2 L2(�);
then hf; w�w0i = 0 for all f 2 L2(�): By choosing f = w�w0 we get f ? f
that is w = w0:

Existence: The set M =def T�1(f0g) is closed since T is continuous and
M is a linear subspace of L2(�) since T is linear. If M = L2(�) we choose
w = 0: Otherwise, pick a g 2 L2(�) nM:Without loss of generality it can be
assumed that Tg = 1 by eventually multiplying g by a scalar. The previous
theorem gives us a vector h 2 M such that u =def g � h 2 M?: Note that
0 <k u k22= hu; g � hi = hu; gi:
To conclude the proof, let �xed f 2 L2(�) be �xed; and use that (Tf)g�

f 2M to obtain
h(Tf)g � f; ui = 0

or
(Tf)hg; ui = hf; ui:

146

148

By setting

w =
1

k u k22
u

we are done.

###
4.3. The Haar Basis and Wiener Measure

In this section we will show the existence of Brownian motion with continu-
ous paths as a consequence of the existence of linear measure � in the unit
interval. The so called Wiener measure is the probability law on C [0; 1] of
real-valued Brownian motion in the time interval [0; 1] : The Brownian mo-
tion process is named after the British botanist Robert Brown (1773-1858).
It was suggested by Lous Bachelier in 1900 as a model of stock price �uctua-
tions and later by Albert Einstein in 1905 as a model of the physical phenom-
enon Brownian motion. The existence of the mathematical Brownian motion
process was �rst established by Norbert Wiener in the twenties. Wiener also
proved that the model can be chosen such that the path t! W (t); 0 � t � 1;
is continuous a.s. Today Brownian motion is a very important concept in
probability, �nancial mathematics, partial di¤erential equations and in many
other �elds in pure and applied mathematics.
Suppose n is a non-negative integer and set In = f0; :::; ng : A sequence

(ei)i2In in L
2(�) is said to be orthonormal if ei ? ej for all i 6= j; i; j 2 In

and k ei k= 1 for each i 2 In: If (ei)i2In is orthonormal and f 2 L2(�);

f � �i2Inhf; eiiei ? ej all j 2 I

and Theorem 4.2.1 shows that

k f � �i2Inhf; eiiei k2�k f � �i2In�iei k2 all real �1; :::; �n:

Moreover

k f k22=k f � �i2Inhf; eiiei k22 + k �i2Inhf; eiiei k22

and we get
�i2Inhf; eii2 �k f k22 :

147

155

CHAPTER 5

DECOMPOSITION OF MEASURES

Introduction

In this section a version of the fundamental theorem of calculus for Lebesgue
integrals will be proved. Moreover, the concept of di¤erentiating a measure
with respect to another measure will be developped. A very important result
in this chapter is the so called Radon-Nikodym Theorem.

5:1: Complex Measures

Let (X;M) be a measurable space. Recall that if An � X; n 2 N+, and
Ai \Aj = � if i 6= j, the sequence (An)n2N+ is called a disjoint denumerable
collection. The collection is called a measurable partition of A if A = [1n=1An
and An 2M for every n 2 N+:
A complex function � onM is called a complex measure if

�(A) = �1n=1�(An)

for every A 2M and measurable partition (An)1n=1 of A: Note that �(�) = 0
if � is a complex measure. A complex measure is said to be a real measure
if it is a real function. The reader should note that a positive measure need
not be a real measure since in�nity is not a real number. If � is a complex
measure � = �Re+ i�Im , where �Re =Re � and �Im =Im � are real measures.
If (X;M; �) is a positive measure and f 2 L1(�) it follows that

�(A) =

Z
A

fd�; A 2M

is a real measure and we write d� = fd�.

 Unit 16

148

156

A function � :M! [�1;1] is called a signed measure measure if

(a) � :M!]�1;1] or � :M! [�1;1[
(b) �(�) = 0
and
(c) for every A 2M and measurable partition (An)1n=1 of A;

�(A) = �1n=1�(An)

where the latter sum converges absolutely if �(A) 2 R:

Here �1 � 1 = �1 and �1 + x = �1 if x 2 R: The sum of a
positive measure and a real measure and the di¤erence of a real measure and
a positive measure are examples of signed measures and it can be proved that
there are no other signed measures (see Folland [F]). Below we concentrate
on positive, real, and complex measures and will not say more about signed
measures here.
Suppose � is a complex measure onM and de�ne for every A 2M

j � j (A) = sup�1n=1 j �(An) j;

where the supremum is taken over all measurable partitions (An)1n=1 of A:
Note that j � j (�) = 0 and

j � j (A) �j �(B) j if A;B 2M and A � B:

The set function j � j is called the total variation of � or the total variation
measure of �: It turns out that j � j is a positive measure. In fact, as will
shortly be seen, j � j is a �nite positive measure.

Theorem 5.1.1. The total variation j � j of a complex measure is a positive
measure.

PROOF. Let (An)1n=1 be a measurable partition of A:

149

157

For each n; suppose an <j � j (An) and let (Ekn)1k=1 be a measurable
partition of An such that

an < �
1
k=1 j �(Ekn) j :

Since (Ekn)1k;n=1 is a partition of A it follows that

�1n=1an < �
1
k;n=1 j �(Ekn) j�j � j (A):

Thus
�1n=1 j � j (An) �j � j (A):

To prove the opposite inequality, let (Ek)1k=1 be a measurable partition of
A: Then, since (An\Ek)1n=1 is a measurable partition of Ek and (An\Ek)1k=1
a measurable partition of An;

�1k=1 j �(Ek) j= �1k=1 j �1n=1�(An \ Ek) j

� �1k;n=1 j �(An \ Ek) j� �1n=1 j � j (An)

and we get
j � j (A) � �1n=1 j � j (An):

Thus
j � j (A) = �1n=1 j � j (An):

Since j � j (�) = 0, the theorem is proved.

Theorem 5.1.2. The total variation j � j of a complex measure � is a �nite
positive measure.

PROOF. Since
j � j�j �Re j + j �Im j

there is no loss of generality to assume that � is a real measure.
Suppose j � j (E) =1 for some E 2M: We �rst prove that there exist

disjoint sets A;B 2M such that

A [B = E

150

158

and
j �(A) j> 1 and j � j (B) =1:

To this end let c = 2(1+ j �(E) j) and let (Ek)1k=1 be a measurable partition
of E such that

�nk=1 j �(Ek) j> c

for some su¢ ciently large n: There exists a subset N of f1; :::; ng such that

j �k2N�(Ek) j>
c

2
:

Set A = [k2NEk and B = E n A: Then j �(A) j> c
2
� 1 and

j �(B) j=j �(E)� �(A) j

�j �(A) j � j �(E) j> c

2
� j �(E) j= 1:

Since 1 =j � j (E) =j � j (A)+ j � j (B) we have j � j (A) = 1 or
j � j (B) = 1: If j � j (B) < 1 we interchange A and B and have
j �(A) j> 1 and j � j (B) =1:
Suppose j � j (X) =1: Set E0 = X and choose disjoint sets A0; B0 2M

such that
A0 [B0 = E0

and
j �(A0) j> 1 and j � j (B0) =1:

Set E1 = B0 and choose disjoint sets A1; B1 2M such that

A1 [B1 = E1

and
j �(A1) j> 1 and j � j (B1) =1:

By induction, we �nd a measurable partition (An)1n=0 of the set A =def
[1n=0An such that j �(An) j> 1 for every n: Now, since � is a complex
measure,

�(A) = �1n=0�(An):

But this series cannot converge, since the general term does not tend to zero
as n!1: This contradiction shows that j � j is a �nite positive measure.

151

159

If � is a real measure we de�ne

�+ =
1

2
(j � j +�)

and

�� =
1

2
(j � j ��):

The measures �+ and �� are �nite positive measures and are called the
positive and negative variations of �; respectively . The representation

� = �+ � ��

is called the Jordan decomposition of �:

Exercises

1. Suppose (X;M; �) is a positive measure space and d� = fd�; where
f 2 L1(�): Prove that d j � j=j f j d�:

2. Suppose �; �; and � are real measures de�ned on the same �-algebra and
� � � and � � �: Prove that

� � min(�; �)

where

min(�; �) =
1

2
(�+ �� j �� � j):

3. Suppose � :M! C is a complex measure and f; g : X ! R measurable
functions. Show that

j �(f 2 A)� �(g 2 A) j�j � j (f 6= g)

152

160

for every A 2 R:

5.2. The Lebesque Decomposition and the Radon-Nikodym Theo-
rem

Let � be a positive measure on M and � a positive or complex measure
onM: The measure � is said to be absolutely continuous with respect to �
(abbreviated � << �) if �(A) = 0 for every A 2 M for which �(A) = 0: If
we de�ne

Z� = fA 2M; �(A) = 0g
it follows that � << � if and only if

Z� � Z�:

For example,
n << vn and vn <<
n:
The measure � is said to be concentrated on E 2 M if � = �E , where

�E(A) =def �(E \ A) for every A 2 M: This is equivalent to the hypoth-
esis that A 2 Z� if A 2 M and A \ E = �: Thus if E1; E2 2 M, where
E1 � E2; and � is concentrated on E1; then � is concentrated on E2: More-
over, if E1; E2 2 M and � is concentrated on both E1 and E2; then � is
concentrated on E1 \ E2: Two measures �1 and �2 are said to be mutually
singular (abbreviated �1 ? �2) if there exist disjoint measurable sets E1 and
E2 such that �1 is concentrated on E1 and �2 is concentrated on E2:

Theorem 5.2.1. Let � be a positive measure and �; �1; and �2 complex
measures.
(i) If �1 << � and �2 << �; then (�1�1 + �2�2) << � for all complex

numbers �1 and �2:
(ii) If �1 ? � and �2 ? �; then (�1�1 + �2�2) ? � for all complex

numbers �1 and �2:
(iii) If � << � and � ? �; then � = 0:
(iv) If � << �; then j � j<< �:

PROOF. The properties (i) and (ii) are simple to prove and are left as exer-
cises.

153

161

To prove (iii) suppose E 2 M is a �-null set and � = �E: If A 2 M, then
�(A) = �(A \ E) and A \ E is a �-null set. Since � << � it follows that
A \ E 2 Z� and, hence, �(A) = �(A \ E) = 0: This proves (iii)
To prove (iv) suppose A 2 M and �(A) = 0: If (An)1n=1 is measurable

partition of A; then �(An) = 0 for every n: Since � << �; �(An) = 0 for
every n and we conclude that j � j (A) = 0: This proves (vi).

Theorem 5.2.2. Let � be a positive measure onM and � a complex measure
on M: Then the following conditions are equivalent:
(a) � << �:
(b) To every " > 0 there corresponds a � > 0 such that j �(E) j< " for

all E 2M with �(E) < �:

If � is a positive measure, the implication (a)) (b) in Theorem 5.2.2 is,
in general, wrong. To see this take � =
1 and � = v1: Then � << � and if
we choose An = [n;1[; n 2 N+; then �(An)! 0 as n!1 but �(An) =1
for each n:

PROOF. (a))(b). If (b) is wrong there exist an " > 0 and sets En 2 M,
n 2 N+; such that j �(En) j� " and �(En) < 2�n: Set

An = [1k=nEk and A = \1n=1An:

Since An � An+1 � A and �(An) < 2�n+1, it follows that �(A) = 0 and
using that j � j (An) �j �(En) j; Theorem 1.1.2 (f) implies that

j � j (A) = lim
n!1

j � j (An) � ":

This contradicts that j � j<< �:

(b))(a). If E 2 M and �(E) = 0 then to each " > 0; j �(E) j< "; and we
conclude that �(E) = 0: The theorem is proved:

154

162

Theorem 5.2.3. Let � be a �-�nite positive measure and � a real measure
on M.
(a) (The Lebesgue Decomposition of �) There exists a unique pair

of real measures �a and �s onM such that

� = �a + �s; �a << �; and �s ? �:

If � is a �nite positive measure, �a and �s are �nite positive measures.
(b) (The Radon-Nikodym Theorem) There exits a unique g 2 L1(�)

such that
d�a = gd�:

If � is a �nite positive measure, g � 0 a.e. [�] :

The proof of Theorem 5.2.3 is based on the following

Lemma 5.2.1. Let (X;M; �) be a �nite positive measure space and suppose
f 2 L1(�):
(a) If a 2 R and Z

E

fd� � a�(E); all E 2M

then f � a a.e. [�].
(b) If b 2 R and Z

E

fd� � b�(E); all E 2M

then f � b a.e. [�].

PROOF. (a) Set g = f � a so thatZ
E

gd� � 0; all E 2M:

Now choose E = fg > 0g to obtain

0 �
Z
E

gd� =

Z
X

�Egd� � 0

155

163

as �Eg � 0 a.e. [�] : But then Example 2.1.2 yields �Eg = 0 a.e. [�] and we
get E 2 Z�: Thus g � 0 a.e. [�] or f � a a.e. [�] :

Part (b) follows in a similar way as Part (a) and the proof is omitted
here.

PROOF. Uniqueness: (a) Suppose �(k)a and �(k)s are real measures onM such
that

� = �(k)a + �(k)s ; �(k)a << �; and �(k)s ? �

for k = 1; 2: Then
�(1)a � �(2)a = �(2)s � �(1)s

and
�(1)a � �(2)a << � and �(1)a � �(2)a ? �:

Thus by applying Theorem 5.2.1, �(1)a � �(2)a = 0 and �(1)a = �(2)a : From this
we conclude that �(1)s = �(2)s .
(b) Suppose gk 2 L1(�); k = 1; 2; and

d�a = g1d� = g2d�:

Then hd� = 0 where h = g1 � g2: But thenZ
fh>0g

hd� = 0

and it follows that h � 0 a.e. [�] : In a similar way we prove that h � 0 a.e.
[�]. Thus h = 0 in L1(�); that is g1 = g2 in L1(�):

Existence: The beautiful proof that follows is due to von Neumann.
First suppose that � and � are �nite positive measures and set � = �+�:

Clearly, L1(�) � L1(�) � L2(�): Moreover, if f : X ! R is measurableZ
X

j f j d� �
Z
X

j f j d� �

sZ
X

f 2d�
p
�(X)

and from this we conclude that the map

f !
Z
X

fd�

156

164

is a continuous linear functional on L2(�): Therefore, in view of Theorem
4.2.2, there exists a g 2 L2(�) such thatZ

X

fd� =

Z
X

fgd� all f 2 L2(�):

Suppose E 2M and put f = �E to obtain

0 � �(E) =

Z
E

gd�

and, since � � �;

0 �
Z
E

gd� � �(E):

But then Lemma 5.2.1 implies that 0 � g � 1 a.e. [�] : Therefore, without
loss of generality we can assume that 0 � g(x) � 1 for all x 2 X and, in
addition, as above Z

X

fd� =

Z
X

fgd� all f 2 L2(�)

that is Z
X

f(1� g)d� =

Z
X

fgd� all f 2 L2(�):

Put A = f0 � g < 1g, S = fg = 1g ; �a = �A; and �s = �S: Note that
� = �A+�S: The choice f = �S gives �(S) = 0 and hence �s ? �: Moreover,
the choice

f = (1 + :::+ gn)�E

where E 2M; givesZ
E

(1� gn+1)d� =

Z
E

(1 + :::+ gn)gd�:

By letting n!1 and using monotone convergence

�(E \ A) =
Z
E

hd�:

where
h = lim

n!1
(1 + :::+ gn)g:

157

165

Since h is non-negative and

�(A) =

Z
X

hd�

it follows that h 2 L1(�): Moreover, the construction above shows that � =
�a + �s:
In the next step we assume that � is a �-�nite positive measure and �

a �nite positive measure. Let (Xn)
1
n=1 be a measurable partition of X such

that �(Xn) < 1 for every n: Let n be �xed and apply Part (a) to the pair
�Xn and �Xn to obtain �nite positive measures (�Xn)a and (�

Xn)s such that

�Xn = (�Xn)a + (�
Xn)s; (�

Xn)a << �Xn ; and (�Xn)s ? �Xn

and
d(�Xn)a = hnd�

Xn (or (�Xn)a = hn�
Xn)

where 0 � hn 2 L1(�Xn): Without loss of generality we can assume that
hn = 0 o¤Xn and that (�

Xn)s is concentrated on An � Xn where An 2 Z�:
In particular, (�Xn)a = hn�: Now

� = h�+ �1n=1(�
Xn)s

where
h = �1n=1hn

and Z
X

hd� � �(X) <1:

Thus h 2 L1(�): Moreover, �s =def �1n=1(�Xn)s is concentrated on [1n=1An 2
Z�: Hence �s ? �:
Finally if � is a real measure we apply what we have already proved to

the positive and negative variations of � and we are done.

Example 5.2.1. Let � be Lebesgue measure in the unit interval and � the
counting measure in the unit interval restricted to the class of all Lebesgue
measurable subsets of the unit interval. Clearly, � << �: Suppose there is an

158

