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Unit 1

Course Structure

e Matrix polynomial, characteristic polynomial
e FEigen values and eigen vectors

e Minimal polynomial.

1 Introduction

You are already aware of matrices and its various properties such as determinants, characteristic polynomials,
eigen values and eigen vectors. We will revisit them in this unit and learn about the minimal polynomial of
matrices and read about the characteristic polynomial, the eigen values and eigen vectors using the information
of the minimal polynomial.

Objectives

After reading this unit, you will be able to

e find the characteristic polynomial of a matrix

find the eigen values and eigen vectors of a matrix

learn the various properties of a matrix associated with its eigen vectors and eigen values and also its
characteristic polynomial

find the minimal polynomial of a matrix

learn the relationship between minimal and characteristic polynomials of a matrix.

1.1 Matrix Polynomials

Let F be a field and A be a matrix with entries from the field F. In this chapter, we are concerned mainly
with the matrix polynomials, viz., the characteristic and minimal polynomials. Here, we will consider the
underlying field to be either R or C. Let A be an n x n matrix over the field R. Then, a matrix polynomial for
the matrix A is a polynomial with real coefficients and the variables as the matrix A, that is, if

p(x) =ag+arx+ -+ apz”
is a real polynomial, then the matrix polynomial evaluated at A is given as
p(A) =apl + 1A+ -+ a, A"

where, [ is the n-th order identity matrix. Next we will move on to the definition of the characteristic polyno-
mials.



1.1.1 Characteristic Polynomials

Before stating the definition of characteristic polynomials, we will first define the eigen values and eigen
vectors of a matrix.

Definition 1.1. Let A be an n x n matrix over the field R. Then, a real number ) is said to be an eigen value
of the matrix if there exists a non-zero vector v € R™ such that

Av = )Xv (1.1.1)
holds. Then the non-zero vector v is said to be the eigen vector corresponding to the eigen value .

The equation (1.1.1) reduces to
(A=X)v=0

which is an n-th order linear equation in n variables. This equation has non-trivial solution if
det(A—AI)=0

The above equation is called the characteristic equation (polynomial) for the matrix A. The roots of the
characteristic polynomials give us the eigen values of the matrix. It should be noted that the characteristic
polynomial is a monic polynomial which has exactly degree n.

0 1
=
For any real number A, the equation det(A — AI) = 0 gives
-2 1
R

o, \>+1 = 0,
or, \ = d=i.

Consider the matrix

So, the characteristic equation is A2 + 1 = 0 which has no roots in the real field, but has roots +i in the
complex field. So, A has eigen values in the complex field but no eigen value in the real field.

Eigen values can also be defined as

Definition 1.2. If A is an n X n matrix over a field F', then ¢ € F is called an eigen value of A in F' if the
matrix (A — ¢I) is singular.

Eigen values are often called characteristic roots, latent roots, eigenvalues, proper values, or spectral values
in several roots. We shall call them eigen values throughout. We will now discuss certain properties of
characteristic polynomials.

Definition 1.3. Let A and B be two n x n matrices. Then A and B are said to be similar if there exists an
invertible matrix P of order n such that
A=P'BP

Theorem 1.4. Similar matrices have the same characteristic polynomial.



Proof. Let A and B be two n X n similar matrices. Then there exists an invertible matrix P such that
A=P'BP.
Then,
det(A —XI) = det(P 'BP — \I)
det(P~'BP — AP~'IP)
det(P~Y(B — \I)P)

det P71, det(B — ). det P
= det(B — AI).

O]

We will now move on to define the minimal polynomial of a matrix. Let us start with the following example.

Consider the following matrix

-1

o

Il
B DN W
SO R

Then the characteristic polynomial for A is

3—-A 1 -1
2 2—-X —-1/=0
2 2 —-A

which gives A3 — 502 +- 8\ — 4 = (A — 1)(A — 2)2 = 0. Thus, 1 and 2 are the eigen values of A. Find the
corresponding eigen vectors!

So the characteristic polynomial for A is f(\) = A3 — 5\ + 8\ —4 = (A — 1)(\ — 2)? = 0. It is obvious
that for any other polynomial g(x) in R[z| (since in this case the underlying field is R. Otherwise we would
have taken F'[z].), we would have

hzx) = g(x) f(z) = 0,

or, writing it as

h(A) = g(A)f(A) =0,

we can say that the polynomial h(z) annihilates A. All such polynomials h(x) € Rlz| for which h(A) = 0
are called the annihilating polynomial of A. We formally define annihilating polynomial as follows.

Definition 1.5. Let A be an n X n matrix over a field F. Then a polynomial f(z) € F|[z] is called an
Annihilating Polynomial of A if f(A) = 0. By the definition, we can at once say that the characteristic
polynomial of A is an annihilating polynomial of A.

We can check a simple fact that the set of all annihilating polynomials of a matrix A forms an ideal [ of the
polynomial ring F'[z] (verify). Now, since F' is a field, so the ideal I is necessarily a principal ideal of F'[z].
It means that there exists a polynomial m(z) € I such that I = (m(x)), that is I is generated by m(z), that
is, each element f(x) of I can be written in the form f(z) = p(z)m(x), where, p(z) € Fx]. This m(z) is
called the minimal polynomial of the matrix A. We formally define the minimal polynomial of a matrix as
follows.



Definition 1.6. Let A be an n x n matrix over a field F.. Then the minimal polynomial m(z) of A is the
unique monic generator of the ideal of all polynomials over F' which annihilate A.

Thus, we arrive at the following theorem.

Theorem 1.7. Let A be an n x n matrix over a field F' and m(x) be the minimal polynomial of A. Then,
m(x) divides each of the annihilating polynomial of A.

Theorem 1.8. Let A be an n X n matrix over a field F'. Then the characteristic and minimal polynomials for
A have the same roots, except for multiplicities.

Proof. Let m be the minimal polynomial for A. Let ¢ be a scalar. We want to show that m(c) = 0 if and only
if ¢ is an eigen value. First suppose that m(c) = 0. Then

p(z) = (z = c)q(x),

where, ¢ is a polynomial in F' such that deg ¢ < deg p. By the definition of minimal polynomial, we can say
that ¢(A) # 0. Now, choose a vector 3 such that ¢(A)S # 0. Let o« = g(A)/5. Then,

0 = m(A)p
= (A—cl)q(A)B
= (A—-cl)a

and thus, « is an eigen value of A.

Now, suppose that c is an eigen value of A, say Aa = ca for some o # 0. So, by the properties of matrices,
we can say that
m(A)a = m(c)a.

Since m(A) = 0 and o # 0, we have, m(c) = 0. Hence c is a root of the minimal polynomial of A. Thus the
theorem. O

Example 1.9. Consider the matrix of the previous example.

31 -1
A=12 2 -1
2 2 0

We have seen that the characteristic polynomial of the matrix is
fl@)=(z - 1)(z —2)?

Now, since minimal polynomial divides characteristic polynomial and both have same roots (excepting multi-
plicities), so the most probable candidates for the minimal polynomial are

1. m(z) = (z — 1)(z — 2)2, or,
2. m(z) = (z—1)(z —2).

One may check whether (A — I)(A — 2I) = 0. If yes, then the second option is our required minimal
polynomial. If not, then the characteristic polynomial and minimal polynomials coincide in this case.

There are various ways to find the minimal polynomial of a matrix (by finding the eigen vectors, rank, etc.
of the matrix). We will deal with it in details in the upcoming units.



Exercise 1.10. 1. Find a 3 x 3 matrix whose minimal polynomial is 2.

2. Find the minimal polynomial and eigen values of the following matrix.

N

Il
= O = O
O = O =
_ O = O
O~ O =

3. Let a, b, ¢ be elements of a filed F', and let A be the following 3 x 3 matrix over F’:

0 0
A=11 0
01

SIS oY

Prove that the characteristic polynomial for A is 2 — ax? — bz — c and that this is also the minimal
polynomial for A.



Unit 2

Course Structure

e Linear Transformation (L.T.): Definition and the algebra of L.T.
e Rank and Nullity of L.T., Dual space, dual basis,

e Representation of L.T. by matrices, Change of basis.

2 Introduction

We are already familiar with the idea of linear transformations from our undergraduate times. This unit helps to
recapitulate those earlier notions and introduces certain new ideas on the algebra of linear transformations and
the ideas of dual spaces of a vector space. We will learn of these things in detail. We will start with formally
defining linear transformations, giving a few examples and stating the old theorems with their applications
and then start on to develop the new ideas about dual and double dual spaces thereon.

Objectives
After reading this unit, you will be able to
e recapitulate the basic notions of a linear transformation on a vector space

e solve the basic problems related to the representation of a linear transformation (LT) by matrices and
change them with basis changes

e solve sums based on the Rank-Nullity theorem

e form an idea about the linear functionals on a vector space V'
e define the dual basis on a vector space V'

o find the dual basis for the corresponding dual space

e define double dual for a vector space and form the corresponding basis

2.1 Transformations

Definition 2.1. Let V and W be two vector spaces over the same field F'. A linear transformation from V' to
W is a function that satisfies the following condition

T(ca+ db) = cT'(a) + dT'(b)

forallcandd € Fanda,bin V.



L% y=Tix)

A simple calculation yields that 7'(0) = 0 always (can you show it?). Thus, for a simple intuitive example,
if we consider the vector space R? over the field R, then we can say that any function 7" from R to itself is a
LT if it takes a line passing through the origin to a line passing through the origin. Let us see the following
examples.

Example 2.2. 1. Let T : R? — R2 be a function defined as T'(v) = v2. Then clearly, T takes the line
y = x onto the curve y = 22. Hence, T is not a linear transformation on R?.

2. Consider another example of 7" on the same vector space R? where T is defined as
Tw)=v+a

where « is a non-zero element of R2. Thus, we can see that 7" takes straight lines onto straight lines but
does not take origin to itself. Hence, 7" is not a LT in this case too.

The above example illustrates a few examples of functions which are not LT. Below given are certain
standard examples of a LT which are frequently used.

Example 2.3. 1. If V is any vector space, the identity transformation I, defined as I(v) = v, is a linear
transformation from V into V.

2. The zero transformation 0 on a vector space V, defined as 0(v) = 0 is also a linear transformation.
Certain other examples include

Example 2.4. 1. Let V be the vector space consisting of all continuous functions on the set of real num-
bers, over the field of reals. Then the integral operator defined as

(T()) () = /0 Cfd, fev.

isalTonV.



2. Let V be the vector space consisting of all polynomials on the set of real numbers, over the field of
reals. Then the differential operator defined as

(Df)(x)

where, f(x)

isalTonV.

= cl—I—Zng—l—"-—i—kcka?k*l
= co—f—cla:—i—---—i—cka:keV

3. Let V be the vector space consisting of all convergent real sequences over the field of reals. Then the

limit operator defined as

isalLTonV.

L(z) =

n

im 2, = {zn} €V,

Theorem 2.5. Let V be a finite dimensional vector space and {a1, as, . .. a,} be abasis of V and {b1, bo, ... b, }
be any set of vectors (not necessarily distinct) in another vector space W under the same field F'. Then, there
exists a unique LT 7" from V into W such that

Proof. Since {a1,as,...a,} is a basis of V, so for any v € V, there exists unique scalars ¢y, ca, . .. ¢, of F’

such that

Then we define T as

Then 7' is a well-defined rule for associating with each vector v of V' to a vector T'(v) in W.

definition, we easily get

V=-clay + -+ chay.

T(v) =c1by + -+ + cpby.

T(ai) = bl‘, 1= 1(1)77,.

To see that T is linear, let us consider another vector w of V' as

w=dia; + -+ dpay

and two other scalars x and y in F'. Now,

v+ yw

Then,
T(xzv + yw)

vector v = » ' | x;a;, we have

rciay + -+ xepan + ydiar + - - - + ydpan

(xc1 +ydi)ay + - - (xen + ydy)ay.

(:L'Cl + ydl)bl + - (mcn + ydn)bn

zerby + -+ zepby + ydiby + -+ yduby,
z(crby + -+ + cubn) + y(diby + - - 4 dpby)

2T (v) + yT'(w).
Hence, T is linear. Now, let U be another LT from V" into W such that U(a;) = b;, i = 1(1)n, then for any

= U <i xiaz)
=1
= Z sz(aZ)
i=1

n
=1

U(v)

9

From the



so that U is exactly the same as the rule as 7" is defined. Hence, 7" is unique. O

Example 2.6. The vectors u = (1,2), v = (3,4) are linearly independent and therefore form a basis for
R2. Then, by the previous theorem, there exists a LT T from R? to R? such that T'(u) = (3,2,1) and
T(v) = (6,5,4). Then, we must be able to find 7°(1, 0) such that

(1,0) = cu+dv =¢(1,2) + d(3,4)
which gives ¢ = —2 and d = 1. Thus,

T(1,0) = —-2(3,2,1)+ (6,5,4)
= (0,1,2).
There are other interesting subspaces associated with a LT as we will define now.

Definition 2.7. Let V' and W be vector spaces over the field and let 7" be a LT from V into W. Then the Null
Space of T is the set of all vectors v in V' such that T'(v) = 0. This is clearly a subset of V' because

1. T(0) = 0, so that IV is non-empty;
2. if T'(v) = T(w) = 0, then
T(cv+dw) =cT(v) +dl(w)=c0+0=0

so that cv+ dw also belongs to the null space. The dimension of the null space of 7" is called the Nullity
of T'.

Definition 2.8. The range of 7" is a subspace of the space W because if a, b in the range of 7', then there
exists vectors u and v in V' such that T'(u) = a and T'(v) = b. Then for the scalars = and y, T'(zu + yv) =
2T (u) + yT'(v) = za + yb. Hence, xa + yb is also in the range 7. The dimension of the range of 7" is called
the Rank of 7.

Theorem 2.9. A LT T is injective if and only if N = {0}.
Proof. The proof is trivial and has been left as an exercise. O
We have the celebrated Rank-Nullity Theorem for Linear Transformations as follows:

Theorem 2.10. Let V and W be vector spaces over the field F' and let 7" be a LT from V' into W. Suppose
that V' is finite-dimensional. Then

Rank(7") + Nullity(7") = DimV.

Proof. Let {v1,va,..., v} be a basis of NV, the null space of T'. Then, the above basis can be extended to a
basis {vy, v2, ..., v, } of V. We shall now prove that {T'(vi+1),...,T(v,)} is a basis for the range of T'. The
vectors T'(vq), T (v2), . .., T (vy) certainly span the range of 7', and since T'(v;) = 0 for j < k, we see that

T(vk+1),---, T (vy) span the range of T'. To check their independence, suppose that there are scalars ¢; such
that
n
Z ¢iT(vi) =0,

i=k+1

which gives
n
T < Z Ci’Uz‘) =0
i=k+1

10



and hence, the vector v = E?:Hl ¢;v; is in the null space of 7. Since {v1, va, ..., v} is a basis of N, so v
can be represented as a finite linear combination of them, that is,

n

k
E C;U; — E bﬂ}i
=1

i=k+1
and hence
k n

Z bivi — Z CiU; = 0.

i=1 i=k+1
Since {v1,va,...,v,} is linearly independent, so we have, by = by = -+- = by, = cg41 = -+ = ¢, = 0.
Thus, we have proved the linear independence of T'(vy1),...,7T (v,) and hence it is a basis of the range of
T'. Thus, when nullity is k, the rank of 1" is n — k, thus giving us the required result. O

Note 2.11. We know that any set of vectors with the zero element is always linearly dependent. So, the basis
of the null space of T" never contains the zero element. Thus, if N does not contain any element other than the
zero element, then the nullity of 7" is zero.

The above theorem has huge applications.
Corollary 2.12. A LT T is surjective if and only if Rank7 = dim V.

Proof. Left as exercise. O

Exercise 2.13. 1. Find the rank and nullity of the following linear transformations:
a. T(z,y,2) =(x—y,y — 2,2 — ).
b. T'(z,y,2) = (22,y,0).
c. T(z,y,2) = (2x + 32,42, 5y — 2).

2. Let T be a vector space and 1" a linear transformation from V to V. Prove that the following two
statements are equivalent.

a. The intersection of the range of 1" and the null space of 1" is the zero subspace of V.

b. If T(T(v)) = 0, then T(v) = 0.

3. Describe explicitly a LT from R3 to R? for which the range space is spanned by the vectors (1,0, —1)
and (1,2,2).

2.1.1 Matrix Representation of Linear Transformations

We have seen that a LT can be represented by matrices earlier depending upon the bases of the vector spaces.
Same linear transformation can give rise to different matrices and they are in fact similar. To each matrix, there
is a linear transformation, but there may be many matrices corresponding to a single linear transformation,
varying with the change in basis. Let us have an illustration.

11



Ilustration 2.14. Let T be a linear transformation from R2 to R? defined as

T(x7y) = (x -y y)-

Consider the standard ordered basis B = {(1,0), (0,1)} of R2. Suppose we are to represent 7" with respect
to the basis 53 on both sides. Then the resulting matrix is represented as [1']3. We find it as follows:

T(1,0) = (1,0)=1(1,0)+0(0,1)
T(0,1) = (-1,1)=—1(1,0)+1(0,1)

and the resulting matrix becomes

Again, if we consider another ordered basis C = {(1,1), (1,0)} of R? as the domain set and the basis B of
the range set. Then we have

T(1,1) = (0,1)=0(1,0)+1(0,1)
T(1,0) = (1,0)=1(1,0)+0(0,1

) )

mE=[)

We have certain theorems in connection to these.

and the resulting matrix [7')5 is given by

Theorem 2.15. Let V and W be finite-dimensional vector spaces with ordered bases 13 and C respectively,
and let 7" : V — W a be linear transformation. Then for each v € V', we have

[T(v)le = [T]5(v]s.

Theorem 2.16. Let V' and W be finite-dimensional vector spaces with ordered bases B and C respectively,
andlet T, U : V — W be linear transformations. Then

L [T+Ulg=[T)%+ U]
2. [aT]§ = a[T)§ for all scalars a.

Theorem 2.17. Let U, V, W be finite-dimensional vector spaces with ordered bases A, BB, C respectively. Let
T:U — VandS :V — W be linear transformations. Then

[STIS = [SI5(T14.

The purpose of matrix representation for a linear transformation 7' is to enable us to analyse 7' by working
with the matrix, say M. If M is easy to work with, we have gained an advantage; if not, we have no advantage.
Since different bases lead to different matrices, the “’right” choice of basis to obtain a simple matrix M, such
as a diagonal matrix, is important. Diagonal matrices are the easiest to work with. For now, we will restrict
our attention to the cases when v = W. But, before going into details, let us check the following.

12



Let B = {v1,v2,...,v,} and C = {wy,wy, ..., w,} be two bases of a vector space V. Then, for each i,
we have certain scalars p;; such that

V1 = p1rwi + prewz + -+ pipWn
Vg = p1wi + pow2 + -+ papWy
Un = PnlWi + PpowW2 + -+ + PppnWn
which gives
U1 P11 P12 .- DPin w1
v2| P21 P22 ... P2n| |W2
Un Pn1 Pn2 --- Dnn Wn,
Let
P11 P12 --- DPin
p_ P?l p?z cee p?n
Pnl Pn2 --- DPnn

Then P is called the Transition matrix from the basis B to C. This transition matrix is invertible. In fact, if Q)
is the transition matrix from the basis C to BB, then

Q=P

Now, let us come back to our discussion. We have seen that a linear transformation can have various matrix
representations depending upon the choice of basis. Now, what strikes us is that whether there is certain
relationship between these matrices. We have the following theorem in this direction.

Theorem 2.18. Let T : V' — V be a linear transformation. Then, any two matrices representing 1" are similar.

Exercise 2.19. 1. Find the matrix representation of the following linear transformation 7' : R? — R?
defined as T'(z,y) = (x + 6y, 3z + 4y). Also find the matrix representation of 7" with respect to the
basis {(2,—1),(1,1)}.

2. Find the matrix representation of the rotation transformation by an angle 7 /4 radians counter-clockwise
with respect to the standard basis and the basis {(1, 1), (1,2)}.

3. Find the matrix representation of T'(x,y, z) = (x + 2y, x + y + z, z) with respect to the standard basis
and the basis {(1,1,0),(0,1,1),(1,0,1)}.

2.2 Algebra Of Linear Transformations

In the study of linear transformations from V' to W, it is of fundamental importance that the set of these
transformations inherits a natural vector space structure. The set of linear transformations from a space V into
itself has even more algebraic structure, because ordinary composition of functions provide a “multiplication”
of such transformations. Let us see.

13



Theorem 2.20. Let V and W be vector spaces over the field F'. Let 7" and U be linear transformations from
V into W. The function T 4 U defined by

(T+U)(v)=T(v)+U(v)
is a linear transformation from V' into W. If c is any scalar, then the function cI' defined by
(cT)(v) = cT'(v)

is a linear transformation from V' into . The set of all linear transformations from V' into W, together with
the addition and scalar multiplication defined above, is a vector space over the field F'.

Proof. Suppose T and U are linear transformations from V into W and T' + U is defined as given. Then we
first show that T+ U is linear. Let ¢, d € F'. Then

(T+U)(cu+dv) = T(cu+dv)+ U(cu+ dv)
= cT'(u) +dT(v) + cU(u) + dU(v)
= ¢(T(u)+U(u)) +d(T(v) + U(v))
= c(T+U)(u)+d(T+U)(v).
Similarly, we can show that for scalar ¢ € F' and some additional scalars x, y, we have
() (xu+yv) = c(T(xu+ yv))
= c(@T(u) +yT(v))
= cxT(u) + cyT(v)
= (' (u) + y(cT'(v))
= z((cT)(u) +y((cT)(v))

This shows that ¢T" is linear. The zero transformation from V' into W is also linear. It is a routine exercise to
check that the other properties of vector space are satisfied similarly. Hence the result. 0

The vector space thus formed, is denoted by the symbol L(V, W). We note that L(V, W) is defined only
when V' and W are defined over the same field.

Theorem 2.21. Let V be an n-dimensional vector space over the field F', and let W be an m-dimensional
vector space over the field F. Then the space L(V, W) is finite-dimensional and has dimension mn.

Proof. Let
B:{vl,vg,...,vn} C:{wl,wg,...,wm}

be ordered bases for V' and W, respectively. For each integers (p,q) with 1 < p < mand 1 < g < n, we
define a linear transformation £ from V into W by

EP%(v;) = 0, when i#q

= wp, when i=gq

or,
Ep,q(vi> = 5Z~qu.

According to our first theorem, there exists a unique linear transformation from V' into W satistying these
conditions. The claim is that, these mn transformations EP»¢ form a basis for L(V,W). Let T be a linear
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transformation from V into W. For each j, 1 < j < n, let A;j, ..., A;y; be the coordinates of the vector
T'(vj) in the ordered basis C, that is,

T(vj) = Z Apjwp.
p=1

‘We wish to show that

T = zmj En: Ap EP. (2.2.1)

p=1g=1

Let U be the linear transformation in the right hand member of the above equation. Then for each 7,
U(v;) = Z Z ApgEP(v5)
P q
= Z Z Apgdjpwp
P q

= Z Apjwp
p=1
= T(vj).

and consequently U = T. Now, (2.2.1) shows that EP¢ spans L(V,W). We must prove that they are
independent. But this is clear from what we did above; for, if the transformation

U=> 3 AyErt
p q

is the zero transformation, then U (v;) = 0 for each j, so

Z Apjwp =0
p=1

and the independence if w,, implies that A,; = 0 for every p and j. Hence the proof. O

Theorem 2.22. Let V', W and Z be vector spaces over the field F'. LetT : V — Wand U : W — Z be linear
transformations. Then the composition function UT defined by UT'(v) = U(T'(v)) is a linear transformation
from V into Z.

Proof. Left as exercise. O

Definition 2.23. If V is a vector space over a field F, then a linear operator on V' is a linear transformation
from V into V.

In the previous theorem, when V' = W = Z, and U and T are linear operators on the space V', we see that
the composition UT is again a linear operator on V. The space L(V, V') “has a multiplication” defined on it
by composition. In this case the operator T'U is also defined, and one should note that in general UT # TU,
that is, UT — T'U # 0. We should take special note of the fact that if 7" is a linear operator on V' then we
can compose T with 7. We shall use the notation 72 = T'T, and in general, 7" = T'T - - - T'(n factors) for
n=1,2,.... Wedefine 7° = I if T # 0.

Theorem 2.24. Let V' be a vector space over the field F'; let U and 73 and 75 be linear operators on V' and let
c € F. Then
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1. IU=UI =U,
2. U(T1 —|—T2) =UTy +UTy; (T1 +T2)U:T1U+T2U;
3. ¢(UT) = (cU)T1 = U(cT).

In everything we have so far discussed, we have left out the invertibility of linear operators. Under what
conditions, does a linear operator admit of an inverse, that is, there exists a linear operator T for which
TT='=T7"1T=1

Definition 2.25. A LT T from a space V' to another space W is said to be invertible if there exists a LT U
such that TU = UT = I. Such function U, if it exists, is unique.

We note that the by the theory of functions, we know that a function is invertible if it is bijective. Thus, by
the rank-nullity theorem, we can say that the dimensions of both the spaces IV and W must be the same. Let
us see the following theorem.

Theorem 2.26. Let VV and W be vector spaces over the field F' and let 7" be a LT from V into W. If T is
invertible, then the function 7! is also a LT from W onto V.

Proof. When T is bijective, there exists a uniquely determined function 7! which maps W onto V. To
prove the linearity of T let us take two vectors by and by in W and two scalars x and y. Leta; = Tfl(bi),
i = 1,2. Then, we have T'(a;) = b; for all i. Now, since 7' is linear,
T(way +yaz) = aT(a1)+yT(az)
= xb; + ybo
Thus, za; + yaz is the unique vector in V' such that T'(za; 4+ yaz) = xb; + ybs which means that
T~ xby 4 ybo) = zay + yag = 2T (by) + yT 1 (b2)
which shows that 7! is linear. O
Definition 2.27. A linear transformation 7" is said to be non-singular if 7'(v) = 0 implies that v = 0, that is,
if the null space comprises of only the singleton set {0}. Otherwise, 7" is said to be singular.

Theorem 2.28. Let 7" be a LT from V into W. Then T is non-singular if and only if 7" carries each linearly
independent subset of V' into a linearly independent subset of W.

Proof. First suppose that 7" is non-singular. Let S be a linearly independent subset of V. If S = {v1, va, ..., vi},
then T'(vy), T (v2), ..., T (vg) are linearly independent, for if

aT(v1) + coT(ve) + -+ + cxT(vg) =0
and then
T(civ1 + covg + -+ - + ¢civg) =0

and since T is non-singular,
c1v1 +cova + -+ v =0

from which it follows that each ¢; = 0 because S is linearly independent set. This shows that the image of S
under 7' is independent.

Suppose that 7' carries linearly independent set into linearly independent set. Let a be a non-zero vector in
V. Then the set .S consisting of the one vector « is independent. The image of .S is the set consisting of the
one vector 1'(a), and this set is independent. Thus, 7'(a) # 0, because the set consisting of the zero vector
alone is independent. This shows that the null space of 7" is the zero subspace, that is, T" is non-singular.  []
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Theorem 2.29. Let V and W be finite-dimensional vector spaces over the field F' such that dim V' = dim W.
If T"is a LT from V into W, the following are equivalent:

1. T is invertible.

2. T is non-singular.

3. T is onto.

4. If {vy,v9,...,v,} is abasis for V, then {T'(v1),T(v2),...,T(vy,)} is a basis for W.

5. There is some basis {v1, va, ..., v, } for V such that {T'(v1), T (v2),...,T(vy,)} is a basis for .

2.3 Dual Spaces

Definition 2.30. If V is a vector space over the field F, a linear transformation f from V into the scalar field
F'is called a linear functional on V.

The concept of linear functional is important in the study of finite-dimensional spaces because it helps to
organize and clarify the discussion of subspaces, linear equations, and coordinates.

Example 2.31. Let n be a positive integer and F’ a field. If A is an n X n matrix with entries in F', then the
trace of A is a scalar
trA = Ay + Aogg + -+ A

Then it is a linear functional on the matrix space F™*" (verify!)

Example 2.32. Let [a,b] be a closed interval on the real line and let C'([a, b]) be the space of continuous
real-valued functions on [a, b]. Then

defines a linear functional on C([a, b]).

Definition 2.33. If V' is a vector space, then the collection of all linear functionals on V' forms a vector space
L(V, F) and it is called the Dual Space of V. It is also denoted by V'*.

From the knowledge of the dimension of the space L(V, W), we can say that

dimV = dim V*.
Let B = {v1,v9,...,v,} be abasis for V. Then, by the first theorem of this unit, there exists a unique linear
functional f; on V such that
fi(vj) = bij.
In this way, we can obtain from B, a set of n distinct linear functionals f1, fo, ..., f, on V. These functionals

are also linearly independent. For, suppose
n
f= Z ¢ fi-
i=1

Then,

flo) = D cfi(vy)
=1
= Zciéij
.
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In particular, if f is the zero functional, f(v;) = 0 for each j and hence the scalars c; are all 0. Now,
fi, f2, ..., frn are n linearly independent functionals, and since we know that VV* has dimension n, it must be
that B* = {f1, fo, ..., fn} is a basis for V*. This is called the dual basis of 5.

Theorem 2.34. Let V be a finite-dimensional vector space over the field F', and let B = {v1, v2,...,v,} be a
basis for V. Then there is a unique dual basis B* = {f1, f2, ..., fn} for V* such that f;(v;) = d;;. For each
linear functional f on V' we have

F=>f)f
=1

and for each vector v in V' we have
n
v = Z fi(v)v;.
i=1

Proof. The above discussion shows that there i s a unique basis which is dual to the basis B. If f is a linear
functional on V, then f is some linear combination of f; as

n
F=Y afs
i=1
Also we have observed that the scalars c; must be given by ¢; = f(v;). Similarly, if
n
v = Z T;U;
i=1

is a vector in V/, then
n
fio) = > mif(v)
i=1

n

= E 20
i=1

= I’j.

So that the unique expression for v as a linear combination of the v; is

v = Z fi(v)v;.
i=1

2.4 Few Probable Questions

1. Show that there exists a unique linear transformation from a finite-dimensional vector space V into
another vector space ¥ over the same field sending the basis elements {v;, v2, ..., v, } to another set
of arbitrary vectors {wy, ws, . .., w,}, not necessarily distinct.

2. State and prove the Rank-Nullity Theorem.
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. Show that the space of linear transformations L(V, W) from an n-dimensional space V into an m-
dimensional space WV is of dimension mn.

. Define non-singular linear transformations. Show that the inverse of a non-singular linear transforma-
tion is also so.

. Find a basis for the dual space of an n-dimensional space V.

. Show that a non-singular linear transformation takes a basis to a basis.
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Unit 3

Course Structure

e Normal forms of matrices: Diagonalization of matrices,

e Smith’s normal form.

3 Introduction

As we have already mentioned in the previous unit, diagonal matrices are the easiest to deal with. And we
have also seen that different bases give rise to different matrices for a linear transformation, so our main aim
is to find a particular basis B for a vector space V, for which a particular linear transformation (or rather, a
linear operator) 7', defined on V' can be represented as a diagonal matrix. It is not always the case that there
always exists such a basis for which T’ can be represented as a diagonal matrix. We will study mainly the cases
and circumstances, under which this is possible. And if such basis does not exist, then what are the simplest
possible type of matrix by which we can represent T". These are the various issues that will be addressed in
this unit.

Objectives

After reading this unit, you will be able to:
e define the characteristic values and vectors of a linear transformation
e recapitulate the basic notions about minimal and characteristic polynomials of a transformation
e define algebraic and geometric multiplicities of a particular eigen value
o define the eigen spaces of a transformation
e determine the cases when a transformation is diagonalizable
e determine the cases when a transformation is not diagonalizable
e find the necessary and sufficient condition for diagonalizability of a transformation

e learn about the Smith’s Normal form

3.1 Diagonalizability

As we have already mentioned before, diagonalizability is something related to the matrix of a LT being di-
agonal. But, before going into the definition of diagonalizability, let us recollect the general notions of eigen
values and eigen vectors of a matrix.
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Al1,1)=(3,3)

Figure 1: Eigen Values and Eigen Vectors Geometrically

When we operate the matrix over a vector (v, vo) of R2, and equate it to a constant multiple of (vq,vs),
we get the system

v+ 202 = cup

3vg = cvg

Geometrically speaking, when we take a particular vector (v, v2) of the xy-plane and operate the matrix on
it, we the resulting vector is a scalar multiple of the original one. That is, the resulting vector is either a
contracted or expanded form of the original vector depending on the value of c. For example, if we take the
vector (1, 1), then the resulting vector will be (3,3) = 3(1, 1). That is, the particular vector is expanding to
thrice its original value.

On the other hand, if we operate the matrix over the vector (0, 1), then the resulting vector (2, 3) is not on
the line joining (0, 1) and (2, 3). The vector (1, 1) is called an eigen vector and 3 is the corresponding eigen
value. (0, 1) is not an eigen vector.

To summerize, we say that any matrix corresponds to a particular LT and those vectors which do not change
their direction on the application of the LT are called its eigen vectors and the factor by which it contracts or
expands, is called the corresponding eigen value. We are now in a position to formally define eigen values and
eigen vectors of a matrix.

Definition 3.1. Let 7 : V' — V be a LT over vector spaces on the field F'. Then a non-zero vector v € V' is
said to be an eigen value of 7" if T'(v) = cv for some ¢ € F'. This c¢ is called the corresponding eigen value of
T.

To find eigen value and eigen vectors of a LT, we generally find so for the corresponding matrix represen-
tations of 7. It is independent of the bases since similar matrices have same eigen values.

It is important to note that 7" may not have any eigen value in the first place. And if V is finite-dimensional,
say having dimension n, then 7" can have atmost n eigen values. And the eigen vectors can also be seen as the
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null space of the transformation 1" — ¢/ (of course ignoring the zero vector).

Now, our main concern is to check whether a given LT can be represented as a diagonal matrix or not. So,
we are in search of that particular basis of V' for which it can be done. If there exists certain basis for which T’
can be represented as a diagonal matrix, then 7' is said to be diagonalizable, otherwise 7" is non-diagonalizable.

Definition 3.2. A linear transformation 7" : V' — V, where V is a finite-dimensional vector space, is said to
be diagonalizable if there exists a basis B = {v1, v, ..., v, } for which the corresponding matrix is a diagonal
matrix.

A diagonal matrix is of the form

cgc 0 --- 0
0 cy - 0
0 o --- Cn,

An identity matrix is the most common example of a diagonal matrix. So, if we consider the eigen values
and vectors of a LT T, that is the vectors v; satisfying T'v; = ¢;Iv;, or the non-zero vectors of the null space
T — ¢;1. The intuitive idea is to break the matrix into diagonal blocks of the form

g 0 -+ 0
0 ¢ -+ 0
0 0 - ¢

the above block being the diagonal block corresponding to the eigen value c;. Thus, if the sum of the size of
the blocks equals the dimension of V, then T stands diagonalized and the corresponding diagonal matrix is

e 00 0
0 ¢ 0 0
0 0 o 0
0 0 0 - ¢

The size of each block is determined by the ”size” of the null spaces, that is, dimension of the null spaces, that
is the number of linearly independent eigen vectors spanning each null space. In this way, we come to another
equivalent definition of diagonalizability.

Definition 3.3. A linear transformation 7" : V' — V, where V is a finite-dimensional vector space, is said to
be diagonalizable if there exists a basis B = {v1, v9, ..., v, } comprising of the eigen vectors of 7.

Let us illustrate the process.

Illustration 3.4. Let A be an n x n matrix over a filed F'. We first find the eigen values using the “traditional”
ways by finding the characteristic polynomial. Let ¢1,ca,...,c, € F be the eigen values of A. We find
the rank of each of the matrices A — ¢;I and then find out the nullity, that is, dimension of the null space of
A — ¢;1 using the Rank-Nullity theorem, for each i, 1 < i < k. If Zle dim(A — ¢;I) = n, then the matrix
A is diagonalizable otherwise, if Zle dim(A — ¢;I) < n, A is non-diagonalizable. For A, there exists a
corresponding linear operator from the vector space F'™ to F'™.
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Example 3.5. Let A be areal 3 x 3 matrix

3 1 -1
A=12 2 -1
2 2 0

Then the characteristic polynomial of A is
x—3 -1 1
-2 -2 1|=(z—1)(z—-2>2%
-2 -2

Then the eigen values of A are 1 and 2. Suppose that T is the linear operator on R? which is represented by
A in the standard basis. We will find the rank of the matrices A — [ and A — 2I. Now,

21 -1
A-T=1|2 1 -1
2 2 -1

has clearly rank equals to 2 and hence nullity equals to 3 — 2 = 1. Also, the matrix

1 1 -1
A-2I=1{2 0 -1
2 2 =2

has rank 2 and hence nullity 3 — 2 = 1. When we sum up the nullities of these two matrices, we get
1+ 1 =2 # 3. Thus, A is not diagonalizable. The nullities of the matrices A — I and A — 21 together tell us
that the null space of the above matrices are spanned by one vector space each, that is, there are a maximum of
two distinct linearly independent eigen vectors of A and hence we are unable to find a basis of A containing
the eigen vectors.

Definition 3.6. Let 7" be a linear operator over a finite dimensional vector space V' and let ¢ € F' be an eigen
value of T". Then the null space of the linear operator 1" — cI is called the eigen space of the corresponding
eigen value ¢ and the dimension of the eigen space, that is, the nullity of the operator T' — cI is called the
geometric multiplicity of c.

It is a routine exercise to check that the eigen spaces form vector subspaces of V' and has been left as an
exercise.

Definition 3.7. For an eigen value ¢ of a particular operator 7', the power to which the factor (x — ¢) is
raised in the corresponding characteristic polynomial of the matrix representation of 7" is called the algebraic
multiplicity of c.

Thus, in the previous example, the algebraic multiplicity of 1 and 2 are 1 and 2 respectively and their
corresponding geometric multiplicities are equal to 1 each. We can say that the algebraic multiplicity of an
eigen value if always greater than or equals to its geometric multiplicity. Also, the algebraic multiplicities
of all the eigen values add up to the dimension of the parent vector space and is less than or equal to the
dimension if we consider the geometric multiplicities. When the sum of the geometric multiplicities add up
to the dimension of the vector space, we call the operator to be diagonalizable.

Example 3.8. Let T be a linear operator on R? which is represented in the standard ordered basis by the
matrix

5 —6 —6
A=|-1 4 2
3 -6 —4

23



Let us find the characteristic polynomial of A as

r—5 6 6
1 -4 =2 |=(x-2)>%xz-1).
-3 6 x+4

So, 2 and 1 are the eigen values of A with algebraic multiplicities 2 and 1 respectively. We will now find the
algebraic and geometric multiplicities of the eigen values. The two matrices

4 —6 —6
A-IT=|-1 3 2
|3 -6 —5]
and _ )
3 —6 —6
A-2I=1|-1 2 2
|3 -6 —6)

We know that A — I is singular and obviously rank(A — I) > 2 (by Rank-Nullity theorem). Therefore,
rank(A — I) = 2. It is evident that rank(A — 2I) = 1. So, the nullity of the matrices are 1 and 2 respectively
which sum up to 3. Hence, A is diagonalizable and the corresponding diagonal matrix is

1 00
0 20
0 0 2

Lemma 3.9. Suppose that 7'(v) = cv. If f is any polynomial, then f(7T)(v) = f(c)v.

Proof. The proof of the lemma is based on the fact that

N
[V
—
<
~—
Il
S
—~
N
—~
<
~—
~
I

T(cv) = cT(v) = T (v).

We can prove by the principle of mathematical induction that

T"(v) = c"v.
Hence f(T")(v) = f(c)v, for any polynomial in 7. O
Lemma 3.10. Let 7" be a linear operator on the finite-dimensional space V. Let ¢y, ¢3, . . ., ¢ be the distinct

characteristic values of 7" and let W; be the corresponding eigen spaces. If W = Wy + Wy + - - - 4+ Wy, then
dim W = dim Wy + dim W5 + - - - + dim Wj,.
In fact, if B; is an ordered basis of W, then B = {By, B, ..., By} is an ordered basis for V.

Proof. The space W = W+ Wy +- - -4+ Wy is the subspace spanned by all of the eigen vectors of T'. Usually
when one forms the sum W of subspaces W;, one expects that dim W < dim W 4+ dim Ws + - - - + dim W,
because of linear relations which may exist between vectors in the various spaces. This lemma states that the
characteristic spaces associated with different characteristic values are independent of one another.

Suppose that (for each i) we have a vector b; in W;, and assume that

by +by+ -+ by =0.
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We shall show that b; = 0 for each i. Let f be any polynomial. Since T'(b;) = ¢;b;, the preceding lemma tells
us that

0 = f(T)(0)
= f(T)(b1) + f(T)ba + -+~ + f(T)bx
= fle)br + f(e2)ba + -+ + f(ck)b.

Choose the polynomials f1, fa,. .., fx such that
filej) =05 = 1, i=j
= 0, i#].
Then
0= fi(T)(0) =D 6ib; = bs.
J

Now, let B; be an ordered basis for W;, and let B be the sequence B = {81, Bs, ..., B;}. Then B spans the
subspace W = Wy 4+ Wy + - - - + Wp. Also, B is a linearly independent sequence of vectors, for the following
reason. Any linear relation between the vectors in B will have the form by + by + - - - + by = 0, where b; is
some linear combination of the vectors in 5;. From what we just did, we know that b; = 0 for each 7. Since

each B; is linearly independent, we see that we have only the trivial linear relation between the vectors in
B. O

In the course of proving the above lemma, we have proved the following theorem.
Theorem 3.11. Eigen vectors corresponding to distinct eigen values are linearly independent.

Can you prove the theorem independently?

Thus, we arrive at the following theorem.

Theorem 3.12. Let 7" be a linear operator on a finite-dimensional space V. Let c1, ca, . . ., cx be distinct eigen
values of T" and let W; be the eigen space of ¢;. Then the following are equivalent:

1. T is diagonalizable.
2. The characteristic polynomial for 7" is
f(x)=(z—c)b ... (x—cp)h,
where dim W; = d;, 1 = 1(1)k.
3. dim Wi +dimWs + - - +dim Wy, = dim V.

Proof. We have observed that 1 implies 2. If the characteristic polynomial f is the product of linear factors, as
in2, thend; +ds + - - - + d, = dim V. For, the sum of the d.s is the degree of the characteristic polynomial,
and that degree is dim V. Thus, 2 implies 3. Now suppose that 3 holds. Then by the previous lemma, we must
have V. = W1 4+ Wy + - - - + Wy, that is, the eien vectors of T’ span V. O

Let us summerize whatever we have learnt so far.

Let T be a linear operator on an n-dimensional vector space V. If T" has n distinct eigen values then it has
n linearly independent eigen vectors which form a basis of V' and in that case, 7' is diagonalizable. If it has
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less number of eigen values, then we have to check that whether they fulfil the deficiency by having multiple
eigen vector for a single eigen value so that the number of linearly independent eigen vectors are still n. In
either case, we need to check whether the given operator has n linearly independent eigen vectors or not. We
can also say that 7' is diagonalizable if and only if the geometric multiplicity and algebraic multiplicity for a
given eigen value coincides.

Exercise 3.13. 1. Check whether the following matrices are diagonalizable. If yes, then find its diagonal
form.

i

-9 4 4
-8 3 4
—-16 8 7
ii.
6 —3 -2
4 -1 -2
10 -5 -3

2. Let T be a linear operator on the n-dimensional vector space V', and suppose that 7" has n distinct eigen
values. Prove that 7" is diagonalizable.

3. Let V be the vector space of all continuous functions from R to R and let 7" be the linear operator on V'
defined as

X
T(fa) = [ 10
0
Prove that T has no eigen values.

4. Let Py denote the vector space of all polynomials of degree 2 or less, and let 7' : P — P5 be a linear
operator defined by
T(az® + bx + ¢) = 2az + b.

Check whether T is diagonalizable. If so, find the diagonal matrix.

a —b
=2
where a and b are real numbers and b # 0. Fince all eigen values of A and determine the corresponding
eigen spaces. Hence check whether A is diagonalizable.

5. Consider the matrix

6. Check whether the given matrix is diagonalizable. If yes, find the diagonalized matrix.

=25
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3.1.1 Minimal Polynomials and Diagonalizability

We have seen in the previous units that minimal polynomials and characteristic polynomials of a matrix (or,
linear operator) has same roots.

So, if T is a diagonalizable linear operator and cy, c3, . . . ¢ are the distinct eigen values of 7'. Then it is
easy to see that the minimal polynomial for 7" is the polynomial
m(z) = (x—c1)(x—c2)...(x —cg).
If v is an eigen vector, then one of the operators 7' — c1/, ..., T — ci I sends v into 0. Hence
(T —cl)...(T—cpl)(v) =0,
for every eigen vector v. There is a basis for the underlying space which consists of eigen vectors of 7"; hence
m(T)= (T —c1l)...(T—cxl) =0.

What we have concluded is this. If T is a diagonalizable linear operator, then the minimal polynomial for T’ is
a product of distinct linear factors. As we shall soon see, that property characterizes diagonalizable operators.

Theorem 3.14. Let V' be a finite dimensional vector space over the field F' and let T" be a linear operator
on V. Then T is diagonalizable if and only if the minimal polynomial of T is the product of distinct linear
factors, that is, of the form

m(x) = (z—c1)(x—c2)...(x—cp),
where, ¢y, co, ..., c; € F are distinct.
Proof. We have noted earlier that, if 7" is diagonalizable, its minimal polynomial is a product of distinct linear
factors. To prove the converse, let I be the subspace spanned by all of the eigen vectors of 7', and suppose
that W # V. By a previous lemma, there is a vector v not in W and an eigen value c; of T" such that the

vector
b= (T —c;I)(v)

liesin W. Since b € W,

where T'(b;) = ¢;b;, 1 < i < k, and therefore the vector
h(T')(b) = h(c1)(b1) + - -+ + h(ck)(br)
is in W, for every polynomial h. Now,

m(x) = (z — ¢j)q(),
for some polynomial g. Also,
q—q(cj) = (z = ¢)h.
But we have
¢(T)(v) = q(cj)(v) = M(T)T — ¢;I)(v) = h(T)(b)-
But, h(T")(b) € W and since
0 =m(T)(v) = (T = ¢;1)q(T)(v)

the vector ¢(7")(v) is in W. Hence ¢(c;)(v) is in W. Since v is not in W, we have ¢(c;) = 0. This contradicts
the fact that m has distinct roots. Hence the theorem. O
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Example 3.15. Let A be a 4 x 4 matrix

01 01
1 011
A= 0101
01 01
The powers of A are easy to compute
[2 0 2 0]
0 2 0 2
2 _
A7 = 20 20
10 2 0 2]
[0 4 0 4]
4 0 40
3 _
AT = 0 4 0 4
4 0 4 0]

Thus, A3 = 4A, that is, f(z) = 23 — 42 = x(z + 2)(x — 2), then m(A) = 0. The minimal polynomial of A
must divide f. Minimal polynomial is not of degree 1 since in that case, A would have been a scalar multiple
of I, which is not true. Hence the candidates of minimal polynomial polynomial are f, z(x + 2), z(z — 2),
x? — 4. The three quadratic polynomials can be eliminated since at a glance, we can see that A% # 2A,
A? #£ —2A, and A% # 41. Hence f is the minimal polynomial for A and since f is the product of distinct
linear factors, so A is diagonalizable. Now, we can clearly see that the rank of A is 2 and hence its nullity is
also 4 — 2 = 2, which means that the eigen space of A — 07 has dimension 2 and thus its algebraic multiplicity

will be 2. Thus, the characteristic polynomial is 2%(2? — 4). And the matrix A is similar to the diagonal form

~—

000 O
000 O
00 2 O
00 0 -2

Exercise 3.16. 1. Every matrix A such that A?> = A is similar to a diagonal matrix.

2. Using diagonalizability, compute A", n € N for

A:B ﬂ

3. Is every diagonalizable matrix invertible? Justify.
4. Let Abe an n x n diagonalizable matrix whose characteristic polynomial is given by
fla)=2(e —1)*(z - 2)°(z +2)".

i. Find the size of the matrix A.
ii. Find the minimal polynomial of A.
iii. Find the dimension of the eigen space for the eigen value 2.

iv. Find the rank of the matrix.
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3.2 Smith’s Normal Form

The Smith normal form is a normal form that can be defined for any matrix (not necessarily square) with
entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained
from the original matrix by multiplying on the left and right by invertible square matrices. In particular, the
integers are a PID, so one can always calculate the Smith normal form of an integer matrix. We will talk
particularly about the PID Z.

Definition 3.17. Let A be an m x n matrix over Z. We say that A is in Smith Normal form if there are

non-zero ai, @z, . . . , ay € 7 such that a; divides a;41 for ¢« < k such that
(a7 O O -+ - O]
0 az 0 -+ -+ 0
A=1o o ar 0
10 0 0 0 - 0]

Theorem 3.18. If A is a matrix with entries in Z, then there are invertible matrices P and () such that PAQ
is in Smith normal form.

Theorem 3.19. Every matrix over Z has Smith Normal form.
In order to find the Smith Normal form of a matrix, we are allowed to use the following operations
1. interchange two rows and columns,
2. multiply a row or column by +1(which are the invertible elements in Z)

3. add an integer multiple of a row (or column) to another row (or column)

Exercise 3.20. Obtain the Smith normal form and rank for

0 2 -1
A=1|-3 8 3
2 -4 -1

over Z.

3.3 Few Probable Questions
1. Show that the eigen vectors corresponding to distinct eigen values are linearly independent.

2. State a necessary and sufficient condition for diagonalizability. Check the diagonalizability of the fol-
lowing matrix

1 11
A=1]1 1 1
1 11
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3. Let f be the characteristic polynomial of a matrix A over the field R as
f(z) = 22(z — 3)(x + 4)°.
Also, let A be diagonalizable. Then

(a) Find the minimal polynomial of A.
(b) Find the eigen values along with their algebraic and geometric multiplicities.

(¢) Find the diagonalized form of A.
4. Let A be a matrix over the field R whose minimal polynomial is of the form
f(z) = (2% = 1)(z% + 1).

(a) Is A diagonalizable over R? Justify.
(b) Is A diagonalizable over the field C? Justify.

Find the eigen values in each case.
5. Let P be a linear operator over R? defined as
P((z,y)) = (x,0).

Show that P is linear. Find the matrix representation of P with respect to the standard basis of R2.
What is the minimal polynomial of P? Is P diagonalizable?
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Unit 4

Course Structure

e Primary Decomposition theorem

e Jordan Canonical forms

4 Introduction

There are certain subspaces which remain invariant under a linear operator, that is, the linear operator sends
each element of the subspace to itself. Such subspaces are of primary importance as we shall see that we can
analyse many properties of the linear operator by finding out the various invariant subspaces of the operator.
Also, we have seen in the preceding unit that we want to write the matrix of a linear operator in its simplest
possible form, which is possible since the matrix representation of a single linear operator under various bases
are similar. And we have also seen that the diagonal matrix is the simplest possible matrix to work with. We
are always in search of a basis of the underlying vector space for which the corresponding matrix of the linear
operator is diagonal. If such a basis exists, then we are happy and the operator is said to be diagonalizable.
We have seen various circumstances under which an operator is diagonalizable. We are okay with them. But,
what happens if a given operator is not diagonalizable. Can’t we express the operator in a simpler form then?
That is where the other canonical forms come into play. We can certainly express the operators in a simpler
form, which is “almost” a diagonal matrix. One of them is the Jordan Canonical forms, which we shall come
through in this unit.

Objectives

After reading this unit, you will be able to

o define the invariant subspaces and see certain examples

learn about the independent subspaces of a vector space

learn about the direct-sum decomposition of a vector space into independent subspaces of it

learn about the invariant direct sum decomposition of a vector space

define the cyclic vectors of a vector space

define the smallest invariant subspace containing a vector

learn about the Jordan forms and find those for any given matrix or linear operator
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4.1 Invariant Subspaces

Definition 4.1. Let V' be a vector space and T, a linear operator on V. If W is a subspace of V', we say that
W is invariant under 7" if for each w € W, the vector T'(w) is also in V.

Example 4.2. If T is any linear operator on V, then V' is invariant under 7" as is the zero subspace. The range
of T and the null space of " are also invariant under 7'.

Example 4.3. Let F be a field and D be the differentiation operator on the space F'[z]| of polynomials over
F. Let n be a positive integer and I be a subspace of polynomials of degree not greater than n. Then W is
invariant under 7'.

Example 4.4. Let T be the linear operator on R? which is represented in the standard basis by the matrix
0 -1
=l
Then the only subspaces of R? which are invariant under 7" are R? and the zero subspace. Any other invariant

subspace would necessarily have dimension 1. But, if W is the subspace spanned by some non-zero vector v,
the fact that W is invariant under 7" means that v is an eigen vector, but A has no eigen value.

When the subspace W is invariant under the operator T, then 7" induces a linear operator 7y, on the space
W. The linear operator Tyy is defined by Ty (v) = T'(v), for v € W. Now we turn to an investigation of the
simplest possible nontrivial invariant subspaces : invariant subspaces with dimension 1. How does an operator
behave on an invariant subspace of dimension 1? Subspaces of a vector space V' of dimension 1 are easy to
describe. Take any non-zero vector v € V' and let U equals the set of all scalar multiples of u, that is

U={au: a € F}.

where, F' is the underlying field. The U is a one-dimensional subspace of V', and every one-dimensional
subspace of V' is of this form. If u € V and the subspace defined as above is invariant under 7', then 7'(u)
must be in U, which means that there must exist a scalar ¢ € F such that T'(u) = cu € U. Conversely, if
u is a non-zero vector in V such that T'(u) = cu for some scalar ¢, then the subspace U defined above is a
one-dimensional subspace of V' invariant under 7. The equation 7'(u) = cu is same as (T' — cI)u = 0, so
that c is an eigen value and u is an eigen vector of 7. Thus, we can see that the one dimensional invariant
subspace of an operator 7' is precisely the eigen space of the operator. But the converse is not true always, that
is, any eigen space of 7' need not be one-dimensional though it is invariant under 7' (can you think of such an
example?).

When V is finite-dimensional, the invariance of a subspace W under the linear operator 1" has a simple

matrix interpretation. Suppose we choose an ordered basis B = {v1,...,v,} be an ordered basis of V' and
B' = {vi,...,v.} of W(r =dim W). Let A = [T] so that

n
T(’Uj) = ZAUW‘
i=1
Since W is invariant under 7', the vector 7'(v;) belongs to W for j < . This means that
T
T(Uj) = ZAijUi7 j S T.
i=1
In other words, A;; = 0if 5 < r and ¢ > r. Schematically A has the block form

[ g

where B is an r X r matrix, C'is an 7 X (n — r) matrix, and D is an (n — r) X (n — r) matrix.
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4.1.1 Direct-Sum Decompositions

Definition 4.5. The subspaces W7, W, ..., Wy of a vector space V' are said to be independent if
wy+we+ - +wp =0, w;eW;

implies that each wj is zero.

For k = 2, we can say that independence means that W, N Wy = {0}. If & > 2, it says that each W;
intersects the sum of the other subspaces only at the zero vector.

The independence can be understood as this: If W = W; + Wy + - - - 4+ W), be the subspace spanned by
Wi, Wa, ..., Wy, then each vector w € W can be uniquely expressed as the sum of the vectors in W, that is,

w=w; +wy+- - +wg, w;€W;
If w has another representation as
w=uy+us+---+ug, u €W;
then subtracting, we get
Oz(wl—u1)+--~+(wk—uk.), wr —up =0

and the definition of independence implies that w; — u; = 0 for 1 < j < k. Thus, when Wy, W, ..., W), are
independent, we can operate with the vectors in W as k-tuples.

Lemma 4.6. Let V be a finite-dimensional vector space and let Wy, Ws, ..., W} be subspaces of V' and let
W = Wi + Wy + - - - + Wi. Then the following are equivalent

1. Wi, Wy, ..., Wy are independent.
2. For each j, 2 < j < k, we have
Win (Wi -+ W) = {0}.
3. If B, is an ordered basis for W}, for each 4, then the sequence B = {By, Ba, . .., By} is an ordered basis
for W.

If the above conditions hold, we say that the sum W = W; + Wy + --- + Wy is direct or that W is the
direct sum of W7, Ws, ... W} and we write it as

W=WwreW, & & W

Example 4.7. Let V' be a finite-dimensional vector space over the field F' and let {v1,vg, ..., 1, } be a basis
for V. If W; be the one-dimensional subspace spanned by v;, then

V=wWoWyd oW,

Example 4.8. Let T be any linear operator on a finite-dimensional space V. Let ¢, co, ..., c; be the dis-
tinct eigen values of 7', and let W; be the space of eigen vectors associated with the eigen value ¢;. Then
Wi, Wa, ..., Wy. And if T is diagonalizable, then V =W @ Wo & --- & W,.

Definition 4.9. If V' is a vector space, a projection of V is a linear operator £ on V such that £? = E.
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Suppose F is a projection. Let R be the range of E and let N be the null space of E. We establish that
V = R@® N. Because w € R if and only if w = E(w), since w = E(v) implies E(w) = E(E(v)) =
E?(v) = E(v) = w. Conversely, if w = E(w), the obviously w € R. The unique representation of v as the
sum of vectors in R and N is v = E(v) + (v — E(v)).

If R and N are subspaces of V' such that V = R & N, there is a unique projection operator £/ which has
range R and null space N. The operator is called the projection on R along N.

Projections are clearly diagonalizable since for any projection FE, we always have E? = F and since the
minimal polynomial divides any annihilating polynomial of an operator, so the minimal polynomial can be
either z = 0,orz — 1 = 0 or z(z — 1) = 0 which is the product of distinct linear factors in all the cases.

Projections can be used to describe direct-sum decompositions of the space V.

Theorem 4.10. Let V = W1 & Wy & - - - @ Wy, then there exist k linear operators F1, Es, ..., Ex on V such
that

1. each Ej; is a projection,

2. EiE; =0,if i # 7,

3. I=E1+Ey+---+ Eg,
4. the range of F; is W;

Conversely, if F, Es, ..., E}, are k linear operators on V' satisfying conditions 1-3, and if W is the range of
E;,thenV =W eWo®d---d W,

Proof. Suppose V.= W7 ® Wo @ - - - & Wj,. Then for each j, we define an operator E/; on V. Let v € V and
letv = v +v2 + -+ + ¢ with v; € W;. Then we define E; as E;(v) = v;. Then E; is well-defined and it
is easy to check that it is linear and that, the range of E; is W; and that EJ2 = E;. The null space of L; is the
subspace

Wi+Wo+- o o+ W+ Wi+ -+ Wy

for, the statement that F;(v) = 0 simply means v; = 0, that is, v is actually a sum of vectors from the spaces
Wi, with ¢ # j. In terms of the projections £, we have

v=FEi(v)+- -+ Ex(v)
for each v € V. So, the identity operator on V' can be written as
I:El—l-EQ—i-—i-Ek

Also, if i # j, then we see that I;/; = 0 since the range of £ is the subspace W; which lies in the null
space of Ej.

Conversely, suppose E1, Ea, ..., E} are k linear operators on V satisfying conditions 1-4. Then certainly

we must have
V=W +Ws+- -+ W,

since by condition 3, we have
v = El(v) + - —I-Ek(’l))
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for every v € V, and F;(v) € W;. This expression for v is unique, because if
V=01 + Vg, UZ'EWi,

say v; = E;(w;), then using 1 and 2, we have

k k
Ej(v) =) Ej =) EjEw; = Ej(w)) = Ej(w)) = v;.
i=1 i=1
This shows that V' is the direct sum of the W. (]

4.1.2 Invariant Direct Sums

We are primarily interested in direct-sum decompositions of V' where each subspace if invariant under some
linear operator 7'. Given such a decomposition of V', T" induces a linear operator T; on each W; by restriction.
Thus, if v € V, then we have the unique representation

V=V + -+ Uk, v; € W;
where, each W; is an invariant subspace of V' into which V' decomposes. Then
T(v) =Ti(v1) + - - + Ti(vg)

We can say that T is the direct-sum of the operators 77, - - - , Tj. The factthat V = W7 & - - - @ Wy, enables us
to associate a unique k-tuple for each v € V' (which is (v1,...,vg)), in such a way that we can carry out the
linear operations in V' by working in the individual subspaces W;. The fact, that each W; is invariant under 7'
enables us to view 1" as independent action of 7; on the subspaces W;.

The above situation can be interpreted in terms of matrices. Suppose we select an ordered basis B; of W;
and let B be the ordered basis for V' consisting of the union of the B;, arranged in the order By, Bs, . .., By.
Let A = [T]p and let A; = [T'|5,, then A has the block form

A 0 0

0 A 0

A= : .
0 0 Ay

Each A; is a d; x d; matrix, where d; = dim W;, and 0’s are symbols for rectangular blocks of scalars 0’s of
various sizes.

Theorem 4.11. Let T be a linear operator on the space V, and let W1, ..., Wy and E1, ..., E} be the projec-
tions as in the previous theorem. Then a necessary and sufficient condition that each subspace W; be invariant
under 7' is that 7' commute with each of the projections F;, that is

TE; = ET, i=1(1)k.

We shall now describe a diagonalizable operator 7' in the language of invariant direct sum decomposi-
tions (projections which commute with T"). This will be a great help to us in understanding some deeper
decomposition theorems later.

Theorem 4.12. Let T be a linear operator on a finite-dimensional space V. If T' is diagonalizable and
c1, ...,k are the distinct eigen values of 7', then there exist linear operators F1, ..., Ex on V such that
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1. T=cE1+ -+ ¢, Eg;
2. 1=FE1+---+ E;
3. ElEJZO,’L#j,

4. E? = E;;

(2

5. the range of F; is the eigen space for 1" associated with ¢;.

Conversely, if there exist k distinct scalars c1, ..., ci and k non-zero linear operators Fy, ..., Ej satisfying
conditions 1-3, then 7' is diagonalizable and conditions 4 and 5 are also satisfied.

Proof. Suppose that T' is diagonalizable, with distinct eigen values cy, . .., c;. Let W; be the eigen spaces of
V. We know that,

Let Ey, ..., E) be the projections associated with this decomposition, as we have done before. Then 2-5 are
satisfied. To verify 1, let v € V' and we have

v=FEi(v)+---+ E(v)

So,
Tw)=TEi(v)+ -+ TE(v) = c1E1(v) + -+ - + cp Ex(v).

Thus,
T=cEi+ -+ cpEk.

Now suppose that we are given a linear operator 7" along with distinct scalars ¢; and non-zero operators E;
which satisfy 1-3. Since E; E; = 0, for ¢ # j, we multiply both sides of I = F4 + - - - + E}, by E;, and obtain
immediately EZ2 = F;. Multiplying T' = c1 E1 + - - - + ¢ F by E;, we get T'E; = ¢; F;, which shows that
any vector in the range of Ej, is in the null space of 7" — ¢;I. Since we have assumed that E; # 0, this proves
that there is a non-zero vector in the null space of T' — ¢;I, that is, ¢; is an eigen value of T'. Furthermore, c;
are all of the eigen values of T; for if c is any scalar, then

T—cl=(c1—c)Ei+---+ (ckx —c)E}

so that, if (7" — ¢I)(v) = 0, we must have (¢; — ¢)E;(v) = 0. If v is not the zero vector, then E;(v) # 0 for
some %, so that for this ¢, we have ¢; — ¢ = 0.

Certainly T is diagonalizable, since we have shown that every non-zero vector in the range of F; is an eigen
vector of T, and the fact that I = Ey + --- + Ej shows that these characteristic vectors span V. All that
remains to be demonstrated is that the null space of T' — ¢; I is exactly the range of E;. But this is clear since
if T'(v) = ¢;v, then

(¢j —¢i)Ej(v) =0, foreachj
1

k
Jj=

and then

E;j(v)=0, 1i#i.

Since v = E1(v) + - -+ + Ei(v), and E;(v) = 0 for j # 4, we have v = E;(v), which proves that v is in the
range of F;. O
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4.1.3 Primary Decomposition Theorem

We studying a linear operator 7" on the finite-dimensional space V, by decomposing it into a direct sum of
operators which are in some sense elementary. We can do this through the eigen values and vectors of 7" in
certain special cases, i.e.,when 7" is diagonalizable, or, when the minimal polynomial for 7" factors over the
scalar field F' into a product of distinct monic polynomials of degree 1 . What can we do with the general 7?7
While studying 7" using eigen values, we are confronted with two problems. First, 7" may not have a single
eigen value ; this is really a deficiency in the scalar field, namely, that it is not algebraically closed, and we
have nothing to do in that case. Second, even if the characteristic polynomial factors completely over F' into
a product of polynomials of degree 1, there may not be enough eigen vectors for 7" to span the space V'; this
is clearly a deficiency in 7. The second situation is illustrated by the operator T on F'3, where F is any field
represented in the standard basis by

A:

O = N

0 0
20
0 1

The characteristic polynomial for A is (z — 2)2(z + 1) and this is also the minimal polynomial for A, and
thus, for 7. Hence, T is not diagonalizable and this happens since the nullity of 7' — 27 is 1. On the other
hand, the null space of T + I and (T — 2I)? span V. From here, we get the motivation for our further work.
Suppose we are given that

m=(zx—c)...(x—cp)™*

where c1, ..., ¢, € F, then we will show that V' is the direct sum of the null spaces of (T'— ¢; 1), i = 1(1)k.

Theorem 4.13. Let T be a linear operator on the finite-dimensional vector space V' over the field F'. Let m
be the minimal polynomial for 7" as
m=mi"...m}"

where the m; are distinct irreducible monic polynomials over F' and r; are positive integers. Let IW; be the
null space of m;(7")", ¢ = 1(1)k. Then

L.V=W & & Wy

2. each W; in invariant under 7';

3. if T; is the operator induced on W; by T', then the minimal polynomial for T; is m;".

Proof. Let
m iy
fi = 7m:’ = Hj#imjj.

Since m; are distinct polynomials, the polynomials f; are relatively prime which implies that there are poly-
nomials g1, . .., g such that
n
Z figi= 1.
i=1

Also, if i # j, then f; f; is divisible by the polynomial m, since f;f; contains each m;" as factor. We shall
show that the polynomials h; = f;g; such that h;(T") is the identity on W; and is zero on the other W; such
that 7y (T') + - - + hy(T) = 1.

Let E; = hi(T) = fi(T)g:(T). Since hy + - - - + hy, = 1 and p divides f; f; for i # j, we have

Ei+-+Ey =1, EE; =0, if i
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Thus, E; are the projections which correspond to some direct-sum decomposition V. We will show that the
range of E; is exactly W;. It is clear that each vector in the range of E; is in W, since if v € E;, then
v = E;(v), and so

mi(T)(v) = mi(T)" Ei(v) = mi(T)" fi(T)gi(T)(v) = 0

since m divides m;" f;g;. Conversely, suppose that v is in the null space of m;(T")". If j # 1, then f;g; is di-
visible by m;" and so f;(T")g;(T)(v) = 0, that us E;(v) = 0 for j # 4. But this is immediate that E;(v) = v,
that is v is in the range of E;. This completes the proof of 1.

Also, it is evident that W; are invariant under T'. If T; is the operator induced on W; by 7', then obviously
m;(T)" = 0, because by definition, m;(T")" is zero on W;. This shows that the minimal polynomial for T;
divides m;*. Conversely, let g be any polynomial such that g(7;) = 0. Then g(T) f;(T) = 0. Thus gf; is
divisible by the minimal polynomial of T', that is, m;" divides g f;. It is easily seen that m* divides g. Hence
the minimal polynomial for T; is m;". O

Exercise 4.14. 1. Let T be a linear operator on a finite-dimensional vector space V. Let R be the range
of T" and let N be the null space of T'. Prove that R and N are independent if and only if V = R @ N.

2. LetT be a linear operator on V. Suppose V = W1 @ - - - @ Wy, where each W is invariant under 7". Let
T; be the induced operator on W;. Then show that the characteristic polynomial f of T is the product
of those of T;.

3. Let T be a linear operator on V which commutes with every projection operator on V. What can you
say about T'?

4. Let T be a linear operator on the finite-dimensional space V' with characteristic polynomial
f=@—c)b..  (z—cp)

and minimal polynomial
m=(x—c)t...(x—cp)*.

Let W; be the null space of (7" — ¢;I)". Then show that W; is the set of all vectors v € V such that
(T — ¢;1)™(v) = 0 for some positive integer m (which may depend on v).

4.14 Cyclic Subspaces and Annihilators

If V is a finite-dimensional vector space over a field I' and 7T is a fixed linear operator on V. If v is any
vector in V/, there is a smallest subspace of V' which is invariant under 7" and contains v. This subspace can be
defined as the intersection of all T-invariant subspaces which contain v. If W is any subspace of V' which is
invariant under 7" and contains v, then T/ must also contain 7'(v) and hence must contain 72 (v), T3 (v), and
so on. In other words, W must contain ¢g(7")(v) for every polynomial g over F'. This is clearly the smallest
subspace which contains the vector v and invariant under 7'.

Definition 4.15. If v is any vector in V, the T-cyclic subspace generated by v is the subspace Z(v;T') of all
vectors of the form g(7)(v), g in F[z]. If Z(v; T) = V, then v is called a cyclic vector for 7.

In other words, Z(v;T) is the subspace {v, T'(v), T?(v), ...} and v is a cyclic vector if and only if these
vectors span V. Every arbitrary operator need not have cyclic vectors.
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Example 4.16. For any operator 7', the T'-cyclic subspace generated by the zero vector is the zero subspace.
The space Z(v; T') is one-dimensional if and only if v is an eigen vector for 7. For the identity operator, every
non-zero vector generates a one-dimensional cyclic subspace; thus, if dim V' > 1, the identity operator has no
cyclic vector.

For any operator 1" and vector v, we are interested in the linear relations
co+aT@) +--+aTFv) =0

between the vectors Ti(v), or, we shall be interested in the polynomials g = cg + c1x + - - - + cpz® such that
g(T)(v) = 0. The set of all g satisfying the property in F'[z] is clearly a non-zero ideal since it contains the
minimal polynomial m of the operator 7'.

Definition 4.17. If v is any vector in V/, the T-annihilator of v is the ideal M (v;T') in F'[z] consisting of all
polynomials g over F such that g(T")(v) = 0. Then the unique monic polynomial m, which generates this
ideal will also be called the T-annihilator of v.

We note that the degree of m,, should be greater than zero unless v is the zero vector.
Theorem 4.18. Let v be any non-zero vector in V' and m,, be the T™-annihilator of v. Then
1. the degree of m,, is equal to the dimension of the cyclic subspace Z(v; T);
2. if the degree of m,, is k, then the vectors v, T'(v), T%(v), ..., T*~!(v) form a basis for Z(v; T
3. if U is the linear operator on Z(v; T') induced by T, then the minimal polynomial for U is m,,.

If v is a cyclic vector for 7', then the minimal polynomial for 7" must have degree equal to the dimension
of the space V' ; hence, the Cayley-Hamilton theorem tells us that the minimal polynomial for 7" is the char-
acteristic polynomial for 7.

Our plan is to study the general 7' by using operators which have a cyclic vector. So, let us take a look at a
linear operator U on a space W of dimension k£ which has a cyclic vector v. By the above theorem, the vectors
v,...,U" 1(v) forms a basis for the space T, and the annihilator m,, of v is the minimal polynomial for U
(and hence also the characteristic polynomial for U). If we let v; = U*~!(v), i = 1(1)k, then the action of U
on the ordered basis B = {v1,..., v} is

U(’UZ) = Vi+1, 1= 1(1)]€ —1

U(’Uk) = —CoV1 —C1Vg — -+ — Crp—1Vg
where, m,, = co +c1z + - - - + 2. The expression for U (v;,) follows from the fact that m,,(U)(v) = 0, that is
UR(0) + e U1 (0) 4 -+ + iU (v) + cov = 0.

This says that the matrix of U in the ordered basis 5 is

000 -+ 0 —c
100 - 0 —c
010 -+ 0 —c
000 -+ 1 —cpq

The matrix is called the companion matrix of the monic polynomial m,,.
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Theorem 4.19. If U is a linear operator on the finite-dimensional space W, then U has a cyclic vector if and
only if there is some ordered basis for W in which U is represented by the companion matrix of the minimal
polynomial for U.

Proof. If U has a cyclic vector, then there is such an ordered basis for W. Conversely, if we have some
ordered basis {v1, ..., v} for W in which U is represented by the companion matrix of its polynomial, it is
obvious that v; is a cyclic vector for U. O

Corollary 4.20. If A is the companion matrix of a monic polynomial m, then m is both the minimal and the
characteristic polynomial of A.

If T is any linear operator on the space V' and v is any vector in V, then the operator U which 7" induces
on the cyclic subspace Z(v; T') has a cyclic vector, namely v. Thus, Z(v; T') has an ordered basis in which U
is represented by the companion matrix of m,,, the T-annihilator of v.

Exercise 4.21. 1. Show that Z(v;T") is one dimensional if and only if v is an eigen vector of 7.

2. Let T be the linear operator on R? which is represented in the standard ordered basis by the matrix

2 0 0
02 0
0 0 -1

Prove that 7" has no cyclic vector. What is the T-cyclic subspace generated by the vector (1, —1,3)?

3. Let V be an n-dimensional vector space, and let T" be a linear operator on V. Suppose that 1" is
diagonalizable. If T has a cyclic vector, show that T" has n distinct eigen values.

4.2 Jordan Canonical Forms

We have seen that the diagonal matrices are “easiest” matrix to handle. So we are always in search of a basis
for which a particular linear operator is diagonalizable. But this is not always possible. So we are in search
of the next simplest matrix in which the operator can be represented. And the next “easiest” matrix to deal
with are the triangular matrices. So we come to the Jordan canonical forms, or simply the Jordan forms. The
Jordan Canonical Form is an upper triangular matrix of a particular form called a Jordan matrix representing
a linear operator on a finite-dimensional vector space with respect to some basis. Such a matrix has each
non-zero off-diagonal entry equal to 1, immediately above the main diagonal (on the superdiagonal), and with
identical diagonal entries to the left and below them. Let us check for ourselves. Let A be a matrix as given

5 4 2 1
0 1 -1 -1
A= -1 -1 3 0
1 1 -1 2

The eigen values of A are 1, 2,4, 4 and the dimensions of the eigen space corresponding to each eigen values
are 1, 1, 1 which does not sum up to 4, so A is not-diagonalizable. But A is similar to the matrix below

1 0 00
0200
J_0041
00 0 4

The matrix J is “almost” diagonal and is called the Jordan form of A.
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Definition 4.22. Let A be an n X n matrix and ¢ be an eigen value of A of algebraic multiplicity, say k. Then
the elementary Jordan block of A corresponding to c, of size k is given by

¢c 10 - 0
0 ¢ 1 - 0
00 ¢ - 0
000 - ¢

Then the parent matrix is composed of the elementary Jordan blocks

J 0 - 0
0 J -~ 0
0 0 - Jp

The Jordan form of a matrix has the following properties:

1. Given an eigen value c;, the number of elementary Jordan blocks corresponding to c; is equal to the
geometric multiplicity of ¢;.

2. The sum of the sizes of the Jordan blocks corresponding to an eigen value c; is equal to its algebraic
multiplicity.

3. The maximum size of a Jordan block corresponding to an eigen value c; is equal to its multiplicity in
the minimal polynomial of the parent matrix and there has to be a Jordan block with the maximum size
for c;.

Hlustration 4.23. 1. Let us be given a matrix

A=

— DN o~

01
3 2
0 4

First of all, we calculate the eigen values of A which are 5 and 3. Then find the rank of the matrices
A — 51 and A — 31 which happen to be 2 and 1 respectively and hence the nullity of the corresponding
matrices are 1 and 2 respectively summing up to 3, the dimension of R?. Hence the minimal polynomial
of Ais (x — 3)(x — 5) and the Jordan form for A is

5 0 0
J=10 3 0
0 0 3
Here there are precisely three Jordan blocks, [5], [3], [3].
1 1 1
A=10 1 0

Then A has only one eigen value, which is 1 and the rank of A — I is 1, which means that it has nullity
equal to 2 which does not sum up to 3. Since the nullity, that is the geometric multiplicity of 1 is 2, so
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there will be two Jordan blocks for 1 and also the maximum size of the Jordan block should be 2. Thus,
the Jordan form for A is

1 00
J=10 1 1
0 01

Exercise 4.24. 1. Put the matrix
-1 -1 0
A=10 -1 -2
0 0o -1

into Jordan form.

2. Let A be a5 x 5 matrix with characteristic polynomial f(z) = (z—2)3(2+7)? and minimal polynomial
m = (x — 2)?(z + 7). What is the Jordan form for A?

3. How many possible ,Jordan forms are there for a 6 x 6 complex matrix with characteristic polynomial
(x + 24z — 1)

4. The differentiation operator on the space of polynomials of degree less than or equal to 3 is represented
in the 'natural’ ordered basis by the matrix

0100
00 20
00 0 3
0 00O

What is the Jordan form of this matrix?

4.3 Few Probable Questions

1. Show that for a direct-sum decomposition of a finite-dimensional vector space V,V = W &Wo®- - -
Wy, there exists k projection operators F; such that the range of each F; is W;and I = E; + - - - + E}.

2. State and prove the primary decomposition theorem.

3. Find the Jordan form of the matrix

o

Il
DO W O
OIS IS
ORI RN

Show detailed steps.

42



Unit 5

Course Structure

e Invariant factors and elementary divisors

e Rational forms

5 Introduction

The primary purpose of this section is to prove that if 7' is any linear operator on a finite-dimensional space
V, then there exist vectors vy, ..., v in V such that

V= Z(Ul;T)@"'@Z(Uk;T).

This will show that 7" is the direct sum of a finite number of linear operators, each of which has a cyclic vector.
The cyclic decomposition theorem is closely related to the following question. Which 7'-invariant subspaces
W have the property that there exists a T-invariant subspace W’ such that V' = W @ W’'? In fact, there
are many subspaces W’ for which V' = W @& W’ but we can’t say whether they are invariant or not. This
unit is dedicated to the study of the invariant factors and elementary divisors of a linear operator and certain
canonical forms of it.

Objectives

After reading this unit, you will be able to
e define T-admissible subspaces of a vector space

e learn the cyclic decomposition theorem for a finite-dimensional vector space with respect to a linear
operator T’

e learn the generalized Cayley-Hamilton theorem for a linear operator on a finite-dimensional vector
space

e define the invariant factors of a matrix

e learn to find the rational canonical form for a matrix

5.1 Invariant Factors

Definition 5.1. Let 7" be a linear operator on a vector space V. A subspace W of V is said to be 7" -admissible
if

1. W is T-invariant;

2. if f(T')(v) is in W, there exists a vector w in W such that f(T")(v) = f(T)(w).
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Note that, from the discussion we had done in the introduction of this unit, if V' is decomposed as V = W &
W', where both W and W' are invariant, then any vector v € V has a unique representation v = w+w’, where
w € W and w' € W', If f is any polynomial over the scalar field, then f(7T)(v) = f(T)(w) + f(T)(w’).
Since W and W' are T-invariant, the vectors f(7)(w) and f(T)(w’) lies in W and W' respectively. Thus,
f(T)(v) isin W if and only if f(T")(w") = 0. Hence, we can say that for such a case, W is admissible.

Let W be a proper T'-invariant subspace. Let us try to find a non-zero vector v such that
WnZw;T)={0}.

We can choose a vector w’ which is not in W. Consider the T-conductor S(w’; W), which consists of
all polynomials g such that g(7")(w’) is in W. Recall that the monic polynomial f which generates the
ideal S(w’; W) is also called the T-conductor of w’ into W. The vector f(T)(w’) is in W. Now, if W
is T-admissible, there is a w” in W with f(T)(w') = f(T)(w”). Let w = w' — w” and let g be any
polynomial. Since w’ — w is in W, g(T)(w’) will be in W' if and only if ¢(7")(w) is in W; in other words,
S(w; W) = S(w'; W). Thus, the polynomial f is also the T-conductor of w into W. But f(T")(w) = 0
which tells us that g(7")(w) is in W if and only if ¢(7")(w) = 0, that is, the subspaces Z(v;T") and W are
independent and f is the T-annihilator of v.

Theorem 5.2. (Cyclic Decomposition Theorem) Let 7" be a linear operator on a finite-dimensional vector
space V and let Wy be a proper T-admissible subspace of V. There exist non-zero vectors vy,...,vg in V'
with respective T-annihilators mq, . .., my such that

LV =Wy Z(vi;T)® - D Z(vg; T);
2. m, divides m,_1,r = 2,...,k.

Furthermore, the integer k£ and the annihilators my, . .., my are uniquely determined by 1 and 2 and the fact
that no v,. is 0.

The proof is rather lengthy and has been omitted for general good.

Our next corollary gives us the answer to our primary question which we asked at the beginning of this
unit regarding the existence of a T-invariant subspace W’ which forms a complementary for a T-invariant
subspace W of V.

Corollary 5.3. If 7' is a linear operator on a finite-dimensional vector space, every T-admissible subspace has
a complementary subspace which is also invariant under 7'.

Proof. Let W be an admissible subspace of V. If W = V, the required complement is {0}. If W is proper,
then we apply the Cyclic decomposition theorem and let

W'=Z(w;;T)® - & Z(vg; T).
Then W' is invariant under T'and V = W @ W', O
Corollary 5.4. Let T be a linear operator on a finite-dimensional vector space V.
1. There exists a vector v in V' such that the T-annihilator of v is the minimal polynomial for 7T'.

2. T has a cyclic vector if and only if the characteristic and minimal polynomials for T are identical.
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Proof. If V' = {0}, the results are trivially true. If V' # {0}, let
V=Zwv;T)® - & Z(vp;T)

where the T-annihilators my, ..., my are such that m,; divides m,, 1 < r < k — 1. As we noted in the
previous theorem, it follows easily that 7 is the minimal polynomial for 7°, that is, the T-conductor of V'
into {0}.

We saw in the previous unit that if 7" has a cyclic vector, the minimal polynomial for 7" coincides with the
characteristic polynomial. Choose any vector v as in 1. If the degree of the minimal polynomial is dim V/,
then V = Z(v; T). O

Theorem 5.5. (Generalized Cayley-Hamilton Theorem) Let 7" be a linear operator on a finite-dimensional
vector space V. Let m and f be the minimal and characteristic polynomials for 7', respectively. Then

1. m divides f;
2. m and f have the same prime factors, except for multiplicities;

3. If m = fi* ... f.* is a prime factorization of m, then f = fld1 e fdk, where d; is the nullity of f;(7")"
divided by the degree of f;.

Proof. If V' = {0}, then the case is trivial. To prove 1 and 2, consider a cyclic decomposition of V. As in
the proof of the above corollary, m; = m. Let U; be the restriction of 7" to Z(v;; T'). Then Uj; has a cyclic
vector and so m; is both the minimal as well as characteristic polynomial for U;. Hence, the characteristic
polynomial f is the product f = m;y ... m,. Clearly, m; = m divides f and this proves 1. Obviously any
prime divisor of m is a prime divisor of f. Conversely, a prime divisor of f = m; ... m, must divide one of
the factors m;, which is turn divides m;.

Let the given factorization in the statement of the theorem be the prime factorization of m. We use the
primary decomposition theorem which tells us that, if V' is the null space of f;(7)", then

and f;" is the minimal polynomial of the operator T;, obtained by restricting 7" to the subspace V;. Apply
part 2 of the present theorem to the operator 7;. Since its minimal polynomial is a power of the prime f;, the
characteristic polynomial for 7; has the form fidi, where d; > r;. Obviously

g — dimV
" deg fi

and (almost by definition) dim V; = nullity f;(7")". Since T is the direct sum of the operators 71, . .., T}, the
characteristic polynomial f is the product

d dy,
f=fi gl

The polynomials my, . .., m, are called the invariant factors for a matrix B.
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5.1.1 Rational Forms

Let us try to understand the cyclic-decomposition theorem for matrices. If we have the operator T' and the
direct-sum decomposition and B; be the cyclic ordered basis {v;, T'(v;), ..., T* 1 (v;)} for Z(v;; T). Here,
k; denotes the dimension of Z(v;;T), that is, the degree of the annihilator m;. The matrix of the induced
operator 7; in the ordered basis B; is the companion matrix of the polynomial m;. Thus, if we let B be the
ordered basis for V' which is the union of the B; arranged in the order By, . . ., B, then the matrix of 7" in the
ordered basis 5 will be

Ay 0 - 0
0 Ay - 0
A= . . .
o o --- A,
where A; is the k; X k; companion matrix of m;. An n X n matrix A, which is the direct-sum of companion
matrices of non-scalar monic polynomials my, ..., m, such that m;,; divides m; fori = 1,...,r — 1, will

be said to be in rational form.

Theorem 5.6. Let F' be a field and let B be an n x n matrix over F'. Then B is similar over the field F' to
unique matrix which is in rational form.

We have seen a simpler form for non-diagonalizable matrices, that is the Jordan form. We have a theorem
for triangular matrices which states that

Theorem 5.7. An n X n is triangulable, that is, similar to a triangular matrix if and only if its minimal
polynomial is the product of linear factors (not necessarily distinct).

Now, the Jordan form is a triangular matrix and we know that the triangular matrices are the next ”simplest”
matrices to deal with, right after diagonal ones and we have also seen with certain examples that the Jordan
form was deducible for a matrix when its minimal polynomial, or we can also say that its characteristic
polynomial was the product of linear factors. But this is not always the case. For example, consider the matrix
over the real field

A= [O _1} .
1 0

The characteristic polynomial of the above matrix is f(z) = z? + 1. Since the minimal polynomial of
a matrix divides its characteristic polynomial, and since the characteristic polynomial is irreducible, so the
minimal polynomial of the matrix is also m(x) = x? + 1. These are the cases when the rational forms come
into play. We will illustrate how we find the rational form for a matrix.

Illustration 5.8. 1. Consider the real matrix
-2 0 0
A=|-1 -4 -1
2 4 0

Then the characteristic polynomial of the matrix can be calculated and is equal to f(z) = 2% + 622 +
122 + 8 = (z + 2)3. We have, A + 21 # 0, but (A + 2I)?> = 0. Thus, the minimal polynomial of
the matrix is (z + 2)2. We know that the largest invariant factor is simply the minimal polynomial.
Furthermore, we know that the size of our canonical form matrix must be 3 x 3, and that our invariant
factors must divide the minimal polynomial. Thus, there are two invariant factors (z+2)? = 22 +4x+4
and x + 2. Therefore, the rational canonical form of the matrix is

-2 0 0
0 0 —4
0 1 -4
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Note that the minimal polynomial of A is the product of linear factors and hence we can find the Jordan
form for A. (Find it)

Exercise 5.9. 1. Find the minimal polynomials and the rational form for the following matrices

0o -1 -1 c 0 -1
1 0o 0|, 0 ¢
-1 0 O -1 1 ¢

2. Find the rational form of the matrix

1 3 3
3 1 3
-3 -3 -5

5.2 Few Probable Questions

1. State and prove the Generalized Cayley-Hamilton theorem.

2. Find the minimal polynomial, invariant factors and the rational form of the following matrix

2 -2 14
0o 3 -7
0 0 2
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Unit 6

Course Structure

e Bilinear and Quadratic forms

e Classification of Quadratic forms

6 Introduction

A bilinear form on a real vector space V' is a function f which assigns a number to each pair of elements of
V', a scalar from the underlying field, satisfying certain properties. We can begin with an example of a map
from R™ x R™ — R, where R is the underlying field, defined by

(X, V)= XY = 2191 + - + ZnYn.

This is the most common dot product, that we are familiar with. The property of the dot product which we
will use to generalize to bilinear forms is bilinearity: the dot product is a linear function from V' to F’, where
F is the underlying field, if one of the elements is fixed. Bilinear forms are meant to be a generalization of the
dot product on R".

Objectives
After reading this unit, you will be able to
e define bilinear forms and see certain examples of it

e learn properties related to them

define quadratic forms and associated matrices

define definiteness of a form and its associated matrices

e learn about the equivalent definitions of definiteness of a matrix and form

solve problems related to the definiteness of matrices

6.1 Bilinear Forms

Definition 6.1. Let V' be a vector space over F. We define a bilinear form to be a function f : V x V — F
such that

f(U1+’U2,QU) = f(vlaw) (’UQ,U)), U]_,UQ,UJEV

+f
flo,w +we) = f(v,wr) + f(v,we), v,wy,we €V
flev,w) = cf(v,w) = f(v,cw), vywe W, ceF

We will often use the notation (v, w) for f(v, w).
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The zero function from V' x V into F' is clearly a bilinear form. It is also true that any linear combination
of bilinear forms on V is again a bilinear form(check it). All this may be summarized by saying that the set
of all bilinear forms on V' is a subspace of the space of all functions from V' x V into F'. We denote the space
of bilinear forms on V by L(V,V, F).

Example 6.2. Let V' be a vector space over the field F' and let L; and Lo be linear functions on V. Define f
by

f(u,v) = Ly (u) L2 (v).
If we fix v and regard f as a function of u, then we simply have a scalar multiple of the functional L;. And
fixing w, f is a scalar multiple of Lo. Hence f is a bilinear form on V.

Example 6.3. Let m and n be positive integers and F' a field. Let V' be the vector space of m X n matrices
over F'. Let A be a fixed m x n over F. Define

fa(X,Y) = tr(XTAY).
Then f4 is a bilinear form on V. If X, Y, Z are m X n matrices over F', then
faleX +2Y) = t[(cX + 2)TAY]
= tr(cXTAY) +tu(ZTAY) = cfa(X,Y) + fa(Z,Y).

Of course, we have used the fact that the transpose operation and the trace function are linear. It is even easier
to show that f4 is linear as a function of its second argument. In the special case, n = 1, the matrix X7 AY
is 1 x 1 matrix, that is, a scalar, and the bilinear form is simply

FAX,Y) =) Aijaay;.
(2]

Example 6.4. Let F be a field. Let us find all bilinear forms on the space F. Suppose f is such a bilinear
form. If x = (1, 22) and y = (y1,y2) are in F'2, then

f(z,y) = flzier + x2e2,y)
= z1f(e1,y) +z2f(e2,y)
= x1f(e1,y1e1 + yae2) + w2 f(e2, yre1 + yoe2)
= xyif(er,er) +z1yaf(er, ea) + xayi f(e2, e1) + zaya f(e2, e2).

Hence, f is completely determined by the four scalars A;; = f(e;, ej) = (e;, e;) by

flz,y) = Anziyr + Aewiye + Aa1xoy1 + Azazaye

= Z Aijxiyj-
2%
Thus, if X and Y are the coordinate matrices of x and y, and if A is the above matrix, then
f(z,y) = XTAY.
This can be generalized for any finite-dimensional vector spaces.
Definition 6.5. (Bilinear forms on R") Every bilinear form on R™ has the form
(w,y) =" Ay =) aijzy;, v,y R
2

for some n x n matrix A and we also have a;; = (e;, e;) for all 7, j. e; is the n tuple of real numbers whose
ith entry is 1 and all other entries are 0.
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Definition 6.6. Let V be a finite-dimensional vector space, and let B = {vy, ..., v,} be an ordered basis for
V. If f is a bilinear form on V/, the matrix of f in the ordered basis B is the n x n matrix A with entries
A;j = f(vi,v;). We shall denote this matrix by [f]z.

Theorem 6.7. Let V be a finite-dimensional vector space over the field F'. For each ordered basis 3 of V, the
function which associates with each bilinear form on V/, its matrix in the ordered basis B is an isomorphism
of the space L(V, V| F') onto the space of n X n matrices over the field F.

Proof. We have seen that f — [f]z is a one-one correspondence between the set of bilinear forms on V' and
the set of all n X n matrices over F'. That this is a linear transformation is easy to see, because

(ef + 9)(vi, vj) = cf (vi, v5) + g(vi, vj)
for each 7 and j. This simply says that
[cf + gl = c[f]s + [9]5-
O

Corollary 6.8. If B = {v1,...,v,} is an ordered basis for V, and B* = {Ly,..., L, } be an ordered basis
for V*, then the n? bilinear forms

fii(x,y) = Li(x)Lj(y), 1#i#n, 1<j<n
form a basis for L(V, V, F'). In particular, the dimension of L(V,V, F') is n?.

The concept of the matrix of a bilinear form in an ordered basis is similar to that of the matrix of a lineal’
operator in an ordered basis. Just as for linear operators, we shall be interested in what happens to the matrix
representing a bilinear form, as we change from one ordered basis to another. So, suppose B = {vy,...,v,}
and B' = {v;,...,v,} two ordered bases for V and that f is a bilinear form on V. How are the matrices [f]
and [f],y related? Well, let P be the (invertible) n x n matrix such that

for all v € V. In other words, define P by

For any vectors v, w € V,

fo,w) = [v]5[flslv

I
3
=
m\

~
=
oy
3
=
o

By the definition and uniqueness of the matrix representing f in the ordered basis B', we must have

(g = PTIfIsP.

One consequence of the change of basis formula is the following: If A and B are n x n matrices which repre-
sent the same bilinear form on V' in (possibly) different ordered bases, then A and B have the same rank. For,
if P is an invertible n x n matrix and B = PT AP, it is evident that A and B have the same rank. This makes
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it possible to define the rank of a bilinear form on V' as the rank of any matrix which represents the form in an
ordered basis for V.

It is desirable to give a more intrinsic definition of the rank of a bilinear form. This can be done as follows
: Suppose f is a bilinear form on the vector space V. If we fix a vector v in V, then f(v,w) is linear as a
function of w. If we fix a vector v € V, then f(v,w) is linear as a function of w. In this way, each fixed v
determines a linear functional on V'; let us denote this linear functional by L¢(v). To repeat, if v is a vector
in V, then Ls(v) is the linear functional on V' whose value on any vector w is f(v,w). This gives us a
transformation v — L ¢(v) from V into the dual space V*. Since

flevr +vo,w) = cf (vi,w) + f(v2, w)

we see that
Lf(cvl + 1)2) = ch(’Ul) + Lf(vg)
that is, L is a linear transformation from V" into V'*.
In a similar manner, f determines a linear transformation Ry from V into V*. For each fixed w € V,

f(v,w) is linear as a function of v. We define R¢(w) to be the linear functional on V' whose value on the
vector v is f (v, w).

Theorem 6.9. Let f be a bilinear form on the finite-dimensional vector space V. Let L; and Iy be the linear
transformations from V' into V* defined by (L (v))(w) = f(v,w) = (Rs(w))(v). Thenrank(Ls) =rank(Ry).

Definition 6.10. If f is a bilinear form on the finite-dimensional space V, the rank of f is the integer
r =rank(L ) =rank(Ry).

Corollary 6.11. The rank of a bilinear form is equal to the rank of the matrix of the form in any ordered basis.
Corollary 6.12. If f is a bilinear form on the n-dimensional vector space V, the following are equivalent:

1. rank(f) = n;

2. For each non-zero v € V/, there is a vector w € V such that f(v,w) # 0;

3. For each non-zero w € V/, there is a vector v € V such that f (v, w) # 0.

Definition 6.13. A bilinear form f on a vector space V is called non-degenerate (or non-singular) if it satisfies
conditions 2 and 3 of the above corollary.

If V is finite-dimensional, then f is non-degenerate provided f satisfies any one of the three conditions of
the above corollary. In particular, f is non-degenerate (non-singular) if and only if its matrix in some (every)
ordered basis for V' is a non-singular matrix.

Example 6.14. Let V' = R™, and let f be the bilinear form defined on v = (z1,...,x,) and w = (y1,...,Yn)
by

flo,w) =z191 + -+ + TpYn.
Then f is a non-degenerate bilinear form on R™. The matrix of f in the standard ordered basis is the n x n

identity matrix
f(X,Y)=X"Ty.
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Example 6.15. Let V = P, denote the space of real polynomials of degree at most 2. We can define a bilinear
form on V' by

1
(r9) = | @)z, fgeV.
0
By definition, the matrix of the form is given by

1

1
agi = (a1, 21 :/ T M
i = ) 0 it+j+2

Thus, the matrix of the form with respect to the standard basis is

1 1/2 1/3
A={1/2 1/3 1/4
1/3 1/4 1/5

6.1.1 Symmetric Bilinear Forms

The main purpose of this section is to answer the following question : If f is a bilinear form on the finite-
dimensional vector space V, when is there an ordered basis 3 for V' in which f is represented by a diagonal
matrix? We prove that this is possible if and only if f is a symmetric bilinear form, that is, f (v, w) = f(w,v).
The theorem is proved only when the scalar field has characteristic zero, that is, that if n is a positive integer
the sum 1 4 --- 4+ 1 (n times) in F' is not 0.

Definition 6.16. Let f be a bilinear form on the vector space V. We say that f is symmetric if f(v,w) =
flw,v) forallv,w € V.

If V' is a finite-dimensional, the bilinear form f is symmetric if and only if its matrix A in some (or every)
ordered basis is symmetric, A” = A. To see this, one inquires when the bilinear form

f(X,Y)=XTAy

is symmetric. This happens if and only if X7 AY = YT AX, for all column matrices X and Y. Since X7 AY
is a 1 x 1 matrix, we have X7 AY = YT AT X . Thus f is symmetric if and only if Y7 AT X = YT AX for all
X, Y. Clearly this just means that A” = A. In particular, one should note that if there is an ordered basis for
V in which f is represented by a diagonal matrix, then f is symmetric, for any diagonal matrix is a symmetric
matrix.

Definition 6.17. If f is a symmetric bilinear form, the quadratic form associated with f is the function ¢ from
V into F' defined by

q(v) = f(v,v).
Theorem 6.18. Any quadratic form can be represented by symmetric matrix.

_ , , g
Indeed, if a;; #+ aji, we replace them by new a;; = a;; = aij eraﬂ

j ji , this does not change the corresponding
quadratic form.

Definition 6.19. 1. (Positive definite) A bilinear form f on a real vector space V is positive definite, if

(v,v) = f(v,v) >0, ©v#Q0.

A real n x n matrix A is positive definite if 7 Az > 0 for all 2 # 0.
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2. (Negative definite) A bilinear form f on a real vector space V' is negative definite, if

(v,v)y = f(v,v) <0, ©v#D0.
A real n x n matrix A is positive definite if 7 Az < 0 for all 2 # 0.

3. (Positive Semi-definite) A bilinear form f on a real vector space V is positive semi-definite, if
(0,0) = f(v,0) 20, veV.
A real n X n matrix A is positive semi-definite if 2T Az > 0 for all .

4. (Negative Semi-definite) A bilinear form f on a real vector space V is negative semi-definite, if
(v,0) = f(v,0) <0, vEV.
A real n X n matrix A is negative semi-definite if 7 Az < 0 for all .

5. (Indefinite) A bilinear form f on a real vector space V is indefinite, if
(v,v) = f(v,v) >0, forsome veV

and
(v,v) = f(v,v) <0, forsome v e V.

Example 6.20. 1. The quadratic form f(z,y) = 22 + y? is positive for all nonzero (x,y). Hence f is
positive definite.

2. The quadratic form f(z,y) = —x? — y? is negative for all nonzero (z,y). Hence f is negative definite.

3. The quadratic form f(x,y) = (x — y)? is non-negative. This means that f is either zero or positive for
all (z,y). Hence f is positive semi-definite.

4. The quadratic form f(z,y) = —(z — y)? is non-positive. This means that f is either zero or negative

for all (z,y). Hence f is negative semi-definite.

5. The quadratic form f(z,y) = 22 — 42 is indefinite aince it can take both positive as well as negative for
example, f(3,1)=9—-1=8>0and f(1,3) =1—-9=-8<0.

6.1.2 Definiteness of a 2 Variable Quadratic Form

Let f(x,y) = ax? + 2bzy + cy? which is equal to

e =l [y o 1]

ax

is the symmetric matrix of the quadratic form. The determinant

Here,

b

‘—ac—b2
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is called the discriminant of f. It can be easily seen that

ac — b? /2

b 2
az® + 2y + ¢y’ = a <am + y) +
a

Let us use the notation D = a, Dy = ac — b%. Actually D and D are leading principal minors of A. Note
that there exists one more principal (non leading) minor (of degree 1) D/1 = c. Then

2
f(z,y) = Dy <ax + Zy) + gij'
From this expression we obtain:
1. If D; > 0 and Dy > 0, then the form 22 + 32 type, so it is positive definite;
2. If D; < 0 and Dy > 0, then the form —xz? — y? type, so it is negative definite;

3. If D; > 0 and Dy < 0, then the form 22 — y? type, so it is indefinite; If D; < 0 and Dy > 0, then the
form —2% + /2 type, so it is also indefinite.

Thus, if Dy < 0, then the form is indefinite.

Semidefiniteness depends not only on leading principal minors D1, D9 but also on all principal minors, in
this case on D} = ¢ too.

4. If D1 > 0, D'1 > 0 and Dy > 0, then the form is positive semidefinite.

Note that the condition D,1 > 0 is necessary since the form f(x,y) = —y? witha = 0, b = 0 and
¢ = —1 for which D; = a > 0, Dy = ac — b® > 0, nevertheless the form is not positive semidiefinite.

5. If Dy <0, D/1 < 0and D2 > 0, then the form is negative semidefinite.
Note that the condition D/1 < 0 is necessary since the form f(z,y) = y?> witha = 0,b=0and ¢ = 1
for which D; = a < 0, Dy = ac — b? > 0, nevertheless the form is not negative semidiefinite.
6.1.3 Definiteness of a 3 Variable Quadratic Form

Let us start with the following example.

Example 6.21. Let f(x,y,2) = 22 + 2y? — 72?2 — 4xy + 822. The symmetric matrix of this quadratic form
is

1 -2 4
-2 2 0
4 0 =7
The leading principal minors of this matrix are
1 9 1 -2 4
|D1| =1, \D2\:‘_2 2’:—2, |Ds|=|-2 2 0|=-18.
4 0 =7

Also, on simplification, we get

D3

D
flo,y,2) =% + 2% — 72 — day + 8vz = D |} + 2203 + 203,
D 2" Dy
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where

lh = x—2y+4z,
ly = y—4dx,
l3 = Zz
That is, (11, l2, l3) are linear combinations of (x,y, z). More precisely,
I 1 -2 4 T
l2 =10 1 —4 yl,
l3 0 0 1 z
where
1 -2 4
P=|(0 1 -4
0 0 1
is a nonsingular matrix (changing variables).
In general if
air a2 a3 x
fl@y,2) =]z y z]. |azn a2 as]|.|y
azy azz2 asg z
The following three determinants
a1 aw ail a2 a3
|D1| = |an|, |Di| = , | D3| =laa1 azn as
a1 a2

azyr azz asg
are leading principal minors. It is possible to show that, if |D1| # 0, | Da| # 0, then

[D2| 5 D3| o
z,y,2) = |Di|I? + =212 4+ =22,
f( Yy ) ’ ’1 |D1|2 |D2|3
where [1, l2, [3 are some linear combinations of x, y, z. This is called Lagrange’s Reduction. This implies the
following
1. The form is positive definite iff |D1| > 0, |D2| > 0, | D3| > 0, that is all principal minors are positive.

2. The form is negative definite iff |D;| < 0,
sign starting with negative one.

Dy| > 0, | D3| < 0, that is all principal minors alternate in

Example 6.22. Determine the definiteness of the form f(z,y, z) = 322 + 2y + 322 — 2zy — 2yz.

The matrix of our form is

3 -1 0
-1 2 -1
0o -1 3
The leading principal minors are
3 3 -1 0
|Dy| =3>0, |D1\:’_1 2‘:5>0, |Ds|=|-1 2 -1]=18>0,
0o -1 3

thus the form is positive definite.
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The above process can be generalized for n variable, which we omit here. We arrive at the following theorems.

Theorem 6.23. 1. A quadratic form is positive definite if and only if
|D1| > 07 ‘DQ‘ > Oa 7‘Dn| > 07
that is all principal minors are positive;

2. A quadratic form is negative definite if and only if
|D1| <0, |D2| >0, |D3| <0, >|D4| >0, -,
that is principal minors alternate in sign starting with negative one.

3. If some kth order leading principal minor is nonzero but does not fit either of the above two sign patterns,
then the form is indefinite.

Theorem 6.24. 1. A quadratic form is positive semidefinite if and only if all principal minors are > 0;

2. A quadratic form is negative semidefinite if and only if all principal minors of odd degree are < 0, and
all principal minors of even degree are > 0.

6.1.4 Definiteness and Eigen Values

As we know a symmetric n X n matrix has n real eigenvalues (maybe some multiple).

Theorem 6.25. Given a quadratic form f(x) = 27 Az and let ¢y, . . ., ¢, be eigen values of A. Then f is
1. positive definite iff ¢; > 0,71 =1,...,n;
2. negative definite iff ¢; < 0,2 =1,...,n;
3. positive semidefinite iff ¢; > 0,7 =1,...,n;

4. negative semidefinite iff ¢; < 0,7 =1,...,n;

6.2 Few Probable Questions

1. Define bilinear forms. Determine the definiteness of the form f(x,y) = 22 + 22y + .

2. Define quadratic forms. For which real numbers k is the quadratic form f(z,y) = kx? — 6xy + ky>
positive-definite?
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Unit 7

Course Structure

e Legendre polynomial : Generating relation, Recurrence relations,
e Rodrigue’s formula, Schlafli’s and Laplace’s integral formulae,

e Orthogonal property, Reconstruction of the Legendre differential equations.

7 Introduction

We are familiar with the method of solving ordinary differential equations via series solutions. In particular,
we have learnt to find solutions of ODE around a regular point and a regular singular point for the given ODE.
We used to employ Frobenius Method to calculate the solution in the latter case. Here, we will study the
solutions of certain standard and difficult” ODE which have applications in various fields using the same
method. We will start with Legendre polynomials and explore certain properties of them.

Objectives

After reading this unit, you will be able to

find the solution of Legendre equations

define Legendre polynomials

represent the solutions in a standard manner for further use

learn the orthogonal properties and Rodrigue’s formula for Legendre polynomials

7.1 Legendre Equations
The differential equation of the form

dy ) dy

2 _

(1-=z )@—2x%+n(n+1)y—0 (7.1.1)
where n is a constant is called Legendre’s equation. x = =1 are the singular points of this equation. Let us
see whether x = oo is a regular singular point of (7.1.1). Let x = % Then

e _ 1
at 2
and hence
dy _dydt _ oy
de  dtdr dt’
Also, ,
d=y d (dy dt\ dt 4 v 3dy
e e e e i
dz?  dt <dt dx) dx a2
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Hence equation (7.1.1) becomes

d*y 3dy
—1)—= +2t°— 1)y =0. 7.1.2
(2 = 1) g + 260+ n(n+ Dy (7.1:2)
t = 0 is clearly a singular point of (7.1.2) which implies that x = oo is a singular point of (7.1.1). Now, check
that

: 2t g n(n+1)
v s L LT RS
Hence t = 0 is a regular singular point of (7.1.2).
Assume that
oo
y =t° Z amt™
m=0

be a solution of (7.1.2) such that ag # 0. Then

dy o0 o0

e Z (m+ 8)ant* T & Z m4s)(m 4 s — 1)ant ™2

m=0 m=0

Then (7.1.2) becomes
oo
Z {(m+s=2)(m+s—1)am—2—(m+s+n)(m+s—n—1)an }t"—(s+n)(s—n—1)ag—(s+n+1)(s—n)ait = 0.
m=0
Then the indicial equation is
—(s+n)(s—n—1)ap =0 = s=—n,n+1, since ag # 0.

When s = —n, a; = 0 and when s = n 4+ 1, a; = 0. Hence a; = 0 in all case and the general recurrence

relation is
(m+s—2)(m+s—1)

= > 2.
M mts—n)(mts—n—1) =
Sincea1:0,soa3:a5:---:a2m+1:-~-:0.
Now,
s(s+1)

a a

2 (s+n+2)(s—n+1)"°

" s(s+1)(s+2)(s+3)

. =

(8+n+2)(s+n+4)(s—n+1)(s—n+3)a0

Let n be a positive integer. Taking m = n + 1, we have

(n+s)(in+s—1) (n+s)(n+s+1)
an41 = an—1 an+2 = Qnp
2n+s+1)s ’ 2n+s+2)(s+1)
When s = —n,
_ n(n-1) _n(n—1)(n—-2)(n—-23)
2= 50— )" M7 a@n_1)@n_3) O
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and a,4+1 = apt2 = 0. Then

y = ag (xn_n(n_l) n—2 n(n_l)(n_2)(n_3) n4+.__> ) (7.1.3)

202n —1)" 2.4.(2n — 1)(2n — 3)
Taking s = n + 1, we have

_ 1. (D +2) 3 (n+1)(n+2)(n+3)(n+4) _,_
y_ao(x 1_Wx o 24.2n13)2n+5) 5+”'>' (7.1.4)

When n is a positive integer, the roots of the indicial equation differ by 2n + 1, which is an integer. There
could be problem in evaluating asy, 1 for s = —n. But, a1 = an42 = --- = 0, and hence we don’t face
that problem.

Whenn =1, y; = agx.
Whenn = 2, y; = ag (;132 — %)
Whenn =3, y; = (a:3 — %x)

If we take
1.35...(2n—1)

n!
then the solution of (7.1.2) is called the Legendre function of first kind or Legendre Polynomial of degree
n and is denoted by P,,(z). Thus, P, (x) is a solution of (7.1.1). But even if n is a positive integer, solution
(7.1.3) is an infinite series. In this case if we take

ag = )

n!
S 1.35...(2n+ 1)

ao

then solution (7.1.3) is denoted by @, (z) and is called the Legendre function of second kind. Q,,(x) is not a
polynomial and it is linearly independent from P,,(z) and we get the general solution of (7.1.1) as

y = AP, (z) + BQn(z).
Definition 7.1. Legendre Polynomial of degree n is defined as

Po(x) = 1.3.5...(2n - 1) <xn_”(”1) wo nn—1)n-2)n-3) ,_,

n! 22n—1)" 2.4.(2n —1)(2n — 3) T ) (7.1.5)

The general term of this polynomial is

nn—1)n-2)...(n—2r+1) 1.3.5...(2n—1)xn727,

CU9a 2r(2n —1)(2n —3)... (2n — 2r + 1) Y (7.1.6)

o 1.2.3....(2 o)l

135...(2n—1) = 24(;3) _ ;n”g“
Also, ;

nn—1)Mn-2)...(n—2r+1) = o

2.4....(2r)=2"1l.
And
2n—1)2n—3)...(2n—2r +1) = m
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So, using these things, (7.1.6) becomes

(2n — 2r)!
2nrl(n — 2r)!(n — r)!x

n—2r

(="

(7.1.5) is a polynomial of degree n. Hence n — 2r > 0 or 1 according as n is even or odd, that is, r < [%}
Hence, Legendre polynomial of degree n is given by

(5]
, 2n — 2r)! e
FPul) = Z(_l) Q”T!(T(l — 21")!(31 " 7

r=0

7.1.1 Determination of few Legendre Polynomials

For n = 0, we have

L 0(20-20)
S T
Similarly, putting n = 1,2, 3,4 we get
P(x) = =
3 1
Py(x) = 53;2 ~ 3
543 3
Py(z) = §x3 -5
35 15 3
Py(z) = ot - —a?

7.1.2 Generating Function for Legendre Polynomial

Theorem 7.2. The function
w(z,z) =(1—2xz+ z2)_1/2

is the generating function for Legendre polynomials, that is,

o0
= ZPn(x) 2"
n=0
holds for sufficiently small values of |z|.
Proof. Expanding (1 — 2zz 4 22)~'/2, we get,
w(z,z) = (1—a)™"? taking a = 22z — 2?
a -1/2)(-1/2 -1 -1/2)(-1/2-1)(-1/2 -2
e, CUDE2-Y ,  (CYDE2 -2
2 2! 3!
2z — 2% 3 15
= 1- % + g(4x222 + 2% — 4223) + Z(8x3z3 — 12272 + 622°) +

1
= 1—m.z+<;2 2)2’ —i—( 3 gm 24

Now, we know that,




Also,

_1/2)(=1/2 -1 —1/2)(=1/2 — 1)(=1/2 — 2
Lot = g0y CUDCY2-D (122 D(EY2-2)
2 2! 3!

0, 13 5 135,
- 2 T 291" T3 g1?

Thus, the kth term is

Thus, we get
(e e}
1.35...(2k—1
w(zx,z) = Z 1 (2k )(sz — 22k
— 1.
Now,
(2k)!
1.35...2k—-1) = IR
Thus,

w(z,z) = Z (21{7).! (2zz — 22k
k=

X0 (2k)! & [k
= kz_o 22(k(13!)2 ZO <5> (sz)k(_zﬂ)kfs
) k
— 222(’3(]{2")2 <§>(2x)k(_1)ksz2ks
k=0 s=0
- = _s (2k)! k! s %k—s
- ;2)(_1)’9 2‘4’('@(13!)23!@—3)!(29”) S
=0 s=

Consider the portion (k — s)!, where s varies fromOto k. If s = k+ 1, (k — s)! = (—1)! = oco. Similarly,
for other s > k, (k — s)! — oo and so, the terms for s > k becomes zero and the summation can be extended
from k to oco. Interchanging the summations, we get

S 2k)! k!
w@,2) =3 Z<_1)k522(k(k;)!)2 TG

Whenk =0,1,...,(s—1), weget (k—s)! = co. And when k = s, (k—2)! = 0! = 1. So, we can effectively
start the summation from k£ = s instead of k£ = 0 and the equation becomes

o — . (2k)! k! o s
wiwz) =3 3 (" 22(’f(l<:>!)2 0k — s 20 S

w(zx, z) = i i(_l)pwixsz%ﬂ.

22rts (s + p)! slp!
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Put 2p 4+ s = n and eliminate s. Then since p varies from 0 to oo, s varies from 0 to oo, n varies from 0 to co.
Now, s > 0. So, n — 2p > 0 which implies that p < [%] Since p is an integer, p < [%] So,

’UJ(J‘, Z) — Z Z(_l)p (27], - 2]7)' 1 xn—szn

27(n —p)! (n — 2p)!p!

n=0 p=0
oo 3]
_ Z N (_1)p (2n - 2p)' 1 xn72p
n(y — n)l _ Ip!
o0
= Z P, (x)2"
n=0
7.1.3 Recurrence Relations for Legendre Polynomials
Here, we will do certain recurrence relations related to Legendre polynomials.
1. We have, forn =0,1,2,...,
Po(z) — 2P, (x) + Py_1(2) — Pu(x) = 0.
Proof. We have
o0
w(z, z) = (1 —2xz+4 2%) 712 = Zz"Pn(x)
n=0
Taking logarithm on both sides and then differentiating with respect to x, we get
i[ln((l — 2wz + 227V = a In i 2" Pp(x)
dx dx =
1 2z 20 2" Py(z)
o, ——m———— = =—— =
T 21— 23z + 22 PN A €))
o0 o
or, (1—2zxz+ 2% Z 2"P.(x) = =z Z 2" P, (z)
n=0 n=0
Equating the coefficients of 2™ on both sides, we get
P,(z) = 20P,_y(x) + P _s(x) = Puor(2).
Replacing n by n + 1, we get,
P (z) — 2P, (x) + Py_i(z) — Po(x) = 0.

2. (n+1)Pyt1(z) — 2n+ 1)aPy(z) + nPp_1(x) =0,forn =0,1,2,...
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Proof. We have
w(z,z) = (1 —2xz+4 22712 = ZZ”P

Taking logarithm on both sides and then differentiating with respect to z, we get

T —z Y nPy(z)2" !
1—-2x2+22 Y% 2nP,(x)
oo o
or, (x—2z) Z 2"Py(z) = (1—2zz+ 2% Z nP,(z)z"!
n=0 n=1
[e.e]

= (1-2zz+ 2% Z(n + 1) Poy1(z)2"

n=0

Equating coefficients of 2" on both sides, we get,

(n+1)Ppii(x) — (2n+ 1)zP,(x) + nP,—1(x) = 0.

. nPy(z) = 2P, (z) — P,_,(z),forn=0,1,2,...

Proof. We have

o0
(1 —2zz+ 22712 = Z 2" Py ().
n=0
Differentiating with respect to z, we get,

T—z
(1 —2xz + 22)3/2 ZnP

Again, differentiating (7.1.7) with respect to x, we get,

P
(1—2xz+z2 3/2 Z

By (7.1.8)xz— (7.1.9)x (z — z), we get

o0 oo
(x — 2) Z P (2)2" = Z nP,(z)z"
n=0 n=1
Equating the coefficients of z" on both sides, we get the required result.
. 2n+1)P,(x) = P;H(x) — P,;_l(:):).

Proof. We have, (n + 1)P,41(x) — (2n + 1)z P, (x) + nP,—1(x) = 0 which gives
(Qn + 1)$Pn(x) = (TL + 1)Pn+1 ($> + nPnfl(x)'

Differentiating both sides with respect to x, we get,

(2n + 1) Pu(x) + (20 + V)xP,(2) = (n + 1) Py (x) + nP,_ (z).

(7.1.7)

(7.1.8)

(7.1.9)

From the previous relation 3, we get xPT;(J;) =nP,(z) + P 1 1- Hence the previous equation gives the

desired result.

65

O]



Exercise 7.3. 1. Prove that [, P, (z)dz = 2,ifn = 0and [, P, (z)dx = 0,ifn > 1.

2. Prove the following:

@ (n+1)Po(z) = Py () — 2P (2).
(0) (1 —a?)Py(2) = n(Pooy(2) — 2Py (x)).
© (1—2?)Py(x) = (n+ 1)(@Pa(x) — Posa(@)).

3. Show that P, (x) is a solution of Legendre equation of order n.

7.1.4 Rodrigue’s Formula
Instead of using the Recurrence relations for the coefficients in the Legendre polynomial, it is easier to use the
Rodrigue’s Formula.

Legendre Polynomials satisfy the following Rodrigue’s formula

1 d"y
27! dxmn

To prove the above result, we find

r=0 "
Now,
1 dny 1 n n dny B
RHS = 9l dgn (3;2 _ 1)” — S (r> (_1)7”%(3;2)71 . (7.1.10)
r=
Now,
dn
dsv%( ™ = 0; m<n
_ m)! .
R
So, d:Tn[ 22"=2"] will be non-zero if 2n — 2r > n, that is, if n > 2r, or, r < 5. But, r is an integer. So,
r < [2]. Now, from (7.1.10), we get
1 d'y, , 1 ] n 2n—2r) , o
—(z* =" = (—1) g2
2nn! dzm 2rnl e \r (n —2r)!
2 |
_ o (2n — 2r)! o
= 2 (1) v
= 2n(n —2r)l(n —r)lr!
= P,(x) =LHS
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7.2 Orthogonal Property

The Legendre polynomials are orthogonal in the interval [—1, 1] which gives

1
/ Py (z)Py(x)de = 0, m#n
-1
2
L m=
2m +1

To prove the orthogonality of P, (x), we will consider two cases, viz., m = n and m # n. Let us start with
the case m # n.

Casel: Legendre equation of order m is

2

d d
(1-— xz)d—;é — 2x£ +m(m+ 1)y =0.

P,,(x) is a solution of the above equation. So,

/1

(1 — 2P, (x) — 22P,,(z) + m(m + 1) Py (z) = 0. (7.2.1)

m

Also, P, (z) is a solution of Legendre equation of order n. So,

/!

(1— 2P, (z) — 22P, (x) + m(m + 1)P,(z) = 0. (72.2)

n

Multiplying (7.2.1) by P, (z) and (7.2.2) by P,,,(z) and subtracting, we get

(1 = 2%) [P (2) Pa(2) = P, (2) P ()] —

22[ P, (2) Po(x) — Pp(2) P (2)] + [m(m + 1) = n(n + 1)]Pp(z) Pa(z) = 0
or %[(1 — mz){Prln(x)Pn(:n) — P;L(x)Pm(x)}] + [m(m +1) —n(n + 1) Pp(z)Pu(z) = 0

Integrating both sides with respect to z from —1 to 1, we get

1 d , 1
/ (1= ) [P @)Pa(e) — o) Pu(e)lde = (n—m)(n+m -+ 1) / Py (i) Pal)di
—1 -1

1
or, (n —m)(n+m+1) /_1 Pu(2)Pa(e)de = [(1 = 2*){Py,(2)Pu(x) — P () Pu(2)}]Ly
= 0

or, /1 Py (z)Py(z)dz = 0.
-1

Casell: When m = n, we have

(1—2zz+4 22712 = Z 2" P, (x). (7.2.3)
=0

Replacing n by m in (7.2.3), we have

(1—2zcz+ 22712 = Z 2™ P (). (7.2.4)
m=0
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Multiplying (7.2.3) and (7.2.4), we get

(1—2zz+2%)" ZZZ"+

m=0n=0

Integrating both sides with respect to  from —1 to 1, we get

1 m=0n=

P (

0

1+ 2
1—=2

m=0n=0" "
o0
n=0 -1
Now,
1 1
/ (1-2zz+2%)"Yder="1In
-1 z
Hence,

5

2 23
Po( )22 de = = e
E/ x Z{z+3+5+

Hence, Equating the like coefficients on both sides, we get

/ P, Q"dx =

2
2n+1

/_1 (1—2zz+2%)"Yde = / Z Zz”+mP

B ().

)

b2

:02n+1

o0

222n

7.3

Few Probable Questions

. Prove that the Legendre polynomials are orthogonal.

State and prove the Rodrigue’s formula.

. Prove the following:

(@) P,(1) =1, Py(—1) = (=1)™
(b) P;L(l) n( n+1 andP ( 1) = (_1)71—1@
© Pu(—z) = (— )" P, (x). Hence deduce that P,,(—1) =

(=™

. Prove that for any non-negative integer n, we have P, (x) = 22P,(x) + P,

1(z) — Py(z) =0.
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Unit 8

Course Structure

e Hermite and Laguerre polynomials : Generating relations, Recurrence relations,
e Rodrigue’s formulae, Orthogonal properties,

e Reconstructions of the respective differential equations.

8 Introduction

In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence. These arise in
probability, combinatorics, numerical analysis, systems theory, random matrix theory and many more. Her-
mite polynomials were defined by Pierre-Simon Laplace in 1810, though in scarcely recognizable form, and
studied in detail by Pafnuty Chebyshev in 1859. Chebyshev’s work was overlooked, and they were named
later after Charles Hermite, who wrote on the polynomials in 1864, describing them as new. They were conse-
quently not new, although Hermite was the first to define the multidimensional polynomials in his later 1865
publications. And the Laguerre polynomials arise in quantum mechanics, in the radial part of the solution of
the Schrodinger equation for a one-electron atom. They also describe the static Wigner functions of oscillator
systems in quantum mechanics in phase space. They further enter in the quantum mechanics of the Morse
potential and of the 3D isotropic harmonic oscillator. The generalized Laguerre polynomials are related to the
Hermite polynomials. This unit is dedicated to the study of Hermite as well as Laguerre polynomials.

Objectives
After reading this unit, you will be able to
e solve the Hermite’s equation and find the general structure of Hermite’s polynomial
e define a general Laguerre polynomial
e derive the Rodrigue’s formula for both Hermite and Laguerre polynomials
e establish the orthogonality of Hermite and Laguerre polynomials
¢ find a generating function for Laguerre and Hermite’s polynomials
e learn some recurrence relations relating to both

e solve certain problems relating to both
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8.1 Solution of Hermite’s Equations

The Hermite’s equation is

d?y dy
SY 92 fony =0
dx? xdx + oy

where, n is a constant. We solve it by Frobenius Method, about x = 0. Assume that

o]
y = § :amxs+m
m=0

be the solution of (8.1.1), where ag # 0 and s is to be determined. Then

-2 = (5 +m)amzs"
dx =
d2

(s +m)(s+m — Dayuz*tm 2

I
NE

dx?
0

3
I

Thus, equation (8.1.1) becomes

o D
Zs—i—m S+m—1)amms+m_2—22 s—l—mamxs+m+2n2amw
m=0 m=0 m=0
o0

[ee]
or, Z (s+m)(s+m —1)apzsT™ 2 -2 Z (s +m —n)a,zst™ =

[e.e] o0

or, s+m)(s+m—1apz™ —2 s+m—n)apz™t? =
> ) )

m=0 m=0
oo oo

or, s+m)(s+m—1apz™ —2 s+m—n—2)ay,_2z" =
> ) )

Z{(s +m)(s+m—1Daym —2(s+m—n—2)am—2}x™ +s(s—1)ap+ s(s+ 1)ajx =0

m=2

The indicial equation is
s(s—1)ap=0 = s=0,1.

When s = 0, a; is indeterminate. When s = 1, a; = 0. The general recurrance relation is

2(s+m—n-—2)
(s+m)(s+m—1